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Autonomic Computing is a concept that brings together many fields of computing with the purpose of creating
computing systems that self-manage. In its early days it was criticised as being a “hype topic” or a rebadging
of some Multi Agent Systems work. In this survey, we hope to show that this was not indeed ‘hype’ and that,
though it draws on much work already carried out by the Computer Science and Control communities, its
innovation is strong and lies in its robust application to the specific self-management of computing systems.
To this end, we first provide an introduction to the motivation and concepts of autonomic computing and
describe some research that has been seen as seminal in influencing a large proportion of early work. Taking
the components of an established reference model in turn, we discuss the works that have provided significant
contributions to that area. We then look at larger scaled systems that compose autonomic systems illustrating
the hierarchical nature of their architectures. Autonomicity is not a well defined subject and as such different
systems adhere to different degrees of Autonomicity, therefore we cross-slice the body of work in terms of
these degrees. From this we list the key applications of autonomic computing and discuss the research work
that is missing and what we believe the community should be considering.
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1. INTRODUCTION

Computing systems have reached a level of complexity where the human effort re-
quired to get the systems up and running and keeping them operational is getting out
of hand. A similar problem was experienced in the 1920s in telephony. At that time,
human operators were required to work the manual switchboards, and because us-
age of the telephone increased rapidly, there were serious concerns that there would
not be enough trained operators to work the switchboards [Mainsah 2002]. Fortu-
nately, automatic branch exchanges were introduced to eliminate the need for human
intervention.
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Autonomic computing seeks to improve computing systems with a similar aim of de-
creasing human involvement. The term “autonomic” comes from biology. In the human
body, the autonomic nervous system takes care of unconscious reflexes, that is, bodily
functions that do not require our attention, for example bodily adjustments such as the
size of the pupil, the digestive functions of the stomach and intestines, the rate and
depth of respiration, and dilatation or constriction of the blood vessels. Without the
autonomic nervous system, we would be constantly busy consciously adapting our body
to its needs and to the environment.

Autonomic computing attempts to intervene in computing systems in a similar fash-
ion as its biological counterpart. The term autonomic computing was first used by IBM
in 2001 to describe computing systems that are said to be self-managing [Kephart and
Chess 2003]. However, the concepts behind self-management were not entirely new to
IBM’s autonomic computing initiative. In the next section, we present a brief history of
autonomic computing related projects and initiatives in chronological order. Through-
out the paper we use the terms Autonomic Computing, Self-Managing Systems, and
Self-Adaptive Systems interchangeably.

To explore this diverse field, we first provide an introduction to the motivation and
concepts of autonomic computing in Section 2 and describe some research that has been
seen as seminal in influencing a large proportion of early work in Section 3. Taking the
components of the MAPE-K Loop reference model, which we describe in Section 4, we
discuss the works that have provided significant contributions to that area, in Sec-
tions 4.1–4.5. We then look at larger-scaled systems that compose autonomic systems
illustrating the hierarchical nature of their architectures in Section 5. Autonomicity
is not a well defined subject and as such different systems adhere to different degrees
of autonomicity, therefore we cross-slice the body of work and discuss these degrees in
Section 6. From this, we list the key applications of autonomic computing in Section 7
and conclude with a discussion on what research work is lacking and what we believe
the community should be considering in Section 8.

2. A BRIEF HISTORY

We now describe early work in autonomic computing that we believe have been influ-
ential to many other later projects in the autonomic research field.

Similarly to the birth of the Internet, one of the notable early self-managing projects
was initiated by DARPA for a military application in 1997. The project was called the
Situational Awareness System1 (SAS), which was part of the broader Small Units Op-
erations (SUO) program. Its aim was to create personal communication and location
devices for soldiers on the battlefield. Soldiers could enter status reports, for exam-
ple, discovery of enemy tanks, on their personal device, and this information would
autonomously spread to all other soldiers, which could then call up the latest status
report when entering an enemy area. Collected and transmitted data includes voice
messages and data from unattended ground sensors and unmanned aerial vehicles.
These personal devices have to be able to communicate with each other in difficult
environmental conditions, possibly with enemy jamming equipment in operation, and
must at the same time minimize enemy interception to this end [Kenyon 2001]. The
latter point is addressed by using multihop ad-hoc routing; that is, a device sends its
data only to the nearest neighbors, which then forward the data to their own neighbors
until finally all devices receive the data. This is a form of decentralized peer-to-peer mo-
bile adaptive routing, which has proven to be a challenging self-management problem,
especially because in this project the goal is keep latency below 200 milliseconds from

1SAS home page: http://www.darpa.mil/ato/programs/suosas.htm

ACM Computing Surveys, Vol. 40, No. 3, Article 7, Publication date: August 2008.



A Survey of Autonomic Computing—Degrees, Models, and Applications 7:3

the time a soldier begins speaking to the time the message is received. The former point
is addressed by enabling the devices to transmit in a wide band of possible frequencies,
20–2,500 MHz, with bandwidths ranging from 10 bps to 4 Mbps. For instance, when
distance to next soldier is many miles, communication is possible only at low frequen-
cies, which results in low bandwidth, which may still be enough to provide a brief but
possibly crucial status report. Furthermore, there may be up to 10,000 soldiers on the
battlefield, each with their own personal devices connected to the network.

Another DARPA project related to self-management is the DASADA2 project started
in 2000. The objective of the DASADA program was to research and develop technology
that would enable mission critical systems to meet high assurance, dependability, and
adaptability requirements. Essentially, it deals with the complexity of large distributed
software systems, a goal not dissimilar to IBM’s autonomic computing initiative. In-
deed, this project pioneered the architecture-driven approach to self-management (see
Section 4.4.2), and more broadly the notion of probes and gauges for monitoring the
system and an adaptation engine for optimizing the system based on monitoring data
[Garlan et al. 2001; Cobleigh et al. 2002; Kaiser et al. 2002; Gross et al. 2001; Wolf et al.
2000].

In 2001, IBM suggested the concept of autonomic computing. In their manifesto
[Horn 2001], complex computing systems are compared to the human body, which is a
complex system, but has an autonomic nervous system that takes care of most bodily
functions, thus removing from our consciousness the task of coordinating all our bodily
functions. IBM suggested that complex computing systems should also have autonomic
properties, that is, should be able to independently take care of the regular maintenance
and optimization tasks, thus reducing the workload on the system administrators.
IBM also distilled the four properties of a self-managing (i.e., autonomic) system: self-
configuration, self-optimization, self-healing, and self-protecting (these properties are
described in more detail in Section 3).

The DARPA Self-Regenerative Systems program started in 2004 is a project that
aims to “develop technology for building military computing systems that provide crit-
ical functionality at all times, in spite of damage caused by unintentional errors or
attacks” [Badger 2004]. There are four key aspects to this project. First, software is
made resistant to error and attacks by generating a large number of versions that
have similar functional behavior, but sufficiently different implementation, such that
any attack will not be able to affect a substantial fraction of the versions of the pro-
gram. Second, modifications to the binary code can be performed, such as pushing
randomly sized blocks onto the memory stack, that make it harder for attackers to ex-
ploit vulnerabilities, such as specific branching address locations, as the vulnerability
location changes. Furthermore, a trust model is used to steer the computation away
from resources likely to cause damage. Whenever a resource is used, the trust model is
updated based on outcome. Third, a scalable wide-area intrusion-tolerant replication
architecture is being worked on, which should provide accountability for authorised
but malicious client updates. Fourth, technologies are being developed that supposedly
allow a system to estimate the likelihood that a military system operator (an “insider”)
is malicious and prevent it from initiating an attack on the system.

Finally, we would like to mention an interesting project that started at NASA in 2005,
the Autonomous NanoTechnology Swarm (ANTS). As an exemplary mission, they plan
to launch into an asteroid belt a swarm of 1000 small spacecraft (so-called pico-class
spacecraft) from a stationary factory ship in order to explore the asteroid belt in detail.
Because as much as 60–70% of the swarm is expected to be lost as they enter the aster-
oid belt, the surviving craft must work together. This is done by forming small groups of

2DASADA home page: http://www.rl.af.mil/tech/programs/dasada/program-overview.html
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Table I. A Brief Chronology of Influential Self-Management Projects

SAS
Situational Awareness
System

1997 DARPA Decentralized self-adaptive (ad-hoc) wireless
network of mobile nodes that adapt routing to the
changing topology of nodes and adapt
communication frequency and bandwidth to
environmental and node topology conditions.

DASADA
Dynamic Assembly for
Systems Adaptability,
Dependability, and
Assurance

2000 DARPA Introduction of gauges and probes in the
architecture of software systems for monitoring
the system. An adaptation engine then uses this
monitored data to plan and trigger changes in the
system, e.g., in order to optimise performance or
counteract failure of a component.

AC
Autonomic Computing

2001 IBM Compares self-management to the human
autonomic system, which autonomously performs
unconscious biological tasks. Introduction of the
four central self-management properties (self-
configuring, self-optimising, self-healing and self-
protecting).

SPS
Self-Regenerative
Systems

2003 DARPA Self-healing (military) computing systems, that
react to unintentional errors or attacks.

ANTS
Autonomous
NanoTechnology
Swarm

2005 NASA Architecture consisting of miniaturized,
autonomous, reconfigurable components that form
structures for deep-space and planetary
exploration. Inspired by insect colonies.

worker craft with a coordinating ruler, which uses data gathered from workers to deter-
mine which asteroids are of interest and to issue instructions. Furthermore, messenger
craft will coordinate communications between members of the swarm and with ground
control. In fact, NASA has already previously used autonomic behavior in its DS1 (Deep
Space 1) mission and the Mars Pathfinder [Muscettola et al. 1998]. Indeed, NASA has a
strong interest in autonomic computing, in particular in making its deep-space probes
more autonomous. This is mainly because there is a long round-trip delay between a
probe in deep space and mission control on Earth. So, as mission control cannot rapidly
send new commands to a probe—which may need to quickly adapt to extraordinary
situations—it is extremely critical to the success of an expensive space exploration
mission that the probes be able to make certain critical decisions on their own.

3. SELF-MANAGEMENT PROPERTIES

The main properties of self-management as portrayed by IBM are self-configuration,
self-optimization, self-healing, and self-protection. Here is a brief description of these
properties (for more information, see Kephart and Chess [2003]; Bantz et al. [2003]):

Self-Configuration. An autonomic computing system configures itself according to
high-level goals, that is, by specifying what is desired, not necessarily how to accomplish
it. This can mean being able to install and set itself up based on the needs of the platform
and the user.

Self-Optimization. An autonomic computing system optimises its use of resources.
It may decide to initiate a change to the system proactively (as opposed to reactive
behavior) in an attempt to improve performance or quality of service.

Self-Healing. An autonomic computing system detects and diagnoses problems. The
kinds of problems that are detected can be interpreted broadly: they can be as low-
level as bit-errors in a memory chip (hardware failure) or as high-level as an erroneous
entry in a directory service (software problem) [Paulson 2002]. If possible, it should
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attempt to fix the problem, for example by switching to a redundant component or by
downloading and installing software updates. However, it is important that as a result
of the healing process the system is not further harmed, for example by the introduction
of new bugs or the loss of vital system settings. Fault-tolerance is an important aspect
of self-healing. That is, an autonomic system is said to be reactive to failures or early
signs of a possible failure.

Self-Protection. An autonomic system protects itself from malicious attacks but also
from end users who inadvertently make software changes, for example, by deleting an
important file. The system autonomously tunes itself to achieve security, privacy and
data protection. Security is an important aspect of self-protection, not just in software,
but also in hardware (e.g., TCPA3). A system may also be able to anticipate security
breaches and prevent them from occurring in the first place. Thus, the autonomic system
exhibits proactive features.

The self-X properties of autonomic systems are inspired by the properties of software
(or hardware) agents, which Wooldridge and Jennings [1995] first identified as being:

Autonomy. Agents operate without the direct intervention of humans or others, and
have some kind of control over their actions and internal state.

Social Ability. Agents interact with other agents (and possibly humans) via some
kind of agent-communication language.

Reactivity. Agents perceive their environment, and respond in a timely fashion to
changes that occur in it.

Proactiveness. Agents do not simply act in response to their environment, they are
able to exhibit goal-directed behaviour by taking the initiative.

There remains a debate as to what Self-Managing Systems actually are. For example,
a query optimizer, resource manager, or routing software in DBMSs, operating systems
and networks, respectively, all allow those systems to self manage. However the Self-
Managing systems’ community are coming to an agreement that the term autonomic
computing is not being used to describe these systems but those in which the query plan,
resource management, or routing decision changes to reflect the current environmental
context; reflecting dynamism in the system. That is, the DBMS query plan changes as
the query is running.

Self-Adaptive systems have contained some elements of these properties for some
time, especially to provide self-optimization. Early examples of this can be seen in
streaming media systems where the codec of the stream changes with network band-
width fluctuations, the goal being to keep music or video playback as high a qual-
ity as possible, for example, Kendra [McCann and Crane 1998] and Real Surestream
[Lippman 1999]. However the autonomic community is more and more identifying a
system as autonomic if it exhibits more than one of the self-management properties
described earlier, for example, Ganek and Friedrich [2006].

4. THE MAPE-K AUTONOMIC LOOP

To achieve autonomic computing, IBM has suggested a reference model for autonomic
control loops [IBM 2003], which is sometimes called the MAPE-K (Monitor, Analyse,
Plan, Execute, Knowledge) loop and is depicted in Figure 1. This model is being used
more and more to communicate the architectural aspects of autonomic systems. Like-
wise it is a clear way to identify and classify much of the work that is being carried
out in the field. Therefore this section introduces the MAPE-K loop in more detail and

3TCPA—The Trusted Computing Platform Alliance. URL: http://www.trustedcomputing.org/
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Fig. 1. IBM’s MAPE-K (Monitor, Analyse, Plan, Execute, Knowledge) reference model for autonomic control
loops.

then taking each of its components in turn, describes the work that focuses its research
on that component. We later take the same work and examine it from a degree of
autonomicity point of view.

The MAPE-K autonomic loop is similar to, and probably inspired by, the generic agent
model proposed by Russel and Norvig [2003], in which an intelligent agent perceives its
environment through sensors and uses these percepts to determine actions to execute
on the environment.

In the MAPE-K autonomic loop, the managed element represents any software or
hardware resource that is given autonomic behaviour by coupling it with an autonomic
manager. Thus, the managed element can for example be a web server or database, a
specific software component in an application (e.g., the query optimizer in a database),
the operating system, a cluster of machines in a grid environment, a stack of hard
drives, a wired or wireless network, a CPU, a printer, etc.

Sensors, often called probes or gauges, collect information about the managed ele-
ment. For a Web server, that could include the response time to client requests, network
and disk usage, CPU and memory utilisation. A considerable amount of research is in-
volved in monitoring servers [Roblee et al. 2005; Strickland et al. 2005; Xu et al. 2005;
Sterritt et al. 2005; Diao et al. 2005].

Effectors carry out changes to the managed element. The change can be coarse-
grained, for example, adding or removing servers to a Web server cluster [Garlan and
Schmerl 2002a], or thin-grained, for example, changing configuration parameters in a
Web server [Sterritt et al. 2005; Bigus et al. 2002].

4.1. Autonomic Manager

The data collected by the sensors allows the autonomic manager to monitor the managed
element and execute changes through effectors. The autonomic manager is a software
component that ideally can be configured by human administrators using high-level
goals and uses the monitored data from sensors and internal knowledge of the system
to plan and execute, based on these high-level goals, the low-level actions that are
necessary to achieve these goals. The internal knowledge of the system is often an
architectural model of the managed element (see Section 4.4.2). The goals are usually
expressed using event-condition-action (ECA) policies, goal policies or utility function
policies [Kephart and Walsh 2004]. ECA policies take the form “when event occurs and
condition holds, then execute action, for example, “when 95% of Web servers’ response
time exceeds 2s and there are available resources, then increase number of active
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Web servers.” They have been intensely studied for the management of distributed
systems. A notable example is the PONDER policy language [Damianou et al. 1999].
A difficulty with ECA policies is that when a number of policies are specified, conflicts
between policies can arise that are hard to detect. For example, when different tiers of
a multitier system (e.g., Web and application server tiers) require an increased amount
of resources, but the available resources cannot fulfill the requests of all tiers, a conflict
arises. In such a case, it is unclear how the system should react, and an additional
conflict resolution mechanism is necessary, for example, giving higher priority to the
Web server. As a result, a considerable amount of research on conflict resolution has
arisen [Lupu and Sloman 1999; Kamoda et al. 2005; Ananthanarayanan et al. 2005].
However, a complication is that the conflict may become apparent only at runtime.
Goal policies are more high level in that they specify criteria that characterise desirable
states, but leave to the system the task of finding how to achieve that state. For example,
we could specify that the response time of the web server should be under 2s, while
that of the application server under 1s. The autonomic manager uses internal rules (i.e.,
knowledge) to add or remove resources as necessary to achieve the desirable state. Goal
policies require planning on the part of autonomic manager and are thus more resource-
intensive than ECA policies. However, they still suffer from the problem that all states
are classified as either desirable or undesirable. Thus when a desirable state cannot be
reached, the system does not know which among the undesirable states is least bad.
Utility functions solve this problem by defining a quantitative level of desirability to
each state. A utility function takes as input a number of parameters and outputs the
desirability of this state. Thus, continuing our example, the utility function could take
as input the response time for Web and application servers and return the utility of each
combination of Web and application server response times. This way, when insufficient
resources are available, the most desirable partition of available resources among Web
and application servers can be found. The major problem with utility functions is that
they can be extremely hard to define, as every aspect that influences the decision by
the utility function must be quantified. Research is being carried out on using utility
functions, particularly in automatic resource allocation [Walsh et al. 2004] or adaptation
of data streaming to network conditions [Bhatti and Knight 1999].

Autonomic elements may cooperate to achieve a common goal [IBM 2003], for ex-
ample, servers in a cluster optimising the allocation of resources to applications to
minimise the overall response time or execution time of the applications. Thus, auto-
nomic managers may need to be aware not only of the condition of their own managed
element, but also of their environment, in particular other autonomic elements in the
network. This notion of cooperation of individual elements to achieve a common goal is
a fundamental aspect of multiagent systems research, and it is therefore not surpris-
ing that considerable research is investigating the application of multiagent systems to
implement cooperating autonomic elements, dealing in particular with the difficulties
faced in multiagent systems in guaranteeing that the behavior emerging from the indi-
vidual goals of each agent will truly result in the common goal being achieved [Kephart
and Chess 2003; Jennings 2000; Gleizes et al. 2000; Kumar and Cohen 2000]. An alter-
native to multiagent cooperation is a hierarchical structuring of autonomic elements
[Wise et al. 2000].

As Autonomic Management solutions become more decentralized and less determin-
istic, we may begin to observe emergent features. There has been an initial interest in
engineering this emergence or taking the bio-inspiration of autonomicity further than
the original definition. The term engineered emergence can be described as the “pur-
poseful design of interaction protocols so that a predictable, desired outcome or set of
outcomes are achieved at a higher level” [Anthony 2006]. It is an approach to building
systems that benefit from characteristics such as scale, robustness, and stability, but do
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not require precise knowledge of lower-level activity or configuration. In such systems
the solution emerges at the level of systems or applications while at lower levels the spe-
cific behaviour of individual components is unpredictable. Typically a small set of rules
operate on limited amounts of locally available information concerning the components
execution context and its local environment. This differs from traditional algorithmic
design of distributed applications which has typically focused on strict protocols, mes-
sage acknowledgments and event ordering. In such systems each message and event is
considered important and randomness is generally undesirable, imposing sequenced or
synchronised behaviour which is generally deterministic. However, natural biological
systems are fundamentally nondeterministic and there are many examples of large-
scale systems that are stable and robust at a global level; the most commonly cited
examples being drawn from cellular systems and insect colonies [Anthony 2006].

4.2. Example Implementations of the MAPE-K Loop

4.2.1. Autonomic Toolkit. IBM has developed a prototype implementation of the MAPE-
K loop called the Autonomic Management Engine, as part of its developerWorks Au-
tonomic Computing Toolkit.4 The Autonomic Computing Toolkit “provides a practical
framework and reference implementation for incorporating autonomic capabilities into
software systems“ [Melcher and Mitchell 2004]. Thus, it is not a complete autonomic
manager as such, but provides the foundations on which to build autonomic manager.
It is implemented in Java, but can communicate with other applications via XML mes-
sages, for example, for sensing by analyzing the logs of a managed application. The ar-
chitecture is applicable to all areas where the autonomic manager can be implemented
at the software application level (as opposed to the operating system or hardware level).
For instance, Melcher and Mitchell [2004] used it to create autonomic network service
configuration, where network devices are modeled as managed resources and dedicated
servers or gateways play the role of autonomic managers. However, they had to make
a number of extensions to the toolkit. For instance, the toolkit only supported local
communication between managed resource and autonomic manager, whereas in their
case the two components are distributed in the network.

4.2.2. ABLE. Another toolkit well known in the literature is IBM’s ABLE toolkit
[Bigus et al. 2002]. Autonomic management is provided in the form of a multiagent
architecture, that is, each autonomic manager is implemented as an agent or set of
agents, thus allowing different autonomic tasks to be separated and encapsulated into
different agents. The toolkit is implemented in Java, and can be used to manage soft-
ware applications such as web servers and databases.

4.2.3. Kinesthetics eXtreme. Valetto and Kaiser have also worked on their own imple-
mentation (mainly in Java) of the complete autonomic loop, called Kinesthetics eXtreme
(KX) [Kaiser et al. 2003; Parekh et al. 2003]. Their work was driven by the problem of
adding autonomic properties to legacy systems, that is, existing systems that were not
designed with autonomic properties in mind. Indeed, it is sometimes not possible to
modify these systems, thus requiring the addition of autonomic properties to be com-
pletely decoupled, with autonomic monitoring sensors added on top of existing system
APIs and monitoring functionality. Their work focusses more on the collection and pro-
cessing of monitoring data from legacy systems and execution of adaptation and repairs
rather than algorithms and policies for adaptation planning.

4Autonomic Computing Toolkit Home page: http://www-128.ibm.com/developerworks/autonomic/
overview.html
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At the monitoring level, they propose two types of sensors: probes and gauges. Probes
are system-specific sensors that extract data from a managed element. Probe data is
then sent to gauges, which may filter, aggregate and process the probes’ data before
reporting it to higher-level components in the autonomic manager for adaptation plan-
ning [Gross et al. 2001; Valetto and Kaiser 2002]. For instance, gauges can determine
the original failure that started a cascading problem by correlating the time when dif-
ferent probe events were fired and pattern-matching the attributes of probe events
to determine the causality sequence. Probes and gauges may not be on the same ma-
chine, thus requiring network communication between. This can be considered a form
of distributed sensor and makes sense when the managed element and its autonomic
manager reside on different machines. In addition, while probes and effectors are often
specialized to the specifics of the managed element’s implementation (Java/J2EE, C++,
.NET), the gauges and planning components must instead be specialised to the auto-
nomic problem, for example, optimizing service availability of a Web-server cluster vs.
managing a computational grid.

For adaptation planning, they have created a workflow engine called Workflakes
[Valetto and Kaiser 2003]. While they have experimented with different approaches—
such as implementing adaptation rules directly in Java code, using Little-JIL [Wise
et al. 2000] formalism and the Acme ADL [Garlan and Schmerl 2002a] to create a
working system for their case studies—the planning aspect of the autonomic loop has
not been their main focus.

To effect adaptation, the autonomic manager (Workflakes) deploys Worklets to the
managed system. Worklets are mobile software agents that are executed on the man-
aged system by a Worklet Virtual Machine. Host-specific adaptor at each managed
system translates Worklet adaptation commands into host-specific actions.

KX has been applied to various case studies, including an instant-messaging service
[Valetto and Kaiser 2002], adaptive streaming of multimedia data [Kaiser and Valetto
2000], failure detection and recovery plus load balancing in a Geographical Information
System called GeoWorlds [Kaiser et al. 2003].

4.2.4. Self-Management Tightly Coupled with Application. There are projects that propose
an autonomic middleware framework that offers self-management properties to appli-
cations (in the role of managed element) built on top of these autonomic middleware
frameworks. Examples of this approach include 2K (aka dynamicTao) [Kon et al. 2000],
Polylith [Hofmeister and Purtilo 1993] and Conic [Magee and Sloman 1989].

There are also projects where the application is implemented following a certain
process-coordination approach, for example, encapsulating tasks in components and
defining self-management and adaptation in terms of these components. An example
of this approach are Containment Units/Little JIL [Cobleigh et al. 2002; Wise et al.
2000].

The difference with the previously described projects such as KX is that here the
application must be built and operate on top of the autonomic middleware or process-
coordination platform, and thus the managed application cannot be a legacy system.
The advantage though is that sensors and effectors can be reused across managed
applications, and thus there is no need to create specific sensors and effectors for each
application implementation.

4.3. Monitoring

We now consider the monitoring component of the MAPE-K loop.
Monitoring involves capturing properties of the environment (either physical or vir-

tual, e.g., a network) that are of significance to the self-X properties of the system. The
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software or hardware components used to perform monitoring are called sensors. For
instance, network latency and bandwidth measure the performance of web servers,
while database indexing and query optimization affect the response time of a DBMS,
which can be monitored. The Autonomic Manager requires appropriate monitored data
to recognise failure or suboptimal performance of the Autonomic Element, and effect
appropriate changes. The types of monitored properties, and the sensors used, will of-
ten be application-specific, just as effectors used to execute changes to the Managed
Element are also application-specific.

We identify two types of monitoring in autonomic systems:

Passive Monitoring. Passive monitoring of a computer system can be easily done un-
der Linux. For example, the top command returns information about CPU utilisation
by each process. Another common command that returns memory and cpu utiliza-
tion statistics is vmstat. Furthermore, Linux provides the /proc directory, which is a
pseudo-file system (this directory does not store actual files on a hard disk) contain-
ing runtime system information, e.g. system memory, CPU information, per-process
information (such as memory utilisation), devices mounted, hardware configuration,
etc. Similar passive monitoring tools exist for most operating systems, for example,
Windows 2000/XP.

Active Monitoring. Active monitoring means engineering the software at some level,
for example, modifying and adding code to the implementation of the application or
the operating system, to capture function or system calls. This can often be to some
extent automated. For instance, ProbeMeister5 can insert probes into the compiled
Java bytecode.

More recent work has examined how decide which subset of the many performance
metrics collected from an dynamic environment can be obtained from the many perfor-
mance tools available to it (e.g., dproc). Interestingly they observe that a small subset of
metrics provided 90% of their application classification accuracy [Zhang and Figueiredo
2006]. We are also beginning to observe a more dynamic approach to the monitoring of
systems to facilitate autonomicity. For example, Agarwala et al. [2006] propose QMON,
an autonomic monitor that adapts its monitoring frequency and data volumes so to
minimise the overhead of continuous monitoring while maximising the utility of the
performance data. Essentially, an autonomic monitor for autonomic systems

4.4. Planning

Let us know take a look at research that focuses on the planning aspect of the autonomic
loop. In the broadest sense, planning involves taking into account the monitoring data
from the sensors to produce a series of changes to be effected on the managed element.
In the simplest case, we could define event-condition-action (ECA) rules that directly
produce adaptation plans from specific event combinations, as already mentioned in
Section 4.1. Examples of such policy languages and applications in autonomic comput-
ing include [Damianou et al. 2000; Lymberopoulos et al. 2003; Lobo et al. 1999; Agrawal
et al. 2005; Batra et al. 2002; Lutfiyya et al. 2001; Ponnappan et al. 2002].

However, applying this approach in a stateless manner—that is, where the autonomic
manager keeps no information on state of the managed element, and relies solely on
the current sensor data to decide whether to effect an adaptation plan—is very limited.
Indeed, it is far better for the autonomic manager to keep information on the state
of the managed element that can be updated progressively through sensor data and
reasoned about.

5ProbeMeister Home page: http://http://www.objs.com/ProbeMeister/.
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Taking further the issue of state information that the autonomic manager should keep
about the managed element, much research has examined a more complete approach to
managing a system—called the architectural model-driven approach—in which some
form of model of the entire managed system is created by the autonomic manager,
usually called an architectural model, that reflects the managed system’s behavior, its
requirements, and possibly also its goal. The model may also represent some aspect
of the operating environment in which the managed elements are deployed, where
operating environment can be understood as any observable property (by the sensors)
that can impact its execution, for example, end-user input, hardware devices, network
connection properties.

The model is updated through sensor data and used to reason about the managed
system to plan adaptations. A great advantage of the architectural model-based ap-
proach to planning is that, under the assumption that the model correctly mirrors the
managed system, the architectural model can be used to verify that system integrity is
preserved when applying an adaptation; that is, we can guarantee that the system will
continue to operate correctly after the planned adaptation has been executed [Oreizy
et al. 1999]. This is because changes are planned and applied to the model first, which
will show the state of the system resulting from the adaptation, including any violations
of constraints or requirements of the system present in the model. If the new state of
the system is acceptable, the plan can then be effected onto the actual managed system,
thus ensuring that the model and implementation are consistent with respect to each
other.

The use of the architectural model-driven approach does not however necessarily
eliminate ECA rules. Indeed, repair strategies of the architecture model may be speci-
fied as ECA rules, where an event is generated when the model is invalidated by sensor
updates, and an appropriate rule specifies the actions necessary to return the model to
a valid state, that is, the adaptation plan.

In practice however, there is always a delay between the time when a change occurs
in the managed system and this change is applied to the model. Indeed, if the delay is
sufficiently high and the system changes frequently, an adaptation plan may be created
and sent for execution under the belief that the actual system was in a particular state,
for example, a Web server overloaded, when in fact the system has already changed in
the meantime and does not require this adaptation anymore (or requires a different
adaptation plan) [Garlan et al. 2001].

4.4.1. Policy-Based Adaptation Planning. In policy-based adaptation, policies, which are
essentially event-condition-action (ECA) rules, determine the actions to take when an
event occurs and certain conditions are met [Sloman 1994]. These rules are written by
system administrators and describe the adaptation plans of the system (see Section 4.1
for an example ECA rule).

Writing adaptation policies is fairly straightforward, but can become a tedious task
for complex systems. Yet its simplicity remains its biggest strength. However, an issue
with ECA rules is the problem of conflicts: an event might satisfy the conditions of
two different ECA rules, yet each rule may dictate an action that conflicts with the
other satisfying rule [Lupu and Sloman 1997]. Worse, these conflicts cannot always
be detected at the time of writing the policies, some are detected only at runtime. This
means that a human may be needed in the loop to solve policy conflicts when they arise.

4.4.2. Architectural Models. All architectural models tend to share the same basic idea
of the model being a network of components and connectors. The components repre-
sent some unit of concurrent computing task, whereas the connectors represent the
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communication between components. Usually, there is no restriction as to the level
of granularity of a component: it could be a complete Web-server, an application on a
Web-server, or a component of an application.

The architectural model does not describe a precise configuration of components and
connectors that the managed element must conform to. Instead, it sets a number of con-
straints and properties on the component and connectors, so that it can be determined
when the managed element violates the model and needs adaptation.

Let us now continue our description of architectural model-based planning in the
MAPE-K loop by taking a look at some of the most notable architectural description
languages (ADLs), which can be used to specify an architectural model of a managed
system.

4.4.2.1. Darwin. Let us start with Darwin, one of the first ADLs that was the result of
seminal work by Magee et al. [1995]. In Darwin, the architectural model is a directed
graph in which nodes represent component instances and arcs specify bindings between
a service required by one component and the service provided by another. Further, the
Allow object modeling notation [Jackson 2002] has been applied to Darwin components
to be able to specify constraints on the components [Georgiadis et al. 2002]. For instance,
consider the scenario where there are a number of server components offering services
and a number of client components requiring services. Each service of a component
is typed so that different services offered by a server or requested by a client can
be distinguished and properly matched. In this scenario, the architectural model can
guarantee that there are enough servers to service the clients. Should that not be the
case, new server components must be started that offer the unavailable service types
in order to return the model to a valid state.

In this approach each component keeps a copy of the architectural model. In other
words, each component in the architectural model is an autonomic element with a
managed element and an autonomic manager that holds the architectural model to
the entire system. This approach avoids the presence of a central architectural model
management service, which would otherwise introduce the problem of detecting and
handling the failure of this central component. Where such a decentralized approach
is taken, there is, however, the problem of keeping the architectural model up-to-date
and consistent across all copies in the autonomic managers. This can be achieved with
totally ordered atomic broadcasts, which works as long as no communication partitions
occur between the components.

4.4.2.2. Acme/ABLE. The Acme adaptation framework [Garlan and Schmerl 2002a;
Garlan and Schmerl 2002b; Garlan et al. 2001] is a software architecture that uses
an architectural model for monitoring and detecting the need for adaptation in a sys-
tem. The components and connectors of their architectural model can be annotated
with a property list and constraints for detecting the need for adaptation. A first-order
predicate language (called Armani) is used in Acme to analyze the architectural model
and detect violations in the executing system. An imperative language is then used to
describe repair strategies, much like the policy based approach. The difference lies in
how the need for adaptation is detected and the appropriate adaptation rule selected.
Whereas in policies it is explicitly described in the rules, with an architectural model the
need for adaptation implicitly emerges when the running system violates constraints
imposed by the architectural model.

Garlan et al. [2002] also define architectural styles. These define a set of types of
components, connectors, interfaces, and properties together with a set of rules that
govern how elements of those types may by composed. Different styles can be defined
for different classes of applications, for example, web servers, and serve to reduce the
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overhead of creating an architectural model for a particular application. Indeed, when
an architectural model conforms to a style, it is possible to reuse style-specific monitor-
ing techniques (i.e., what raw data are extracted from monitoring the system and how
these data map to high-level notions in the architectural model), style-specific repair
rules (i.e., how to adapt to constraint violations) and style-specific adaptation operators
(i.e., actions one can perform to repair the system).

An important aspect of Acme lies in the design decision whereby the task of planning
adaptation in the autonomic loop is decoupled from the actual sensors and effectors
used, which are dependent of the type of system being augmented with autonomicity.

4.4.2.3. C2/xADL. In C2/xADL [Oreizy et al. 1998; Dashofy et al. 2002b], an important
contribution lies in starting with an old architectural model and a new one based on
recent monitoring data, and then computing the difference between the two in order
to create a repair plan. Given the architecture model of the system, the repair plan is
analysed to ascertain that the change is valid (at least at the architectural description
level). The repair plan is then executed on the running system without restarting it. This
involves various stages: terminating a component that is to be replaced and suspending
any components and connectors bordering the affected area; removing components and
connectors and adding new ones as defined by the repair plan; resuming components
and connectors bordering affected areas. This approach is based on a predefined set of
rules. However, an alternative to being given old and new architecture models could
be to describe an architecture that would best deal with a situation and determine the
changes necessary to evolve the current architecture to reach the ideal one.

4.4.3. Process-Coordination Approach. Adaptation plans can also result from defining
the coordination of processes executed in the managed elements. As an example, we
would like to describe Little-JIL.

Little-JIL [Wise et al. 2000] is a coordination language for planning a task and coordi-
nating the components that will execute specific subtasks in the plan. Thus, Little-JIL
can be used to model the task the managed elements perform and the various compo-
nents that can take care each subtask, resulting in a tree-based graphical description of
tasks and their subtasks. Should a particular component not be available for a subtask,
or the conditions prevent the component from successfully completing it, Little-JIL al-
lows us to specify what alternatives are available to complete that subtask. Thus, it
can thus be used to model adaptation plans for the managed element in the autonomic
manager. Little-JIL also models, among other things, which tasks must be executed
before or after a task, which tasks can run in parallel, what parameters (in a broad
sense) need to be passed between tasks.

Little-JIL is not an architectural description language, but rather a process-
coordination language (hence our decision to place it in its own section). However,
Little-JIL has certain similarities with the architectural approach, in that Little-JIL
allows us to define a description of a managed element’s task that inherently contains
the adaptation plan necessary when the managed element behaves abnormally. In-
stead in the policy-approach, adaptations plans must be explicitly defined, including
how they are triggered by incoming sensor data.

4.5. Knowledge

The division between planning and the knowledge used to effect adaptation in the
autonomic MAPE-K loop is quite fuzzy, as one would expect. The knowledge in an
autonomic system can come from sources as diverse as the human expert (in static policy
based systems [Bougaev 2005] to logs that accumulated data from probes charting
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the day-to-day operation of a system to observe its behaviour, which is used to train
predictive models [Manoel et al. 2005; Shivam et al. 2006]. This section lists some of
the main methods used to represent Knowledge in autonomic systems.

4.5.1. Concept of Utility. Utility is an abstract measure of ‘usefulness’ or benefit to,
for example, a user. Typically a system’s operation expresses its utility as a measure of
things like the amount of resources available to the user (or user application programs),
and the quality, reliability, or accuracy of that resource etc. For example in an event
processing system allocating hardware resources to users wishing to run transactions,
the utility will be a function of allocated rate, allowable latency and number of con-
sumers, for example, [Bhola et al. 2006]. Another example is in a resource provisioning
system where the utility is derived from the cost of redistribution of workloads once
allocated or the power consumption as a portion of operating cost [Osogami et al. 2005;
Sharma et al. 2003].

4.5.2. Reinforcement Learning. Reinforcement learning is used to establish policies ob-
tained from observing management actions. At its most basic it learns policies by trying
actions in various system states and reviewing the consequences of each action [Sutton
and Barto 1998]. The advantage of reinforcement learning is that it does not require
an explicit model of the system being managed, hence its use in autonomic computing
[Littman et al. 2004; Dowling et al. 2006]. However, it suffers from poor scalability in
trying to represent large state spaces, which also impacts on its time to train. To this
end, a number of hybrid models have been proposed which either speed up training
or introduce domain knowledge to reduce the state space, for example, [Tesauro et al.
2006; Whiteson and Stone 2006].

4.5.3. Bayesian Techniques. As well as rule-based classification of policies to drive au-
tonomicity, probabilistic techniques have been used throughout the self-management
literature to provide a way to select from numbers of services or algorithms etc. For
example, Guo [2003] shows how Bayesian Networks (BNs) are used in autonomic al-
gorithm selection to find the best algorithm, whereas cost sensitive classification and
feedback has been used to attribute costs to self-healing equations to remedy failures
[Littman et al. 2003].

5. MULTITIER SYSTEMS

An ultimate goal of autonomic computing is to automate management aspects of com-
plex distributed systems, primarily e-commerce sites. These usually have a multitiered
architecture comprised of a web-server tier (e.g., Apache), an application server tier
(e.g., a J2EE Application Server) and a database tier (e.g., Oracle, DB2), which entails
a high level of complexity. Different autonomic efforts focus on specific aspects of this ar-
chitecture, but each tier will usually implement the entire MAPE-K loop independently.
For instance, at the web-server tier Bigus et al. [2002] have used the ABLE multiagent
based autonomic toolkit (see Section 4.2.2) to auto-tune Apache web servers. Similar
work on Apache auto-tuning was also carried out by Sterritt et al. [2005]. At the ap-
plication server tier, Rutherford et al. [2002] have worked on adding reconfigurability
at runtime in the Enterprise JavaBean component model, while Candea et al. [2003]
added self-recovering to JBoss, an open-source J2EE application server. At the database
tier, Markl et al. [2003] have created DB2 autonomic query optimiser, thus improving
its performance.

Alternatively, Urgaonkar et al. [2005] worked on self-management at a coarser gran-
ularity, looking at entire multitier systems and creating an autonomic manager that
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determines, given performance loss of the multitier system, how available resources
(server nodes) should be redistributed to the various tiers to improve total performance
of the system. This dynamic provision, they argue, must take into account the unique
properties of the different tiers; for example, databases often cannot be replicated on-
demand. Wildstrom et al. [2005] also look at allocating resources to the different tiers of
a multitier applications, but consider this allocation problem within high-end servers.
Another problem is deploying updates at a tier without seriously degrading responsive-
ness. This can be automated by gradually withdrawing servers, applying the necessary
updates and reintroducing them into the tier [Valetto and Kaiser 2003].

There is a considerable amount research that investigates resource allocation more
generally, dealing with the problem of allocating resources—mainly CPU, memory and
I/O to disk and network—to multiple applications in a cluster of servers. Adaptation
occurs in response to considerable changes in the monitored response time of the ap-
plications and sometimes also on the expected improvement of each application if re-
sources are increased. This if usually done with a utility function that quantifies the
desirability of an application’s state as a function of the assigned resources [Bennani
and Menasce 2005]. This takes into account that, at some point, given the current or
expected load, adding resources will only have a minimal effect on some applications.

Another issue being researched is the interface between an autonomic system and a
human system administrator (sysadmin). While with autonomic computing the human
sysadmin will need to be less involved in repetitive tasks, he will still need to intervene
during critical conditions, for example, when a hardware fault occurs and hardware
components need to be replaced, or when hardware or major software upgrades are
necessary. During these critical conditions, it is crucial that the sysadmin be able to
quickly gain a detailed view of a particular aspect of the system, understanding what
is going on and why it is going on, in order to quickly but correctly carry out repairs
[Barrett et al. 2004]. Thus, autonomic computing does not eliminate the need for hu-
man administrators to be able gain access to the details of the inner workings of a
system. Furthermore, increased autonomicity may only be introduced incrementally in
a system, as the sysadmin learns to trust the autonomic managers.

6. DEGREES OF AUTONOMICITY

We have reviewed the literature from the point of view of the major contributors to
the various components of the MAPE-K Loop reference model. However, to get a feel of
cross-cutting concerns, we now examine how one can describe degrees of autonomicity
and how that research matches those degrees.

IBM has proposed a set of Autonomic Computing Adoption Model Levels6 that spans
from Level 1: Basic, to Level 5: Autonomic. Briefly, Level 1 defines the state whereby
system elements are managed by highly skilled staff who utilise monitoring tools and
then make the require changes manually. IBM believes this is where most IT systems
are today. Level 2 is known as Managed. This is where the system’s monitoring tools
collage information in an intelligent enough way to reduce the systems administration
burden. Level 3 is entitled Predictive, whereby more intelligent monitoring than Level
2 is carried out to recognize system behavior patterns and suggest actions approved and
carried out by IT staff. The Adaptive level is Level 4. Here the system uses the types of
tools available to Level 3 system’s staff but is more able to take action. Human inter-
action is minimized and it is expected that the performance is tweaked to meet service
level agreements (SLAs7). Finally, the full autonomic level is Level 5, where systems

6About IBM Autonomic Computing: http://www-03.ibm.com/autonomic/about_get_model.html
7A service level agreement (SLA) is a negotiated agreement between two parties, usually a service provider

ACM Computing Surveys, Vol. 40, No. 3, Article 7, Publication date: August 2008.



7:16 M. C. Huebscher and J. A. McCann

and components are dynamically managed by business rules and policies, thus freeing
up IT staff to focus on maintaining ever-changing business needs. The problem with
this model as a means to define autonomic computing is that it is too narrow (focusing
on a specific type of traditional business support systems) and the differentiation be-
tween levels too vague to describe the diversity of self-management we have found in
the work presented in this paper. Therefore we propose an alternative that we believe
better represents the levels of self-management we have discovered.

Since this paper focuses on self-managing systems we are precluding work that would
conform to Levels 1 through to 3 and focus on what would be deemed by IBM as Adap-
tive and autonomic computing only. We have defined four elements of autonomicity
(and not levels) which bring out the area of focus in the research and to what degree,
architecturally, that focus has been applied. Our elements are listed in the following;
the reader should not consider them definitive as this is impossible in such a varied
and dynamically growing field:

Support. We describe this as work that focuses on one particular aspect or compo-
nent of an architecture to help improve the performance of the complete architecture
using autonomicity. For example, focus on resource management or network support
or administration tools that contain self-management properties.

Core. This is where the self-management function is driving the core application
itself. That is, if the application’s focus is to deliver multimedia data over a network
and the work describes an end-to-end solution including network management and
display, audio, etc., then we describe the self-management as core. However, the work
carried under this heading is not taking higher-level human based goals (e.g., business
or SLAs) into account.

Autonomous. This is again where a full end-to-end solution is produced, but typically
the solution concerns more emergent intelligence and agent-based technologies where
the system self-adapts to the environment to overcome challenges that can produce
failure, but it is not measuring its own performance and adapting how it carries out
its task to better fit some sort of performative goals. Many research in the field of
agent-based systems could come under this category, however in this paper we are only
interested in applications of agent-based technology that drive the self-management of
a computing system that performs more than one application. For example, Pathfinder
is interesting to us because the “operating system” must self-manage itself to carry
out the tasks of the buggy in extreme terrains, and these tasks are varied and many,
but an agent-based system whose sole focus is achieve a an application-specific goal is
not driving the system in a self-management way, and therefore is not included in this
paper.

Autonomic. At this level, work concerns a full architecture and describes the work in
terms of that architecture. However, the interest is in higher-level human based goals,
for example, business goals or SLAs are taken into account. This level is the same as
the Level 5: Autonomic level and it involves a system that reflects its own performance
and adapts itself accordingly.

There is an argument for a further level of interest. A fifth level could examine sys-
tems that both are autonomic and allow the intelligence to drive the self-management
to grow and refine itself. We would deem this fifth level as Closed-Loop. In many if not
all of the systems we have examined for this paper, the logic of what to do when has
been more or less set statically and only updated by the parameters being fed into the

and a consumer. It establishes the quality of service (QoS) that the consumer can expect to receiver (which
may be probabilistically bound), whereby a higher (QoS) usually comes at a higher expense. An SLA may
also define the penalty if the agreed QoS is not met.
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Table II. Categorization of Described or Mentioned Autonomic Work

Degrees of
Autonomicity
MAPE-K focus Support Core Autonomous Autonomic

Full
architecture

Rutherford et al.
2002; Candea
et al. 2003;
Bennani and
Menasce 2005;
Sharma et al.
2003

Badger 2004;
Garlan and
Schmerl 2002a

Kenyon 2001;
Muscettola et al.
1998; Burrell
et al. 2004;
McCann et al.
2006;
Wieselthier et al.
2002

Kephart and Chess
2003; Bantz et al.
2003; Ganek and
Friedrich 2006;
Melcher and
Mitchell 2004;
Kaiser et al.
2002;2003;
Urgaonkar et al.
2005; Wildstrom
et al. 2005;
Handsen et al.
2006; Strowes
et al. 2006;
Huebscher and
McCann 2005;
Thomson et al.
2006

Autonomic
management

Paulson 2002;
Zhang and
Figueiredo 2006;
Markl et al. 2003

Bhatti and
Knight 1999;
McCann and
Crane 1998;
Bigus et al.
2002; Kon et al.
2000;
Hofmeister and
Purtilo 1993;
Wolf et al. 2000

Chakeres and
Belding-Royer
2004; Johnson
et al. 2001;
Perkins and
Bhagwat 1994;
Heinzelman
et al. 2000;
McCann et al.
2005

All above contain
some element of
management

Monitoring Agarwala et al.
2006; Roblee
et al. 2005;
Strickland et al.
2005; Xu et al.
2005; Sterritt
et al. 2005; Diao
et al. 2005;
Agarwala et al.
2006;
Khargharia et al.
2006; Moore
et al. 2006;
Brodie et al.
2005

Garlan et al.
2001; Gross
et al. 2001

All above contain
some element of
management

Planning
models

Zenmyo et al. 2006 Jennings 2000;
Gleizes et al.
2000; Kumar
and Cohen 2000

loop. A closed loop system would also evolve the logic that drives the system depending
on how well the “old” logic did. This is akin to the work carried out in AI and is an area
of research we can see becoming of more interest to the autonomic community.

We have compiled a survey table (see Tables II and III) in which we have placed
most of the work mentioned in this article in the categories that we have described.
Projects are categorised by the degree of autonomicity (horizontally) and the part of the
MAPE-K loop focussed on (vertically). While some of the choices are highly subjective,
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Table III. Continuation of Table II
Degrees of
Autonomicity
MAPE-K focus Support Core Autonomous Autonomic
Policies Batra et al.

2002; Lutfiyya
et al. 2001;
Ponnappan
et al. 2002;
Damianou
et al. 2000;
Manoel et al.
2005; Agrawal
et al. 2005

Architecture
models

Oreizy et al.
1998;1999

Garlan and Schmerl
2002b; Magee
et al. 1995;
Georgiadis et al.
2002

Dashofy et al.
2002b;2002a;
Wise et al.
2000

Knowledge Walsh et al.
2004; Bougaev
2005; Manoel
et al. 2005;
Shivam et al.
2006; Osogami
et al. 2005

Bhola et al.
2006; Dowling
et al. 2006;
Littman et al.
2003;2004

we have tried to place them in a category that highlights the major contribution of a
project.

7. EMERGING APPLICATION AREAS CURRENTLY DOMINATING AUTONOMIC COMPUTING

At the time of writing, it has been 5 years since IBM’s manifesto, and we are now
beginning to observe concentrations of research emerging in key applications areas.
This section summarizes some of this work.

7.1. Power Management

Power management has been looked at from two systems’ perspectives; the data center
and wireless sensors networks (WSN)—this section examines data centers only (WSNs
are reviewed in Section 7.3). It has been estimated that power equipment, cooling equip-
ment, and electricity together are responsible for 63% of the total cost of ownership of
the physical IT infrastructure of a data center.8 Such statistics have motivated re-
search in self-adaptive systems that not only optimize resource management in terms
of performance metrics but in terms of the power that a given algorithm or service
will consume on a given infrastructure. Earlier work focused on the processor’s power
consumption for individual server nodes [Kandasamy et al. 2004] or power allocation
of server clusters [Femal and Freeh 2005]. However, more recently we are seeing power
models that take Memory, network, and IO consumption into account [Khargharia et al.
2006]. Heat management is related to this and is also being explored [Moore et al. 2006].
Such work has already shown that a 72% saving in power consumption can be achieved
using autonomic systems management [Khargharia et al. 2006].

8Project on Operating Systems and Architectural Techniques for Power and Energy Conservation, Rutgers
University. Home page: http://www.cs.rutgers.edu/~ricardob/power.html
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7.2. Data Centers, Clusters, and GRID Computing Systems

These kinds of systems can be grouped together as they are essentially wide-area high-
performance heterogeneous distributed clusters of computers used to run anything
from scientific to business applications for many differing users. This brings with it
extra complexity in maintaining such a geographically distributed system (which can
potentially span to worldwide). The allocation of resources is complicated by the fact
that the system is expected to provide an agreed quality of service (QoS); which could be
formalized in a Service Level Agreement (SLA). This typically means that the dynamic
nature of the system’s load, up-times and uncertainties etc are taken into account
not only when initially allocating resources, but while the application is using those
resources. Hence it is an excellent challenge for autonomic computing as maintaining
a given QoS under such diverse dynamic conditions, using ad-hoc manual tuning and
component replacement when failed, is unachievable.

The two key areas of research in here are dynamic resource management and systems
administration. In many of the examples of the latter, a profile of the human operator
behaviour and how this relates to the system’s tuning constants or operator action, is
obtained. Alternatively, the profile can be where a system’s registry or regular log file
is being tracked and the changes in the registry values (log updates) denote a reaction
to a problem. Effectively from these profiles or logs a set of actions and responses are
obtained then a set of policies can be derived to drive the autonomicity; that is, when
a policy rule is broken an action is taken and what action is determined by what was
learned by the profile. Examples of such systems can be found in [Manoel et al. 2005;
Brodie et al. 2005; Zenmyo et al. 2006].

The former, resource management, however has received the most attention. Typi-
cally the data centre or GRID is described as a Service-Oriented Architecture (SOA)
and therefore QoS determines the resource selection options. Users of such systems
typically pay for an agreed SLA specifying the price of an invocation of a given service.
Resource management is further complicated by the fact that one must assume that the
user and application requirements are as dynamic as the systems on which they have
issued their tasks. Typically this has lead to a grading of service levels as Platinum,
Gold, Silver, and Bronze. However, what these levels actually mean depends on the sys-
tem in question and their users, and varies greatly throughout the literature [Agarwala
et al. 2006]. Nevertheless, the introduction of SLAs means that the resource allocation
optimization problem is extended to include cost [Bennani and Menasce 2005]. The aim
to simplify the dynamic performance management (i.e., process migration) of GRID and
larger Data Centre systems as well as ease the complexity of porting software round
such environments, has provoked a renewed interest in systems’ virtualization. That
is, the GRID is a virtual machine [Handsen et al. 2006]. This also allows the payment
calculation to be simplified.

Nimrod/G [Abramson et al. 2002] is an example of an architecture for grid-based
resource management. Resource consumers define a utility model (see also Section
4.5.1) of their resource demands and preferences, while brokers (i.e., the autonomic
managers) generate strategies for allocating resources based on this model. At the core
of Nimrod/G is Nimrod, a declarative parametric modeling language for expressing
a parametric experiment [Buyya et al. 2000]. Nimrod is used to create a plan for a
parametric computing task, which is submitted to the Nimrod runtime system where
it is run on a remote grid resource by a Nimrod/G agent which senses its environment
and manages its execution accordingly, thus ensuring that deadlines and budget limits
are met.

Nimrod/G highlights how autonomic computing has also found inspiration from eco-
nomic systems. Its use of the utility model assign a quantitative benefit for the allocation
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of a certain amount of a type of resource. Other economic models used in autonomic sys-
tems include the auction model [Waldspurger et al. 1992; Nisan et al. 1998], bid-based
proportional resource sharing [Chun and Culler 1999], and the community, coalition
and bartering models (e.g., Condor, SETI@Home and MojoNation).

7.3. Ubiquitous Computing

The advancement in electronics that enable the integration of complex components into
smaller devices coupled with recent developments in wireless, mobile communications,
have contributed to the emergence of a new class of wireless ad-hoc networks: Sensor
Networks. These typically consist of a sensor board with a number of sensors of dif-
ferent modalities which, when combined with a microprocessor and a low-power radio
transceiver, forms a smart network-enabled node. A sensor network may deploy a huge
number of nodes depending on the nature of the application. Such applications include
medical services, battlefield operations, crisis response, disaster relief, environmental
monitoring, premises surveillance, robotics etc. Currently, such systems are described
at two levels of granularity, smart dust and general ubiquitous computing; but both
are closely related and suffer from similar constraints (ie small amounts of resources
and power). Smart dust motes are tiny, as the name suggests and can scale down to
1 mm2 and consist of microfabricated sensors, a photodetector, passive and active op-
tical transmitters, a signal processing unit, a solar cell and a thick-film battery [Kahn
et al. 1999]. Typical projected applications are environmental monitoring and defence
applications, which run relatively unsophisticated programs and each node is, more or
less, homogenous—therefore at the moment there is not much need for an autonomic
system (just elementary autonomy, though this is likely to change). On the other hand,
ubiquitous computing concerns the building of intelligent environments [Weiser 1991]
from a number of, potentially, heterogeneous devices such as sensor nodes, PDAs, PCs,
etc. The sheer complexity of installing and maintaining such a system and keeping it
running in a robust way, easily lends itself to autonomic computing. The application
areas for this range from monitoring vineyards to looking after the elderly in the home
[Burrell et al. 2004; McCann et al. 2006].

The key assumptions motivating autonomic Wireless Sensor Networks (WSN) re-
search are that sensing and processing is cheap but communicating costs. That is, as
the sensors are battery driven the main cost lies in driving the wireless equipment
and not the sensors or CPU (though the actual devices themselves can be all relatively
inexpensive to buy). Therefore placing redundant sensors on the node boards is an
economical solution to help with robustness. Deciding on when to use which sensor to
carry out a given task depends on the current context of the task or user. Herein lies
the majority of autonomic WSN work, which can be divided into middleware solutions
or more lightweight “emergent” solutions. The middleware solutions typically run on
higher end nodes (i.e., 32bit microprocessor nodes, called motes, which were developed
from a collaboration of University of California Berkeley and Intel Research Berkeley
laboratory9 and fit the same model of autonomicity as the MAPE-K loop, for example
[Strowes et al. 2006; Huebscher and McCann 2005; Thomson et al. 2006]. Other ubiqui-
tous computing architectures consist of lower resource and lower powered devices (e.g.,
nodes consisting of 4MHz 4MIPS CPU with 1kByte of SRAM [McCann et al. 2006]. Such
devices cannot process vast amounts of self-knowledge and therefore more lightweight
autonomicity is required. Here we see examples of utility functions being used to al-
low the system to discern between service options to provide a given level of service

9Motes home page at Crossbow (manufacturer): http://www.xbow.com/Products/Wireless_Sensor_
Networks.htm
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[McCann et al. 2006]. This latter piece of work embeds autonomicity into the core (op-
erating system equivalent) of the sensor nodes thus providing for self-management
from the lowest level in the software stack. Most of the emergent self-management has
focused on sensor node ad-hoc networking, which we discuss below.

7.3.1. WSN Routing. Potentially, sensors can be positioned carefully (e.g., in aware
buildings [Huebscher and McCann 2004]) or even scattered randomly (e.g., some de-
fense applications or environmental monitoring, e.g., Glasweb10). Either way, routing
data from one node to another has received much attention where the aim is to min-
imise the time to deliver a packet whilst minimizing the energy consumed in delivering
it (incidentally energy consumption is proportional to the square distance between the
communicating nodes for a two-dimensional Euclidean space [Wieselthier et al. 2002]).
Essentially there are three approaches to WSN routing: multihop, direct and a hybrid of
both. Multihop routes data from the source to the sink via each of the nodes one at a time.
It has the advantage of working out a near optimal route without knowing the network
topology, and is therefore very flexible and resilient in that nodes can come and go and
be mobile. Representative examples come from Chakeres and Belding-Royer [2004],
Johnson et al. [2001], Perkins and Bhagwat [1994]. Unfortunately, for this mechanism
to work, all nodes in the network must be listening for packets to relay them. Karl and
Willig [2005] show that the listening while idle time’s power consumption is almost the
same as receiving a transmission, therefore alternative research into direct routing has
been carried out [Intanagonwiwat et al. 2000]. However, this work has the disadvan-
tage in that it assumes that the data source and sink are within reachable distance,
which is not always the case therefore this has lead to a hybrid approach. Examples
of hybrid approaches are [Heinzelman et al. 2000; McCann et al. 2005]. Essentially, a
cluster of nodes elects a cluster-head to represent their region; the cluster-heads then
form a multihop network. More autonomic versions of these techniques elect cluster-
heads dynamically depending on availability or to spread the cost of battery power
usage across the network more fairly (e.g., nodes close to a popular sink typically are
used more often and therefore their batteries become more depleted) [McCann et al.
2005].

8. DISCUSSION AND CONCLUSIONS

Inspired by biology, autonomic computing has evolved as a discipline to create software
systems and applications that self-manage in a bid to overcome the complexities and
inability to maintain current and emerging systems effectively. To this end autonomic
endeavours cover the broad span of computing from the applications, middleware, to
the systems software layers residing on hardware platforms as diverse as GRIDs to
Smart Dust sensor nodes, and are already demonstrating their feasibility and value.
This brings with it many open challenges that are receiving less attention at the point
in time we write this paper. Some of these we discuss in the following.

State-flapping is a cross-cutting concern for autonomic computing. This is where
oscillation occurs between states or policies that potentially diminishes the optimal
operation of the element that is being managed. This is something that is emerging out
of the implemented systems that we are seeing more of, and there are many techniques
we can borrow from other sciences (e.g., control theory etc.) that can help with damp-
ening and desensitizing the adaptivity mechanisms. However, we do not believe that
the likes of control theory is a panacea to solving all autonomic aspects as it is less able

10University of Southampton. Glacsweb home page. http://envisense.org/glacsweb/index.html, 2006
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to deal with systems that exhibit discrete or continuous behaviors or states that can be
time varying with less well-defined inputs in an ever-changing systems environment.

Another current challenge is how we can evaluate how well an autonomic system
is performing, given that increased performance or power is not as relevant as, say,
its ability to meet a given SLA. Of course evaluation depends on the application or
system in question. However, the optimal solution is no longer the aim but a subop-
timal solution that maintains service levels or basic robustness etc. As these systems
contain more emergent behaviour this emergence requires us to reason about it and
reflect if the emergent behaviour is what we wish; and to what degree. We can see
further metrics such as convergence and time to converge to a stable state (however
this is defined) as becoming more important; but this is not really being addressed
by the current autonomic community. Alternatively, there have been recent soundings
to create a competition within the autonomic community to establish a representa-
tive Grand Challenge Application that can allow differing techniques to be compared
and rated. This is similar to older endeavors like the information science community’s
TREC Challenge9. However, the challenge to building such an application lies in the fact
that not only software is described but management policies, SLAs, and power/systems
costs as well as more traditional metrics like performance, throughput etc. must be
defined.

Another challenge facing this community lies in the ability to carry out robust soft-
ware engineering, not only to provide solidly built autonomic systems but those that can
interoperate with each other. Current software engineering practice defines a system
in a more or less pre-implementation state where requirements have been agreed a pri-
ori. Given that the autonomic system must change states at runtime and that some of
those states may emerge and are much less deterministic, there is a great challenge to
provide new guidelines, techniques and tools to help the autonomic system developer.
Interoperating systems that already exist with or without autonomic components is
also made more complex. This requires that more work be done on not only the policies
and intelligence that are required to meet a system’s goals, but how we communicate
the semantics and the outcomes of the behaviors and states that were actioned as a
result of the activation of the policies, rules etc. As you can see from our Tables II and
III, there is a fair amount of work on end-to-end architectures and their theoretical
design, but very little of it has been implemented fully. Yet, ultimately, how useful a
system is will be determined by end-to-end properties.

As observed in the work in Section 5, the MAPE-K loop components can be struc-
tured in a hierarchical fashion with many levels of abstraction. Consequently, we need
software engineering methods and theories that better handle abstraction while be-
ing suitable in their ability to represent dynamicity in a “live” ever-changing system.
Furthermore, programming design has traditionally assumed ridged and guaranteed
interaction models; this needs rethought in an open adaptive system in favour of more
negotiation based interaction. To this end, we are beginning to see influences from
economic modelling and game theory in this regard.

Trust is an important issue at the many levels of abstraction of the autonomic system;
from understanding how the system works as an individual artifact to interoperating
it with other systems. For a given stimulos, the system’s ability to adapt correctly
and maintain expected behavior sets contributes to the degree of trust the user, and
other systems, have in it. However this must not stifle the system’s ability to adapt to
reach its goal—a complex trade-off therefore emerges. Adaptations at the component
level to optimize the service at that level should not produce interactions that would
cause undesirable behavior with other components or levels of abstraction. As a con-
sequence there remains a need to establish trust models that allow us to define these
relationships and communicate trust amongst components. Furthermore, given that
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many trust models in existence today assume some form of centralised body of trust,
the autonomic community need to focus on more distributed solutions.

In conclusion, though autonomic computing has become increasingly interesting and
popular it remains a relatively immature topic. However, as more disciplines become
involved, the established research they bring can be reutilized, adding to the maturity
of the area. We believe that in the future the topic will become integrated into general
computing and not be seen as the separate area it is today. This is much like the topic
of Distributed Systems, which is so omnipresent in all computing that it no longer
is considered separate. So too is the destiny of autonomic computing which will be
naturally embedded in the design process where all systems architectures will have
reflective and adaptive elements.
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