
Chapter 3 SURVEY 

3.1 Skeleton Extraction 
O’Brien, et al., in 2000 [84] and with Kirk in 2005 [60] have produced a fast 

method for skeleton formation using a linear least squares method assuming there is a 

relatively stationary point between two segments, and then solving for that point, which 

is the rotation point. 

3.2 Sphere Estimates 
Leendert de Witte [116], in 1960, found a solution for a circle in 3-D space.  He 

used spherical trigonometry to solve the minimized distance from the best great circle 

path.  He used approximations that are convenient for large radii and had to choose from 

three solutions to get the correct one. 

The Maximum Likelihood Estimator (MLE) was the first solution for finding the 

sphere parameters.  In 1961 Stephen Robinson [95] presented the iterative method of 

solving the sphere by minimizing 
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There is a closed form solution for the radius estimator but not for the center es-

timator.  Robinson showed the radius estimator to be 
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A truly closed form solution wasn’t found until another function to minimize was 

recognized.  The new function to minimize was 
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Paul Delogne pioneered what would eventually become the Generalized Delogne-

Kása estimator.  In 1972, Delogne presented [41] a method for solving a circle for the 

purposes of determining reflection measurements on transmission lines.  Delogne’s solu-

tion to the circle involves the inverse of a 3x3 matrix.  He presented the matrix solution 

and a rough error analysis as 
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István Kása did more analysis in 1976 [57].  He was the first to recognize the bias 

in the answer and produced better error analysis. 
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Vaughan Pratt [93] in 1987 produced a very generic linear least squares method 

for algebraic surfaces.  His solution was slower for spheres due to the need to extract the 

eigenvectors. 
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Gander, et. al. in 1994 [47] produced the linear least-squares method for circle fit-

ting with the equation 
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They solved this through finding the null vector of the left matrix that is in essence the 

singular value decomposition. 

Samuel Thomas and Y. Chan in 1995 [108] created a formula for the Cramér-Rao 

Lower Bound for the circle estimation. 

In 1997, Lukács, et. al. [73], produced some improvements on non-linear minimi-

zation for spheres. 

Corral, et. al. [40] in 1998 analyzed Kása’s formula in more detail and a way to 

reject the answer if the confinement angle got too small. 

A paper in nuclear physics describes a method in 2000 to produce the circular arc 

of a particular traveling in a cloud chamber.  Strandlie, et. al. [106] transformed a Rie-

mann sphere into a plane and fit the plane using standard methods involving the eigen-

values of the sample covariance matrix. 

Zelniker in 2003 [120] reformulated the circle equation to solve directly for the 

center using the pseudo-inverse (#) of a 2xN matrix. 
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Zelniker also came up with a better evaluation of the Cramér-Rao Lower Bound for the 

center estimator. 
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Michael Burr, et. al. [31] in 2004 created a geometric inversion technique which 

far surpasses the complexity needed to solve for a hypersphere.  It was a non-linear ap-

proach and they failed to recognize there were simpler linear solutions to what they were 

solving. 

In 2007, Knight et al. [63], published the initial results from the research for this 

dissertation in which a skeleton was formed from a closed-form solution of generic mo-

tion capture data. 

3.3 Inverse Kinematics 
Badler [12] in 1986 produced an interactive 6 DOF controlled technique to pro-

duce a skeleton using inverse kinematics and a joystick.  Wiley et al. [115] in 1997, came 

up with a way to splice various regimes of motion capture and skeleton formation based 

on inverse kinematics.  Bodenheim et al. [21], in 1997, produced an articulated skeleton 
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by painstaking hand measurements of the markers and inverse kinematics to optimize the 

joint angles. 

3.4 Kinetics 
In 1998 Znamenáček [118] created an efficient recursive algorithm for multibody 

forward kinetics. 

 


