
Chapter 4 PREVIOUS SOLUTIONS 
The following chapters provide an exposé on the methods that have gone before 

this.  The theory in this thesis is presented in two phases and each phase can be analyzed 

individually.  The two phases are the determination of the rotation points of each joint 

and the generation of the whole skeleton.  The first phase boils down to a single mathe-

matical problem: that of finding the center of a sphere from noisy surface data.  The sec-

ond phase, drawing the skeleton, is described in Chapter 4.1.5.3. 

4.1 Spherical Curve-fitting Approaches 
There are three techniques in use today: iterative; least squares; and algebraic best 

fits.  They each have their advantages and disadvantages.  Iterative techniques are good 

for accuracy, least squares are faster than iterative but slower than algebraic, and alge-

braic techniques are good for speed. 

4.1.1 Monte-Carlo Experiment 
In order to compare the three, a Monte-Carlo experiment was run using 1000 tri-

als, each of which had anywhere from 4 to 1,000,000 samples.  The runs took over a 

week of computational effort to collect.  Each trial had a fixed standard deviation of the 

samples from the sphere with values ranging from 10-13 to 1014.  Each trial was further 

varied by a limiting angle from some random point on a sphere.  The limiting angle var-

ied from 0 to 180°, where 180° means full sphere coverage.  It is important to have a lim-

iting angle in this experiment because all sphere-fit algorithms are error-prone when this 

angle gets smaller.  Each trial also had a radius r0 and center c0 randomly chosen.  The 
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radius was varied from 0.06 to 38.5 and the center moved as much as 3.6.  The individual 

samples were multivariate normal random variates thus 

(11) 
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where the covariance is a diagonal matrix with each diagonal equal to the square of the 

standard deviation.  The expected value of each sample was a point that lies on a sphere 

thus 
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Each sample was confined to cover only a partial part of the sphere by the following rela-

tionship (cf. Figure 7). 

 

 

 

 

 

 

Figure 7 Constrained Measurements on Circle 

The formula for checking if a point is acceptably within the limits becomes 
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Said in another way, the sample must be confined to be within an angle from a 

fixed point on the sphere.  This experiment allows for the in-depth analysis of the error in 

the answer from four different estimators.  The four techniques are Maximum-Likelihood 

Estimator (MLE), Linear Least-Squares (LLS), Generalized Delogne-Kása Estimator 

(GDKE), and the new Unbiased Generalized Delogne-Kása estimator (UGDK) explained 

in the Chapter 5.1.  The first three are established formulae and has been used for two 

hundred years (MLE [100]) to as young as three years (GDKE [119]). 

The following graph (Figure 8) shows the errors in the estimators compared to the 

standard deviation of the samples.  The graph shows that the relative error versus relative 

standard deviation is a line for each of the four methods.  The error is thus proportional to 

the standard deviation. 
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Figure 8 Relative Error Comparison 

What is also clear from the graph is the comparison.  The outliers on the graph 

have been circled.  The obvious differences between the estimators show up in the graph 

by deviations from the straight line when error equals standard deviation.  From the 

graph, it appears that there is a common limitation to the error in the estimator.  This 

common limitation is named the Cramér-Rao Lower Bound to the covariance of an esti-

mator.   Section 4.1.2 discusses the limit to all estimators for this particular problem.   

The MLE has outliers when the error equals the radius.  This is due to multiple solutions 

when the error equals the radius.  The LLS has outliers when the standard deviation is 

below about 10-6 times the radius and greater than 1010 times the radius.  These are due to 

numerical instability during the extremes of using finite representation of decimal num-

bers.  The GDKE seems to be on par with the MLE except for the MLE outliers.  The 
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UGDK has consistently larger error when the standard deviation is greater than about 0.1 

times the radius.  Each one of these shortcomings will be further discussed in sections 

4.1.3, 4.1.4, 4.1.5, and 5.1. 

4.1.2 Cramér-Rao Lower Bound 
The Cramér-Rao Lower Bound (CRLB) is the proven lower bound for any esti-

mator’s covariance.  It is equal to the inverse of the Fisher Information.  It is an important 

measure when dealing with any estimator because it is the best error that an estimator can 

achieve.  All estimators will have at best an error of the CRLB.  The CRLB for the center 

and radius estimators are given for this particular problem [55] as   
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where 

µi is the expected value of the ith measurement on the surface 

c0 is the true center 

r0 is the true radius 

Σ is the measurement covariance. 

This is a positive-definite matrix of size (D+1)x(D+1) where D is the number of dimen-

sions of the hypersphere.  The CRLB matrix is the smallest value of the covariance of a 

estimator for a particular measurement system.  This can be reduced using the isotropic 

covariance assumption (Σ=Iσ2).  The result of this substitution is 
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because of the identity 
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This summation can be expanded and simplified.  The equivalent sum is 
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This partitioned matrix is inverted to 
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(21) 
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The determinant of this matrix is 
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For large amounts of sampling, the Cramér-Rao Lower Bound has an even more 

refined formula for the constrained samples on the surface of the hypersphere.  Like in 

Figure 7, the constrained sampling is confined to an angle θ from a particular point on the 

surface.  The two-dimensional case (i.e. the circle) can be setup so that the calculus is 

made simpler.  First, use a coordinate system that has its center where the center of the 

circle is.  The y-axis is projected towards the particular point that lies on the surface and 

is the center of the confinement.  A point on the circumference is then defined as 
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where a is the angle from the y-axis towards the x-axis.  The center of the circle is then a 

zero vector in this coordinate frame. 
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For large amounts of sampling of the two-dimensional case, Equation (14) be-

comes an integral that averages the integrand over the region on the circumference of the 

circle thus 
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where 
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The CRLB2 simplifies greatly with an isotropic covariance (Σ=Iσ2) as well as a zero cen-

ter: 
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Taking the integral produces the answer in this coordinate system. 
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The inverse produces 
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This has three distinct eigenvalues.  The one for the x-direction (perpendicular to the line 
of symmetry) is 
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The largest eigenvalue corresponds, for the most part, to the y-direction and is 
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The variable α is a function going from α=1 at θ=0 to α=0 at θ=π.  It is graphed in the 
next figure: 
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Figure 9 Eigenvectors of CRLB for Circle 

The smallest eigenvalue corresponds, for the most part, to the r-direction (radius error) 
and is 
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The eigenvalues follow the relationship 
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for all values of the confinement angle.  They are graphed in the following figure. 
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Figure 10 Eigenvalues of CRLB for Circle 

Figure 10 shows that the variance for the center estimation increases to infinite as 

the confinement angle approaches zero.  These eigenvalues determine the size of the error 

ellipse, which bulges towards the points on the surface of the circle. 

The three-dimensional equivalent (i.e. sphere) is a bit different.  The idea is still 

the same, which is to confine the measurements to be within an angle from a specific 

point on the surface.  The coordinate system is set up so that the z-axis is pointing to-

wards the confinement point on the surface.  A point on the surface is then defined by 

two angles a and b thus 
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The center of the sphere is at the center of the coordinate system thus 
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The CRLB in three dimensions has the limit for large sampling as 
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The middle sized eigenvalue is 
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corresponding to the directions 
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The third and final eigenvalue corresponds to the r-direction and is 
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The last two eigenvectors are determined by the one function α of the confinement angle.  

This function is graphed in Figure 11. 

 

 

Figure 11 Eigenvectors of CRLB for Sphere 

All three eigenvalues for the confined points on a sphere are graphed in Figure 12. 
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Figure 12 Eigenvalues of CRLB for Sphere 

 

So what does all this gives me?  The formulae for the eigenvalues provide the 

best-case error of problem at hand, i.e. all estimators aspire to these limits.  There is a 

condition where the error in the estimate exceeds the error in the measurement.  This 

condition occurs, for the circle, as 
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The comparison here is element by element in the matrix.  The worst case for the center 
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The sphere equivalent limit is 
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These two lower limits for number of samples is a good start when the circumstances 

arise for picking the number of samples. 

4.1.3 Non-linear Maximum-Likelihood Estimator 
According to the National Institute of Standards and Technology (NIST) [100], 

the best way to find the center of a sphere is through non-linear minimization of the vari-

ance of the radius.  This is also called the Maximum-Likelihood Estimator (MLE) for the 

center 
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ˆ c  and radius 
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ˆ r .  The variance is written as 
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where N is the number of samples whose positions are xi on or near the surface of the 

sphere.  The sample radius ri is expressed as the vector norm (distance) of the sample 

from the center of the sphere thus 
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The two estimators, i.e. the radius 
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! 

ˆ c , are unknown in the equation and can 

be solved by minimizing the variance.  The radius is solved easily through taking the de-

rivative of the variance and setting it equal to zero.  The derivative is 
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which ultimately simplifies to 
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This estimator of the radius is still dependent on the center estimator 

! 

ˆ c  because of the 

definition of ri.  The minimization is usually carried out by iterative methods like the 

Levenberg-Marquardt Method [100] and cannot be solved directly.  One disadvantage of 

the iterative technique is the need to produce an initial guess.  The following graphs 

comes from the Monte-Carlo experiment previously mentioned and is another way of 

showing the error, this time dividing by the square root of the CRLB instead of the ra-

dius.  The first graph compares the error to the standard deviation. 
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Figure 13 MLE Compared to CRLB 

The outliers are clearly visible and correspond to when the error equals the radius.  

This is the case when the coverage angle is small and the MLE converges to the middle 

of the points instead of nearer to the center.  The next graph explains when the outliers 

occur in comparison to the coverage angle.  An angle of 180° means full coverage of the 

sphere, whereas an angle of 0° means all points confined to a single spot on the sphere. 

|c-c0|=r 
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Figure 14 MLE Error Versus Sphere Coverage 

This graph shows the outliers occur at low angles and indicate that the Levenberg-

Marquardt technique converged on an answer that was embedded in the set of points that 

reside on the sphere as in the equation 

(60) 

! 

ˆ c " c
0
# r

0
. 

These outliers occur when the samples during a run are confined to a small area on the 

sphere.  For the most part, the answer error is proportional to the square root of the CRLB 

as evident in Figure 13 and Figure 14. 
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4.1.4 Linear Least-Squares Solution 
The next best thing to the very slow MLE method is through linear least-squares 

solution.  Most authors use a similar solution to the one presented here.  The method 

starts out the equation for a hypersphere 
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This is usually an over-constrained problem since there are N equations and four (i.e. 

D+1) unknowns.  The N equations can be put into a single matrix equation to solve with 

standard linear algebra techniques.  The linear equation is 
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The Singular Value Decomposition (SVD) method is used to solved for 

! 

ˆ A  

thereby retrieving 

! 

ˆ c  and

! 

ˆ r .  SVD has the advantage of being able to solve equations that 

contain near singular matrices.  It has the disadvantage of being a slow algorithm.   

Figure 15 shows the error of the center estimator.  Once again, the outlier case 

shows when the answer erroneously lies on the sphere.  This example, the LLS method 

shows possible bad results at the extreme ends of the standard deviation spectrum. 

 

 

Figure 15 LLS Compared to CRLB 

For the most part, once again, the answer error is proportional to the square root of the 

CRLB. 
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The speed of the algorithm can be measured in flop count.  Flops are floating 

point operations and the operations included in the count are not very well defined.  

Many authors allow only multiplication, division, addition and subtraction of floating 

point numbers to be included.  Others also include the square-root function.  Some ex-

clude addition and subtraction.  We adopt the one with the most (i.e. * / + - √).  The LLS 

method here involves the Singular Value Decomposition.  The Numerical Recipes [94] 

implementation is the most popular.   Counting the individual + - * / √ operations proves 

cumbersome and involves an assumption about an iteration cycle in the implementation.  

The setup and breakdown of Equation (64) contributes 
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where D is the dimension of the sphere (e.g. 2 for circle, 3 for sphere).  So for a sphere, 

the Linear Least-Squares method has 
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4.1.5 Generalized Delogne-Kása Estimator 
The GDKE was first introduced in 2004 by Zelniker [119] as an extension of the 

estimator of the circle center.  The circle estimator had been published since 1972 starting 

with Paul Delogne [41].  István Kása [57] further expanded the 2D theory in 1976.  In the 

process of my investigating this problem, the research for this dissertation took the same 

path as Zelniker and independently discovered the equation in a more efficient form in 

2005.  The new but algebraically equivalent equation was presented at the Winter School 

of Computer Graphics Conference at Plzeň, Česká Republika in 2007 [63].  The estima-

tor has an algebraic solution and is considered fast in relation to the previously mentioned 

methods. 

4.1.5.1 Derivation 
The problem starts out similar to the MLE, where a minimum to a variance is 

needed.  The variance takes on the form 

(73) 

! 

s
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N"1
r
i

2 " ˆ r 
2( )

2

i=1

N

#  

where 

(74) 
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r
i

2 = x
i
" ˆ c ( )

T

x
i
" ˆ c ( ) 

The solution for the radius estimator falls out similar to the MLE except this time 

it is the square root of the sum of the squares (RMS) of the sample radii. 

(75) 
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N
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2

i=1

N
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If this estimator is then plugged back into the variance, it becomes evident that this esti-

mator is the absolute minimum of the variance for any center estimator.  Choose an esti-

mator 

! 

" r  other than 

! 

ˆ r  and the difference of the variances becomes 

(76) 

! 

s
2 " r ( ) # s

2
ˆ r ( ) = " r 

2
# ˆ r 

2( )
2

$ 0 

Don’t forget that the center estimator 

! 

ˆ c  is in Equation (56) of the sample radii ri 

for the radius estimator.  To solve for the center estimator, the gradient of the variance 

with respect to the changing center estimate must be taken and then set equal to zero 

(77) 

! 

"s
GDK

2
= 0  

where the gradient is defined as the vector operator with respect to the center estimate 

(78) 
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Applying the derivative produces 

(79) 
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The further derivatives can be shown to be 

(80) 

! 

"ˆ r 
2 = 2 ˆ c # x ( ) 

(81) 
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i

2
ˆ c # x
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These relationships and further manipulation can produce 

(82) 
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2

ˆ c $ x ( ) 

where the special values C and S are defined as 
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(83) 
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C is the standard definition of the sample covariance matrix.  S is the multidimen-

sional equivalent of the third central moment and as such can be called the sample third 

central vector moment.  Combining all of these makes the gradient of the variance end up 

being 

(85) 

! 

"s
GDK

2 = 4 2C ˆ c # x ( ) #S( )  

Setting this to zero, the solution for the center estimator becomes 

(86) 

! 

ˆ c = x + 1

2
C

"1
S  

If this estimator is then plugged back into the variance, it becomes evident that this esti-

mator is the absolute minimum of the variance.  Choose an estimator 

! 

" c  other than 

! 

ˆ c  and 

the difference of the variances becomes 

(87) 
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s
2 " c ( ) # s

2
ˆ c ( ) = " c # ˆ c ( )

T

C " c # ˆ c ( ) $ 0 

Applying this formula produced statistically similar results to the MLE iterations in the 

Monte-Carlo experiment.  The following graph shows that, similar to the MLE, it has er-

ror 

(88) 
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ˆ c " c
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Figure 16 GDKE Compared to CRLB 

The floating-point operations count for the GDKE of the center of a hypersphere 

of dimension D is 

(89) 

! 

FLOPs = N D
2 + 6D"1( ) + 1

3
D
3 + 3D2 + 8

3
D+1( ) 

where N is the number of samples.  The spherical solution (D=3) becomes 

(90) 

! 

FLOPs = N26 + 45  

You might ask at this point - it’s faster, produces similar results, what’s wrong 

with it?  This fast method has not been fully accepted because it is a biased estimator.  An 

estimator of a parameter is considered biased if it is expected to be a little off of the real 
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answer.  Zelniker [119] has shown that the bias of the GDKE is on the order of the meas-

urement standard deviation.  The following statistical analysis will show exactly what the 

bias is and that there are cases that the bias is quite significant and does not disappear 

when more samples are taken. 

4.1.5.2 Statistical Behavior 
To understand completely the statistical behavior of the estimator, one must mul-

tiply multivariate Normal dependent variables six times to find the standard deviation of 

the center estimator.  Another obstacle to finding the behavior is the inverse of a matrix.  

All these make it difficult to find an exact answer to the mean and standard deviation.  A 

limiting approximation can be achieved if the individual components are analyzed. 

Let’s start off with our samples.  Let us assume that each measurement xi is a D-

dimensional multivariate random Normal with constant covariance and differing means 

that can be expressed as 

(91) 

! 

x
i
~ N

D
µ
i
,"( )  

where all of the means lie on the D-dimensional hypersphere. 

(92) 
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µ
i
" c

0
= r
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If the average of the samples is taken, then the new number is still a multivariate Normal 

(93) 

! 

x ~ N
D

µ , 1
N
"( ) 

Section 4.1.5.3 proves the following property of the sample covariance matrix: 

(94) 
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E C( ) =C
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(95) 
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The expectation for C is here shown to be a biased estimator of the true covari-

ance C0.  Most studies around this matrix are trying to estimate the measurement covari-

ance Σ and say that the sample covariance matrix is unbiased, but that is only in the case 

when all samples have the same mean, thereby setting C0=0. 

Similar analysis (cf. Section 4.1.5.4) will show that the expectation of the sample 

third central moment is 

(97) 
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Now with the properties of the sample mean, sample covariance C and sample 

third central moment S, the following property holds for the GDKE center estimator.  The 

inverse of the sample covariance can be expanded by Leontief inverse as 

(99) 
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Substituting this into the equation of the center produces 

(100) 
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This approximation results in the expectation of the center estimation as 

(101) 
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The covariance of the center estimator can be expanded to be 
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The intermediate covariances are found to be independent (cf. Chapter 4.1.5.4) 

(103) 

! 

Cov S,x 
T( ) = Cov x ,S

T( ) = 0 

These reduce the covariance to 
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The covariance of the sample third central moment is 

(105) 
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which makes the covariance of the center estimator 

(106) 
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The radius estimator is similarly biased.  Starting from the square of the radius estimator 

(107) 
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N
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T
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The expectation of the square is then 
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(108) 
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The intermediate expectation, which is related to the covariance between the mean and 

the center estimator, is 
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Inserting this into the expectation of the square, reduces it to 
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This expectation shows the bias in the radius estimator that remains non-zero as long as 

there is error in the measurement system.  The variance of the square of the radius esti-

mator comes out to be 

(112) 
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Var ˆ r 
2( ) = O

1

N
"( ) 

A typical example of the (mis-)use of these estimators can be displayed using Mathe-

matica as in Figure 17.   
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Figure 17 GDKE Error Ellipse 

The dashed bars in Figure 17 represent the error involved in the center estimate.  As can 

be seen, the true center is not anywhere within the error ellipsoid of the estimate.  This is 

due solely to the bias in the estimator.  Figure 17 is a good example of why the GDKE 

has not been adopted as much as the others.  There is a simple way to remove this non-

diminishing bias and it is the method of choice for speed and accuracy as long as a bit of 

a-priori knowledge is available (cf. Section 5.1). 

4.1.5.3 Expectation of Sample Covariance 
Theorem: 
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The sample covariance matrix has biased expectation when the samples are inde-

pendently measured from the multivariate normal distribution with the same measure-

ment covariance but differing expectations. 

Proof: 

The sample covariance is defined as 

(113) 
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where the samples are independent of each other and come from the multivariate normal 

distribution 
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The sample covariance can be expanded to  
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When the summation is expanded, the covariance becomes 
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The expectation of the sample covariance is  
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(118) 

! 

E C( ) = 1

N
E xixi

T( )
i=1

N

" # 1

N N#1( )
E xix j

T( )
j$ i

"
i=1

N

"  

Since these samples are independent, the expectation breaks down to 
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The expectation of the same two multivariate normal vectors multiplied together is 
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The expectation of the sample covariance then becomes 
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The sample covariance is thus biased whether it is an estimate of Σ or C0.  The GDKE is 

using the matrix as an estimate of C0 with Σ interfering.  The variance of C is more com-

plicated involving six multivariate normal vectors multiplied together in a non-

independent manner.  A solution was achieved by analyzing the individual elements of 

the matrix.  The covariance of each element in the matrix is defined as 
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The expectation of the square of each element is much more complicated involving com-

binations of four random variates multiplied to each other.  The square starts as 
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Since the points are independent of each other, the expectation of this is 
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Expanding the sums and canceling terms reduces this gigantic equation to 
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And finally, more cancellations produce the answer 
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Subtracting the square of the expectation of each produces the covariance: 
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The inverse of the sample covariance is an important value to find its expectation.  

The inverse of any matrix can be expanded by the Leontief Inverse to 

(137) 

! 

A
"1 = I " E A( )

"1
A( )

k

E A( )
"1

k= 0

#

$  

as long as the spectral radius (largest absolute eigenvalue) is 

(138) 

! 

" I# E A
#1( )A( ) <1 

Substituting A for the sample covariance produces 

(139) 

! 

C
"1 = C

0
+ #( )

"1
+ I" C

0
+ #( )

"1
C( )

k

C
0

+ #( )
"1

k=1

$

%  

An intermediate expectation is needed to get the second order approximation 

(140) 

! 

E CAC( ) =C
0
AC

0
+C

0
A"+ "AC

0
+ "A"

+ 1

N#1( )

"A"+ "Tr A"( ) + "AC
0

+C
0
A"

+"Tr AC
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$ 

% 
& & 

' 
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) ) 
 

Then, using this identity, the expectation of the inverse expands to 

(141) 

! 

E C
"1( ) = C

0
+ #( )

"1
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N"1( )
C
0

+ #( )
"1
# 2 + D( ) + Tr # C

0
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" # C

0
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#( ) C0
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0

+ #( )
"1
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k$ 
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& 

' 
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) C

0
+ #( )

"1
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+

 

So the second order approximation using the diagonal covariance is 

(142) 

! 

E C
"1( ) =C

0

"1
+ 1

N"1
# 2
C
0

"1
2 + D( )C0

"1
+ Tr C

0

"1( ) "C0

"2
# 2( )  
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4.1.5.4 Expectation of Sample Third Central Moment 
Theorem: 

The Sample Third Central Moment is unbiased when the samples are independ-

ently measured from the multivariate Normal distribution with the same covariance but 

differing expectations. 

Proof: 

The Sample Third Central Moment for multivariates is defined as 

(143) 

! 

S = 1

N"1
x

k
" x ( ) x

k
" x ( )

T

x
k
" x ( )

k=1

N

#  

where the samples are independent of each other and come from the multivariate Normal 

distribution 

(144) 

! 

x
i
~ N

D
µ
i
,"( )  

(145) 

! 

x
i
" x ~ N

D
µ

i
" µ , N "1

N
#( ) 

Then expectation of the moment is 

 (146) 

! 

E S( ) = 1

N"1
E x

k
" x ( ) x

k
" x ( )

T

x
k
" x ( )( )

k=1

N

#  

Then using the expectation and covariance from (144) gives 

(147) 

! 

E Si( ) = 1

N"1
µki "µ i( ) µkj "µ j( )

2

+ µki "µ i( ) N"1
N
# jj + 2 N"1

N
#ij µkj "µ j( )

j=1

D

$
k=1

N

$  

and the last two parts disappear because of the definition of the average, leaving behind 
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(148) 

! 

E S( ) = S
0

= 1

N"1
µ
i
"µ ( ) µ

i
"µ ( )

T

µ
i
"µ ( )

i=1

N

#  

As can be seen, the sample third central moment is an unbiased estimator in the general 

case of constant covariance but different mean. 

Another important property is the covariance between the sample third central 

moment and the sample mean.  This value starts with expanding the sum as 

(149) 

! 

Sx 
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x
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And expanding the means produce 

(150) 
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Separating the independent values produce the expanded sums 
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(151) 
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Substituting the expectations produce the sums 
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(152) 

! 

E Sx 
T( ) = 1

N"1( )N
2

Nµkµk

Tµkµ j

T + NTr #( )µkµ j

T + 2N#µkµ j
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This rather large sum simplifies all the way down to 

(153) 

! 

E Sx 
T( ) = S

0
µ T  

thus proving that the sample third central moment is independent of the sample mean.  

The covariance of the sample third central moment is much more difficult involving the 

multiplication of six multivariate normals together.  To determine the covariance, the fol-

lowing matrix must be analyzed. 

(154) 

! 
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T
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The expectation of this matrix is 



 60 

  

(155) 
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Separating out the covariance produces 
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These expectations are found in Section (7.1.1) and produces the covariance as 
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The j and k vectors are not quite independent with their covariance being 

(158) 

! 

Cov x j " x ( ), xk " x ( )
T( ) = " 1

N
# 

This means the larger covariance in Equation (157) can be approximated by 
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(159) 
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Using this and the special case of diagonal covariance 

(160) 
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produces the simplified equation for the covariance of the sample third vector moment as 

(161)
 

! 

Cov S,S
T( ) = 1

N
" 2

8F
0

+ Tr F
0( ) # 4C0

2
# 4Tr C

0( )C0
#Tr C

0( )
2

+ 38" 2
C
0

+14" 2
Tr C

0( )( ) +O 1

N
" 6( )  

4.1.5.5 Center Equation Theorem 
This section proves that the GDKE estimator of the center of the hypersphere is 

truly the center of the sphere when the points all lie on the sphere. 

Theorem: 

The Center Equation (86) calculates the true center of the hypersphere if all points are 

equidistant from the center, i.e. they all lie on the surface of the same hypersphere. 

Proof: 

The Center Equation can be rearranged to be 

(162) 

! 

0 = 2C x " c
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Expanding this into the summation produces 
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Combining the two summations gives 
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(164) 
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The difference can be changed to be around the center instead of the mean thus 
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Then expanding the second and third term under the summation produces 
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The square of the distance of point i from the center is defined as 

(167) 
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2
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The summation can be then simplified to 
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0 = x
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The second term is then eliminated, producing the simple summation 

(169) 

! 

0 = x
i
" x ( )ri

2
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It is easy to see that if all points are equidistant (i.e. ri=r) from the center then this 

equation becomes true.  There are other ways to produce zero with this sum, but that is 

where the GDKE steps in.  The GDKE solves this equation when the distances are not 

equal. 
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4.2 Skeleton Approaches 
Producing a skeleton involves finding the centers of joint rotations, which was 

addressed in Section 4.1, the hierarchy of segmentation, and the orientation of each seg-

ment.  This thesis does not rely on novel ideas for the remaining steps of producing a 

skeleton.  The hierarchy of segmentation is known ahead of time.  The orientation of a 

segment is determined by one of two methods.  Either it is given in the raw data, e.g. 

magnetic trackers, or it is calculated by the fastest technique known.  The fastest way to 

calculate the orientation of a segment from positional information of markers is quite in-

tuitive and has been in use for a long time.  One of the earliest uses found in motion cap-

ture were published in 2000 by Herda, et al. [50].  Unfortunately, many authors don’t re-

alize that this speedy method of orienting the segment can also be used to calculate the 

entire skeleton.  The most common approach to calculating a skeleton from motion cap-

ture data is through minimization until the skeleton fits where the rotation points have 

been approximated.  The minimization involves squishing segments and moving joints 

until all joints are nearest to the calculated rotation points.  O’Brien, et al. [84] uses a lin-

ear least-squares minimization that produces the rotation points from a collection of time 

frames.  Their method relies on the constraint that two connected segments have a com-

mon point between them during rotation.  Their solution calculates a point from the 

knowledge of the orientation of both the parent and the child segments and calculates the 

best fit point that remains the most still relative to the two segments.  The solution in-

volves the Singular Value Decomposition of a 3Nx6 matrix to produce the common point 

that is the rotation point.  If the solution fails to come up with an answer, as in the case of 

no motion or planar motion, then the closest point between the two coordinate systems is 



 64 

  

used.  This technique relies heavily on orientation information that is not always avail-

able.  In their study, magnetic motion tracking devices are used which contain both posi-

tion and orientation.  This is akin to solving for the best-fit sphere around a center.  The 

state of the science for sphere fitting was presented in Section 4.1 but the improvement 

upon the state is now presented in Section 5.1. 


