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Knight, Jonathan Kipling (Ph.D., Computer Science) 

Rotation Points from Motion Capture Data Using a Closed Form Solution 

Thesis directed by Professor Sudhanshu Kumar Semwal 

Four new closed-form methods are present to find rotation points of a skeleton 

from motion capture data.  A generic skeleton can be directly extracted from noisy data 

with no previous knowledge of skeleton measurements.  The new methods are ten times 

faster than the next fastest and a hundred times faster than the most widely accepted 

method.  Two phases are used to produce an accurate skeleton of the captured data.  The 

first phase, fitting the skeleton, is robust even with noisy motion capture data.  The for-

mulae use an asymptotically unbiased version of the Generalized Delogne-Kása (GDKE) 

Hyperspherical Estimation (first estimator: UGDK).  The second estimator takes advan-

tage of multiple markers located at different distances from the rotation point (MGDK) 

thereby increasing accuracy.  The third estimator removes singularities to allow for cy-

lindrical joint motion (SGDK).  The fourth estimator incrementally improves an answer 

and has advantages of constant memory requirements suitable for firmware applications 

(IGDK).  The UGDK produces the answer faster than any previous algorithm and with 

the same efficiency with respect to the Cramér-Rao Lower Bound for fitting spheres and 

circles.  The UGDK method significantly reduces the amount of work needed for calcu-

lating rotation points by only requiring 26N flops for each joint.  The next fastest method, 

Linear Least-Squares requires 236N flops.  In-depth statistical analysis shows the UGDK 

method converges to the actual rotation point with an error of O(σ/√N) improving on the 

GDKE’s biased answer of O(σ).  The second phase is a real-time algorithm to draw the 
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skeleton at each time frame with as little as one point on a segment.  This speedy method, 

on the order of the number of segments, aids the realism of motion data animation by al-

lowing for the subtle nuances of each time frame to be displayed.  Flexibility of motion is 

displayed in detail as the figure follows the captured motion more closely.  With the re-

duced time complexity, multiple figures, even crowds can be animated.  In addition, cal-

culations can be reused for the same actor and marker-set allowing different data sets to 

be blended.  The main contributions in this dissertation are the new unbiased center for-

mulae; the full statistical analysis of this new formula; and the analysis of when the best 

measurement conditions are to initiate the formula.  The dissertation further establishes 

the application of these new formulae to motion capture to produce a real-time method of 

drawing skeletons of arbitrary articulated figures. 
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PREFACE 

The research that will be presented in this paper is the culmination of a story.  The 

five-year journey involves the typical parts of a novel with protagonist, antagonists, 

heartaches, and triumphs.  The protagonist is, of course, me – the author.  The antagonists 

in this story were the many hurdles that I stumbled over to finally realize what my actual 

goal was for the research.  The story of this research is a good example of what it means 

for the research topic itself to tell you are going in the wrong direction.  Perseverance has 

declared a victory in the research only by finally exposing a vital and missing piece of the 

puzzle that builds up the topic at hand. 

So, what is the topic?  The research started out five years ago as an idea that cur-

rent technology for articulated motion analysis and display was much too slow and unre-

alistic.  I started the research, albeit naively, by thinking that a combination of physics 

and genetic algorithms could infuse a sense of realism and speed into analyzing the mo-

tion.  So I sat down and coded up the infrastructure needed to build up this combination. 

First, I needed a computer representation of an articulated figure.  To keep phys-

ics in the equation, I decided to make each segment of the figure solid.  I found that, for 

physics related simulations, this is the only way to go since calculations of inertial mo-

ments are fairly simple (cf. Chapter 7.2).  A few other authors use this approach for high-

end physical simulations but, for the most part, most use triangulated surfaces for their 

“solid” figures.  It is usually difficult to calculate moments of inertia from only the sur-

face data.  A tetrahedral solid mesh was chosen to simplify building up an arbitrary 

shape.  With a solid shape, and its mass, the rotational and translational physics are fully 

calculable from the Newton-Euler differential equation.  As I progressed further in the 
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research, I found it increasingly time-intensive to calculate projected motions based on 

solving the second-order differential equation on an arbitrary articulated figure. 

This suggested that I pursue an alternative approach.  So, what if I relied more on 

motion-capture data and infuse only a little bit of physics?  I then looked at reading in 

and using raw motion-capture data.  Little did I know that motion-capture data was ex-

cruciatingly hard to acquire both on your own and on the Internet.  The people and com-

panies that did any kind of work with capturing motion data were usually quite willing to 

sell it.  Only a few free examples were found that were of any use.  A file reader was built 

from scratch for the most popular format since no one had open source code.  I struggled 

for a year with reading the quirky data format with the small amount of data I found until 

a goldmine was found.  Carnegie-Melon University Graphics Laboratory had just started 

placing a large cache of raw and analyzed motion-capture data on the Internet through a 

government grant.  I subsequently downloaded gigabytes of raw binary data for a pleth-

ora of motions captured by the students at this lab.  One problem solved – gathering data 

to analyze. 

Now I set about trying to analyze the raw data so that I may use it to better ana-

lyze the underlying articulated motion.  Starting with the simplest issue, I started trying to 

display the motion on a 3-D scene.  As it turns out, the raw data was very inconsistent in 

storing which measurement units it was using.  Sometimes it was in meters, sometimes it 

was in feet, sometimes it was stored in feet and the format said it was meters.  Once you 

figure out what scale the data is in, you can display the points on the screen. 
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Figure 1 Display of Motion-Capture Data 

Now, all I had was a bunch of squirrelly lines on the screen (cf. Figure 1).  Clearly, the 

lines had to be associated and grouped.  Each line was attached (i.e. correlated) to a par-

ticular segment on the articulated figure.  This can be done in one of two ways – autocor-

relation and precognition.  I chose the latter since autocorrelation is extremely time inten-

sive.  Precognition may sound like cheating but nine times out of ten, the user will know 

ahead of time which bits of data are associated with which segment on the articulated 

figure. 

What do I have so far?  I have a bunch of lines that each segment can follow in 

time.  As data shows marker location at each time frame, each segment has some surface 

positions pin-pointed in space.  In addition, exact marker location on segments usually 

were not known or given.  That leaves an unsavory taste in your mouth when the segment 

can be placed almost anywhere relative to these points.  A systematic approach must be 
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thought of that allows the conclusive attachment of the segments to the data.  This im-

plies that the data must contain both relative position and orientation of the segment so 

the model can be sized and oriented into position.  This satisfies an individual segment, 

but not the whole articulated figure.  For that I needed the rotation points in between the 

segments.  What this boils down to is that I needed to draw a stick figure based solely on 

the motion-capture data.  I could then attach whatever shape model I wanted onto the 

stick figure.  I did a search for existing methods and found a few examples in the litera-

ture (cf. Chapter 8).  The most popular was to perform a least-squares fit and a few still 

did non-linear fitting of the data.  They all had one thing in common – they all assumed 

the marker moved on a sphere around the rotation point of the joint.  This means that, to 

draw a stick figure, I had to solve for the center of a sphere at every joint.  A little re-

search showed there were only three major algorithms to solve for the center of a sphere 

by data points sitting on the sphere.  The most popular was the Maximum-Likelihood Es-

timator (MLE) that solved the problem in a non-linear fashion.  This had the undesirable 

effect of being excruciatingly slow and sometimes not producing an answer at all.  The 

next most popular type was linear least-squares solutions that involve fairly slow (but 

faster than MLE) pseudo-inverse matrix solutions.  This was the preferred method by 

most authors concerned with speed.  The third type of solution was a small set of ap-

proximations that were closed-form solutions to the best-fit sphere.  These formulae were 

unpopular and usually used only in the case to start off a non-linear search for the real 

answer.  They were unpopular because of biases introduced. 

I was unsatisfied with any of these solutions found in the existing literature.  They 

would get me to the answer, but they were too slow or quirky.  I decided to sit back and 
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analyze a case study of a particular joint movement.  To proceed with analyzing, the raw 

(x,y,z) data was loaded into a spreadsheet for the step-by-step analysis to see how the ro-

tation point could be retrieved from the data.  A column of distances from an unknown 

point (the rotation point) was made for each data point.  Then, thinking about it – what 

would happen if the unknown point were truly at the center of rotation?  Then, the dis-

tances to the data points would all be about the same.  What this translates into is that the 

standard deviation from the mean of the distances would be minimized.  This can be eas-

ily done in Excel with the Solve tool.  Thinking about it further, that this is exactly what 

the Maximum Likelihood Estimator (MLE) solution is – minimizing the standard devia-

tion of the distance to the center of rotation.  I looked carefully at the mathematics to see 

if a closed form solution can be found.  The MLE does not solve to a closed form.  I then 

altered the column to be the square of the distance.  The Solve tool still got nearly the 

same answer as the MLE.  I looked at the math for this minimizing and lo and behold, a 

closed form solution dropped out on the floor.  So the minimum of the standard deviation 

of the square of the distance to the center of rotation can be solved with a fairly simple 

formula. 

I found this new formula easy to use and very fast compared to the other two 

techniques.  I was all ready to name my new discovery but then I thought it was too good 

to be true.  I tried desperately to find an author in the existing literature that used this 

formula.  I could not find a single author that even implied the existence until a month 

later.  I found an author [119] who had published three months earlier in some obscure 

electronics conference (yes 3 months!).  His formula was a different arrangement of the 

same solution I had developed.  So, at least I knew what to call the formula – Generalized 
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Delogne-Kása Estimator (GDKE).  Apparently this formula had been used off and on in 

many industries since 1972 [56][57] in only its two-dimensional form (i.e. circle).  This 

new formula can handle any dimensional sphere.  The formula had not risen in popularity 

because of a certain flaw.  In a particular arrangement of data, the estimator would be ex-

pected NOT to be the answer.  The flaw would not show itself if the data points were dis-

tributed evenly over the entire sphere.  Unfortunately, this ideal case is not too common 

in the real world.  Therefore, the formula ended up only being useful when the measure-

ment system was extremely accurate – another not so common real world case. 

Fine, someone beat me to a fast and flawed formula that solves my problem.  Not 

good enough for me, so I set out to remove the flaw and retain the speed.  The first thing 

to do to remove the flaw is to exactly identify it.  The original paper from 2004 [119] did 

not explain in detail what the flaw was, just that the bias was about the size of the meas-

urement error.  As it turns out, the multiplication factor can amplify the bias far beyond 

the simple measurement error.  It took over two years to work out the exact relationship 

of the bias.  It involves the probability analysis of multidimensional random variables 

multiplied together up to six times.  It was slow going since the equation grew rather 

large.  Keeping track of all of the variables became unwieldy, as even Mathematica 

couldn’t handle the math.  Finally, the flaw was identified and a systematic equation was 

produced that effectively removed the flaw.  The results were a simple modification to 

the GDKE that made the formula guarantee to converge to the true center and radius as 

more raw data was thrown at it.  The gap in technology for building a skeleton from mo-

tion capture data was identified and filled.  This paper goes into excruciating detail to 

prove the capabilities of this new method for skeletal extraction. 
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