
Simulating Trees using Fractals and L-Systems 
 

Eric M Church and  SK Semwal   
Department of computer Science, University of Colorado, Colorado Springs 

semwal@cs.uccs.edu   
 

 
Abstract 

 
Algorithmic simulation of natural environments in a 
convincing manner presents an ongoing challenge to 
modelers and developers. Of particular challenge in 
simulating natural environments is the dynamic creation of 
botanical forms, that is, plants. Many plants exhibit 
complex structural forms that defy traditional geometric 
patterns, and as such, are difficult to simulate in a 
convincing way using traditional geometric and 
mathematical constructs. Using statically modeled 
techniques is cumbersome, especially when faced with the 
challenge of producing multiple similar, yet unique plant 
forms, such as found in a forest of trees. To adequately 
recreate a convincing organic environment, some dynamic 
and stochastic model is necessary. While the shape and 
structures of plants, particularly trees, often appear 
irregular and chaotic, they also exhibit a high degree of 
self-similarity. Self-similarity suggests a recursive or 
iterated approach to the dynamic modeling of botanical 
forms. As such, constructs such as fractal geometry and 
Lindenmayer systems seem prime candidates for the 
generation of such forms. This paper explores the use of 
fractal geometry as the basis of simulating the forms of 
trees. Lindenmayer systems (L-Systems), iterated function 
systems (IFS), their relationships, and their use in 
simulating trees are discussed. The primary focus of this 
paper is to present and explain the tree simulation software 
written for our implementation by extending the Honda 
model to include stochastic simulation. 
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1. Introduction 
 
Algorithmic simulation of natural environments in a 
convincing manner presents an ongoing challenge to 
modelers and developers.  The ultimate goal is to present a 
computer-generated artificial environment that is 
indistinguishable from a photographed natural landscape.  
This paper explores the use of fractal geometry as the basis 
of simulating the forms of trees.  In the course of this 
paper, I will investigate Lindenmayer systems (L-Systems), 
iterated function systems (IFS), their relationships, and 
their use in simulating trees.  Finally, the primary focus of 

this paper will be to present and explain the tree simulation 
software written for this project. 
Plant structures often show very complex, yet well-defined 
structures.  One of the primary factors that organize plant 
structures and contributes to their beauty is the concept of 
self-similarity, as characterized by Mandelbrot[7]: When 
each piece of a shape is geometrically similar to the whole, 
both the shape and the cascade that generate it are called 
self-similar. 
 
Simply defined, fractals are geometric patterns that exhibit 
self-similarity on all scales, at any level of magnification.  
Fractals achieve self-similarity by being recursive in nature 
– each piece of a fractal is defined based upon other pieces 
of the fractal.  Because more detail may be revealed at any 
level of magnification, fractals are often referred to as 
"infinitely complex"[10].  A canonical example of fractal 
geometry in action can be seen in the synthesis of the Koch 
snowflake  Rather, fractals simply need to display the same 
type of structures on all scales.  Most fractals exhibit 
approximate self-similarity rather than precise self-
similarity, as seen in the Mandelbrot set.   
Approximate self-similarity is a recurring theme in nature.  
Many natural forms fit neatly into the paradigm of self-
similarity, including higher plants (such as trees), seashells, 
clouds, lightning, river networks, and blood vessels).  This 
property is highly mathematical, and as such, provides a 
mechanism for algorithmically defining or simulating 
natural phenomena.  Fractal geometry can be artificially 
generated using a number of methods.  Two methods are 
discussed in the following sections: Lindenmayer Systems 
and Iterated Function Systems. 
 
2. Previous Research 
 
Lindenmayer systems, or L-systems for short, are a 
formalism introduced by Aristid Lindenmayer in 1968 as a 
theoretical framework for studying the structure and 
development of simple multicellular organisms.  As 
Lindenmayer was a biologist, his original motivation for 
developing L-systems was in fact to model and study 
biological forms and growth processes.  Since their 
introduction, L-systems have been successfully employed 
to generate models of many natural forms, including higher 
plants.  
 



The parallel application of productions distinguishes L-
systems from other formalisms, such as Chomsky 
grammars, which apply productions sequentially.  Parallel 
production application has an essential impact on the 
formal properties of rewriting systems.  For example, there 
are languages that can be generated by context-free L-
systems but not by context-free Chomsky grammars.   
 

The implicit parallelism of L-systems is directly based 
upon how biological growth processes function (e.g. 
multiple cells dividing in parallel during embryonic 
development).  The result is an autonomous, massively 
parallel emergent system, where each agent is autonomous, 
but the resulting system may show emergent patterns. The 
first results in applying L-systems to graphical models were 
published in 1974 by Frijters and Lindenmayer, and 
Hogeweg and Hesper [7].  

 
An Iterated Function System, of IFS for short, is any 
system which recursively iterates a function or a collection 
of arbitrary functions on some base object.  Iterated 
function systems are a common method used to generated 
fractals.  This method was popularized by Barnsley, based 
on the theoretical work by Hutchison and Dekking [1]. 
 

IFS fractals can be defined on any number of 
dimensions, but are commonly computed and rendered in 
2D.  An IFS fractal is a solution to a recursive set of 
equations, and is made up of the union of several copies of 
itself, each copy being transformed by a function.  The 
functions are normally contractive – they bring points 
closer together and make shapes smaller.  The shape of an 
IFS fractal is made up of several possibly-overlapping 
smaller copies of itself, each of which is also made up of 
copies of itself, ad infinitum, which creates a self-similar 
structure.  As can be inferred from this discussion of L-
systems and iterated function systems, both formulations 
are very similar, and can be used to generate fractals.  In 
fact, an L-system can be thought of as an iterated function 
system whose functions are productions and inputs are 
symbols from the alphabet of the system.  Inversely, one 
can think of an iterated function system as a non-
deterministic L-system whose alphabet is the set of all real 
numbers, and whose productions are functions or geometric 
transformations.  While not strictly conforming to the 
definitions of either, the two can be perceived in a very 
similar manner. Many schemes for ordering branches in 
axial trees have been suggested and implemented.  One 
such example is that proposed by Horton and Strahler, 
which was originally proposed to model erosional 
topologies and drainage basins for river networks.  The 
Horton-Strahler method can also be used as the basis for 
generating botanical trees, as shown by Prusinkiewicz and 
Lindenmayer.   The generated tree structure appears very 
organic.  While this model is very simplistic, and only uses 
binary branching, it manages to convey the sense of a 
botanical tree quite well, and does not appear artificially 
fabricated.  Such trees were good first steps toward 

achieving believable photo-realistic tree models, and served 
as the basis for much future work in the area of botanical 
modeling. 

 
The plant kingdom is dominated by branching 

structures.  For modeling purposes, a mathematical 
description of tree-like shapes and methods for generating 
them is required.  To begin searching for such descriptions, 
we start in the realm of graph theory.  In graph theory, a 
rooted tree has edges that are directed and labeled.  The 
edge sequences form paths from an initial node, called the 
root or base, to terminal or leaf nodes.  In a botanical 
context, these edges are referred to as branch segments.  A 
segment that is followed by at least one more segment in at 
least one path is called an internode. A terminal segment is 
called an apex. 

 
An axial tree is a special type of rooted tree with the 

botanically motivated notion of branch axis.  At each node 
of an axial tree, at most one outgoing straight segment is 
distinguished.  All remaining edges are called lateral or 
side segments. A sequence of segments is called an axis if: 

• the first segment in the sequence 
originates at the root of the tree or as a lateral 
segment at some node, 

• each subsequent segment is a straight 
segment, and 

• the last segment is not followed by any 
straight segment in the tree. 

 
Together with all its descendants, an axis constitutes a 

branch, which is itself an axial (sub)tree [7]. Within an 
axial tree, axes and branches are ordered.  The axis 
originating at the root node of the tree has order zero.  An 
axis originating as a lateral segment of an n-order parent 
axis has order n+1.  The order of a branch is equal to the 
order of its lowest-order or main axis.  A graphical 
representation of an axial tree is presented in Figure 1(a) 
[7]. 

 

 
Figure 1(a): An axial tree 



 
 
Many early models devised to simulate trees ignore 
interactions between various elements of a growing 
structure, as well as the interaction between the structure 
and its environment.  Although interactions clearly 
influence the development of real plants, they also add 
significant complexity to such models.  The first such 
simple model was developed by Honda, who studied tree 
forms with the following basic assumptions: 

• Tree segments are straight, and their girth is not 
considered (i.e. the fact that branch diameter 
decreases proportionally to its order is not 
considered) 

• A mother segment produces two daughter 
segments in one branching process 

• The lengths of the daughter segments are 
shortened by constant ratios with respect to the 
mother segment (r1 and r2) 

• The mother segment and its two daughter 
segments are coplanar, in a plane called the 
branch plane, and the daughter segments form 
constant angles (a1 and a2) with the mother 
segment 

• The branch plane is fixed with respect to the 
direction of gravity so as to be closest to a 
horizontal plane.  More formally, the line 
perpendicular to the mother segment and lying 
within the branch plane is horizontal.  The one 
exception to this rule is for branches attached to 
the main trunk.  In this case, a constant divergence 
angle, α, is maintained between consecutive lateral 
segments. 

 
Honda’s model geometry is displayed in Figure 1(b). 
 

 

Figure 1(b): Geometry of Honda's simple tree 
model 

 
 

By varying numerical parameters inserted into his model, 
Honda was able to produce a wide variety of tree-like 
shapes (see Figure 2).  With improvements and extensions, 
Honda’s model has been applied to investigate the structure 
of real trees.  The most important extension to this model 
was applied by Aono and Kunii, in which branch positions 
are biased in a particular direction, in order to simulate the 
effects of wind, phototropism, and gravity.  These 

extensions, and others subsequently applied, have 
successfully improved Honda’s model to create even more 
realistic models. 

 

Figure 2: Trees generated using L-systems and 
Honda's model parameters 

 
While Honda’s models and those extensions immediately 
afterward were completely deterministic, many later 
modelers introduced stochastic methods to enhance the 
realism of models as well.  Stochastic mechanisms are 
essential to the models developed by Reeves and Blau [10].  

 
 
Employing stochastic processes, many different varieties of 
tree can be simulated by employing a single algorithmic 
model with different numeric parameters.  Stochastic laws 
characteristic to different tree varieties can be employed, 
varying geometric parameters such as the length and 
diameter of internodes, branching angles, number of 
branches at intersections, etc.  It is with this idea in mind 
that I developed my initial model for simulating tree 
structures, presented in the next section. 

  
 

3.  Implementation Results  
 
The tree generation software written for this 
implementation was developed in C++ in a semi object-
oriented manner.  I debated using Java or C++, as I initially 
wanted to develop a graphical user interface to allow the 
user to dynamically change parameter values used in the 
generation algorithms, and be able to instantly view results.  
On a global scale, a tree is defined by: 



• Radius of the main trunk 
• Starting height (the height of the main trunk – all 

other braches are scaled in some way based on this 
starting height) 

• Number of daughter branches coming from each 
mother branch 

 
On a local scale, each branch is defined by: 

• Scaling factor (all branches are scaled according 
to order) 

• Height/length of a branch 
• Lean angle (from the lower order branch) 
• Rotation angle (around the lower order branch) 

 
 
Simulator Global Parameters 
 
Varying the number of daughter branches on a tree has a 
significant impact on the resulting appearance of the tree.  
Often, incrementing the number of daughter branches can 
enhance the appearance of the resulting image.  For 
example, with the tree displayed in Figure 3, increasing the 
number of branches in sequence makes the tree appear as if 
it is growing, or as if the foliage is budding out after winter.  
This is a very desirable result, but is unfortunately an often-
unpredictable result.  In fact, in many cases, increasing the 
number of branches may result in a loss of detail, which 
can produce a very ugly, non-realistic looking tree.  For 
example, in Figure 4, we see that using five branches 
creates an appealing tree structure reminiscent of an elm 
tree.  However, if we increase the number of branches to 
six or seven, the resulting tree loses its detail, and is 
overrun by the rendering of foliage.  The resulting image 
looks more like a cloud than a tree (in fact, this fractal 
generator could easily be modified to generate cloud 
structures!). 
 
 

 
Figure 3: Increasing number of branches produces 
appearance of tree growth or foliage budding,  In this 
sequence, the number of branches k is increased from 1 to 

8.  Note how the tree structure is the same, but the fullness 
of the foliage increases. 

 

 
Figure 4: Increasing number of branches sometimes results 
in loss of detail and realism.  In this image, the number of 
daughter branches is varied from k = 5 to k = 7. 

 
Since the simulator is based on stochastic processes, we 
often get undesirable images.  Excessive branches, and thus 
excessive foliage, can overshadow the actual branching 
structure of the tree, as we saw in Figure.  In these cases, 
the images begin to take on the appearance of a cloud or 
ball of cotton, having a “puffy” quality.  Additionally, the 
generated trees may sometimes be too sparse or too 
geometric in nature, revealing the mathematical 
underpinnings of the model generation algorithm used.  In 
these cases, the resulting structures display too much 
precise self-similarity, which gives an unnatural 
appearance, as seen in the trees displayed in Figure 5.  
Fortunately, these cases are rather rare, being seen 
(empirically) in approximately 1% or less of all generated 
trees.  Furthermore, adding additional branches to such 
trees will often change the structure of the tree enough to 
make it appear natural. 
 

 
Figure 5: Generated trees that show too much self-
similarity, revealing the mathematical underpinnings of the 
IFS algorithm. 

 
Beyond the number of daughter branches, the simulation 
includes three global Boolean flags that affect the 
structures of generated trees. 
 
The first of these parameters is Use Branch Heights.  If this 
flag is set to true, then daughter branches will sprout at 
random points from a mother branch.  In nature, this is the 



case with many conifers, such as spruce varieties.  If this 
flag is set to false, then daughter branches will all sprout 
from the apex of their mother branch.  In nature, this is the 
case with many deciduous trees, such as elm and birch 
varieties.  The primary effect of changing this flag is to 
create more “top-heavy” trees versus more irregular, 
branch-distributed trees.  An example is displayed in Figure 
6. 
 

 
Figure 6: Different tree structures generated by changing 
Use Branch Heights flag.  Left tree: flag off, right tree: flag 
on. 

 
The next parameter is Global Scaling.  If this flag is set to 
true, then all branches and foliage are scaled down based 
on their order and a global scaling factor (which is stored in 
the trunk branch).  If set to false, then all branches are 
scaled based on a scale stored in each branch, but which is 
chosen randomly on each iteration.  If set to true, this flag 
tends to make trees more regular, and “tighter” in structure.  
If set to false, the tree structures generated are more 
irregular, but this can also cause excessive “puffiness” of 
the tree foliage, making it again cloud-like.  An example is 
displayed in Figure 7. 
 

 
Figure 1: Different tree structures generated by changing 
Global Scaling  flag.  Left tree: flag off, right tree: flag on. 

 
Finally, the third parameter is Scale By Order.  If this flag 
is set to true, then branches and foliage decrease in scale 
more dramatically based on their order.  This flag can be a 
bit unpredictable on the generated tree structure.  However, 
in general, setting this flag to true will prevent trees from 
getting too “puffy” and cloud-like.  Additionally, setting 
the flag to true will generally result in a slimmer, 
decreasing tree structure, like a willow bush, while setting 

to false will make trees more top-heavy and full, like many 
deciduous trees.  Another interesting effect of this 
parameter is the apparent age of the tree.  If set to true, the 
tree will often have the appearance of a younger seedling 
tree.  Setting the flag to false on the same tree will generate 
an older looking tree, or a tree that appears in full bloom 
(like spring or summer) as opposed to barren (like fall or 
winter).  An example is displayed in Figure 8. 
 
 

 
Figure 2: Different tree structures generated by changing 
Scale By Order flag.  Left tree: flag off, right tree: flag on. 

 
There actually exists a fourth global parameter that controls 
the tree structures generated.  This flag is Use Twist, and 
adds an extra element of random rotation to the branches.  
While this parameter does in fact change the tree structure, 
it mostly just randomizes the tree structure further, and 
does not have any real useful properties (such as changing 
the apparent age of the tree) other than that.  As such, it is 
not considered a vital parameter. 
 
 
 

 
Figure 3: Trees generated using the same local parameters, 
but with different states of the global flags.  Letting the 
four global flags (Use Branch Heights, Global Scaling, 
Scale By Order, and Use Twist) form a binary string 
representing the flag states, from the top left to bottom 
right, the flags vary from 0000 to 1111. 



The same tree has been used in the figures above to explain 
the apparent differences in the generated tree structures 
obtained by varying the global flags.  The effects of the 
parameters in combination with each other are displayed in 
Figure 9.  As can be seen in this figure, a wide variety of 
tree structures can be generated using the exact same local 
parameters, but with different states of the global flags.  
This is a very useful property of the simulator, and helps to 
generate trees with the same general structure, but with 
varying local structures within the overall global structure 
of the tree.  This can, for example, be used to generate 
different instances of the same variety of tree, or younger 
and older versions of the same tree.  A nice future 
extension to this software would be the ability to slightly 
change the stochastically generated values in order to 
produce even more instances of the same variety of tree, 
which show generally the same global structure, but with 
local differences that help define a single living tree entity. 
 
4. Conclusions and Future Research 
 
This paper has examined the theoretical background of 
fractals generated using L-systems and Iterated Function 
Systems.  Using such formalisms, we can describe 
botanical forms, including the forms of many trees.  While 
mathematical in nature, the tree forms generated using 
stochastic processes combined with fractal generation can 
be quite convincing, even approaching photo-realism.   The 
simulation software written for this implementation 
provides a good starting model for generating believable 
tree structures using fractal geometry.  The software 
utilizes stochastic processes to great effect, generating an 
incredible variety of convincing trees that have striking 
resemblance to living, breathing organic trees.  While not 
all trees generated using the software are attractive and 
believable, nonetheless the fact that any trees generated by 
the software show that fractals are useful tools in 
describing the botanical form of trees. 
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