
Simulating Trees using Fractals and L-Systems

Eric M Church and SK Semwal
Department of computer Science, University of Colorado, Colorado Springs

semwal@cs.uccs.edu

Abstract

Algorithmic simulation of natural environments in a
convincing manner presents an ongoing challenge to
modelers and developers. Of particular challenge in
simulating natural environments is the dynamic creation of
botanical forms, that is, plants. Many plants exhibit
complex structural forms that defy traditional geometric
patterns, and as such, are difficult to simulate in a
convincing way using traditional geometric and
mathematical constructs. Using statically modeled
techniques is cumbersome, especially when faced with the
challenge of producing multiple similar, yet unique plant
forms, such as found in a forest of trees. To adequately
recreate a convincing organic environment, some dynamic
and stochastic model is necessary. While the shape and
structures of plants, particularly trees, often appear
irregular and chaotic, they also exhibit a high degree of
self-similarity. Self-similarity suggests a recursive or
iterated approach to the dynamic modeling of botanical
forms. As such, constructs such as fractal geometry and
Lindenmayer systems seem prime candidates for the
generation of such forms. This paper explores the use of
fractal geometry as the basis of simulating the forms of
trees. Lindenmayer systems (L-Systems), iterated function
systems (IFS), their relationships, and their use in
simulating trees are discussed. The primary focus of this
paper is to present and explain the tree simulation software
written for our implementation by extending the Honda
model to include stochastic simulation.

Keywords: L-Systems, Plants.

1. Introduction

Algorithmic simulation of natural environments in a
convincing manner presents an ongoing challenge to
modelers and developers. The ultimate goal is to present a
computer-generated artificial environment that is
indistinguishable from a photographed natural landscape.
This paper explores the use of fractal geometry as the basis
of simulating the forms of trees. In the course of this
paper, I will investigate Lindenmayer systems (L-Systems),
iterated function systems (IFS), their relationships, and
their use in simulating trees. Finally, the primary focus of

this paper will be to present and explain the tree simulation
software written for this project.
Plant structures often show very complex, yet well-defined
structures. One of the primary factors that organize plant
structures and contributes to their beauty is the concept of
self-similarity, as characterized by Mandelbrot[7]: When
each piece of a shape is geometrically similar to the whole,
both the shape and the cascade that generate it are called
self-similar.

Simply defined, fractals are geometric patterns that exhibit
self-similarity on all scales, at any level of magnification.
Fractals achieve self-similarity by being recursive in nature
– each piece of a fractal is defined based upon other pieces
of the fractal. Because more detail may be revealed at any
level of magnification, fractals are often referred to as
"infinitely complex"[10]. A canonical example of fractal
geometry in action can be seen in the synthesis of the Koch
snowflake Rather, fractals simply need to display the same
type of structures on all scales. Most fractals exhibit
approximate self-similarity rather than precise self-
similarity, as seen in the Mandelbrot set.
Approximate self-similarity is a recurring theme in nature.
Many natural forms fit neatly into the paradigm of self-
similarity, including higher plants (such as trees), seashells,
clouds, lightning, river networks, and blood vessels). This
property is highly mathematical, and as such, provides a
mechanism for algorithmically defining or simulating
natural phenomena. Fractal geometry can be artificially
generated using a number of methods. Two methods are
discussed in the following sections: Lindenmayer Systems
and Iterated Function Systems.

2. Previous Research

Lindenmayer systems, or L-systems for short, are a
formalism introduced by Aristid Lindenmayer in 1968 as a
theoretical framework for studying the structure and
development of simple multicellular organisms. As
Lindenmayer was a biologist, his original motivation for
developing L-systems was in fact to model and study
biological forms and growth processes. Since their
introduction, L-systems have been successfully employed
to generate models of many natural forms, including higher
plants.

The parallel application of productions distinguishes L-
systems from other formalisms, such as Chomsky
grammars, which apply productions sequentially. Parallel
production application has an essential impact on the
formal properties of rewriting systems. For example, there
are languages that can be generated by context-free L-
systems but not by context-free Chomsky grammars.

The implicit parallelism of L-systems is directly based
upon how biological growth processes function (e.g.
multiple cells dividing in parallel during embryonic
development). The result is an autonomous, massively
parallel emergent system, where each agent is autonomous,
but the resulting system may show emergent patterns. The
first results in applying L-systems to graphical models were
published in 1974 by Frijters and Lindenmayer, and
Hogeweg and Hesper [7].

An Iterated Function System, of IFS for short, is any
system which recursively iterates a function or a collection
of arbitrary functions on some base object. Iterated
function systems are a common method used to generated
fractals. This method was popularized by Barnsley, based
on the theoretical work by Hutchison and Dekking [1].

IFS fractals can be defined on any number of
dimensions, but are commonly computed and rendered in
2D. An IFS fractal is a solution to a recursive set of
equations, and is made up of the union of several copies of
itself, each copy being transformed by a function. The
functions are normally contractive – they bring points
closer together and make shapes smaller. The shape of an
IFS fractal is made up of several possibly-overlapping
smaller copies of itself, each of which is also made up of
copies of itself, ad infinitum, which creates a self-similar
structure. As can be inferred from this discussion of L-
systems and iterated function systems, both formulations
are very similar, and can be used to generate fractals. In
fact, an L-system can be thought of as an iterated function
system whose functions are productions and inputs are
symbols from the alphabet of the system. Inversely, one
can think of an iterated function system as a non-
deterministic L-system whose alphabet is the set of all real
numbers, and whose productions are functions or geometric
transformations. While not strictly conforming to the
definitions of either, the two can be perceived in a very
similar manner. Many schemes for ordering branches in
axial trees have been suggested and implemented. One
such example is that proposed by Horton and Strahler,
which was originally proposed to model erosional
topologies and drainage basins for river networks. The
Horton-Strahler method can also be used as the basis for
generating botanical trees, as shown by Prusinkiewicz and
Lindenmayer. The generated tree structure appears very
organic. While this model is very simplistic, and only uses
binary branching, it manages to convey the sense of a
botanical tree quite well, and does not appear artificially
fabricated. Such trees were good first steps toward

achieving believable photo-realistic tree models, and served
as the basis for much future work in the area of botanical
modeling.

The plant kingdom is dominated by branching

structures. For modeling purposes, a mathematical
description of tree-like shapes and methods for generating
them is required. To begin searching for such descriptions,
we start in the realm of graph theory. In graph theory, a
rooted tree has edges that are directed and labeled. The
edge sequences form paths from an initial node, called the
root or base, to terminal or leaf nodes. In a botanical
context, these edges are referred to as branch segments. A
segment that is followed by at least one more segment in at
least one path is called an internode. A terminal segment is
called an apex.

An axial tree is a special type of rooted tree with the

botanically motivated notion of branch axis. At each node
of an axial tree, at most one outgoing straight segment is
distinguished. All remaining edges are called lateral or
side segments. A sequence of segments is called an axis if:

• the first segment in the sequence
originates at the root of the tree or as a lateral
segment at some node,

• each subsequent segment is a straight
segment, and

• the last segment is not followed by any
straight segment in the tree.

Together with all its descendants, an axis constitutes a

branch, which is itself an axial (sub)tree [7]. Within an
axial tree, axes and branches are ordered. The axis
originating at the root node of the tree has order zero. An
axis originating as a lateral segment of an n-order parent
axis has order n+1. The order of a branch is equal to the
order of its lowest-order or main axis. A graphical
representation of an axial tree is presented in Figure 1(a)
[7].

Figure 1(a): An axial tree

Many early models devised to simulate trees ignore
interactions between various elements of a growing
structure, as well as the interaction between the structure
and its environment. Although interactions clearly
influence the development of real plants, they also add
significant complexity to such models. The first such
simple model was developed by Honda, who studied tree
forms with the following basic assumptions:

• Tree segments are straight, and their girth is not
considered (i.e. the fact that branch diameter
decreases proportionally to its order is not
considered)

• A mother segment produces two daughter
segments in one branching process

• The lengths of the daughter segments are
shortened by constant ratios with respect to the
mother segment (r1 and r2)

• The mother segment and its two daughter
segments are coplanar, in a plane called the
branch plane, and the daughter segments form
constant angles (a1 and a2) with the mother
segment

• The branch plane is fixed with respect to the
direction of gravity so as to be closest to a
horizontal plane. More formally, the line
perpendicular to the mother segment and lying
within the branch plane is horizontal. The one
exception to this rule is for branches attached to
the main trunk. In this case, a constant divergence
angle, α, is maintained between consecutive lateral
segments.

Honda’s model geometry is displayed in Figure 1(b).

Figure 1(b): Geometry of Honda's simple tree
model

By varying numerical parameters inserted into his model,
Honda was able to produce a wide variety of tree-like
shapes (see Figure 2). With improvements and extensions,
Honda’s model has been applied to investigate the structure
of real trees. The most important extension to this model
was applied by Aono and Kunii, in which branch positions
are biased in a particular direction, in order to simulate the
effects of wind, phototropism, and gravity. These

extensions, and others subsequently applied, have
successfully improved Honda’s model to create even more
realistic models.

Figure 2: Trees generated using L-systems and
Honda's model parameters

While Honda’s models and those extensions immediately
afterward were completely deterministic, many later
modelers introduced stochastic methods to enhance the
realism of models as well. Stochastic mechanisms are
essential to the models developed by Reeves and Blau [10].

Employing stochastic processes, many different varieties of
tree can be simulated by employing a single algorithmic
model with different numeric parameters. Stochastic laws
characteristic to different tree varieties can be employed,
varying geometric parameters such as the length and
diameter of internodes, branching angles, number of
branches at intersections, etc. It is with this idea in mind
that I developed my initial model for simulating tree
structures, presented in the next section.

3. Implementation Results

The tree generation software written for this
implementation was developed in C++ in a semi object-
oriented manner. I debated using Java or C++, as I initially
wanted to develop a graphical user interface to allow the
user to dynamically change parameter values used in the
generation algorithms, and be able to instantly view results.
On a global scale, a tree is defined by:

• Radius of the main trunk
• Starting height (the height of the main trunk – all

other braches are scaled in some way based on this
starting height)

• Number of daughter branches coming from each
mother branch

On a local scale, each branch is defined by:

• Scaling factor (all branches are scaled according
to order)

• Height/length of a branch
• Lean angle (from the lower order branch)
• Rotation angle (around the lower order branch)

Simulator Global Parameters

Varying the number of daughter branches on a tree has a
significant impact on the resulting appearance of the tree.
Often, incrementing the number of daughter branches can
enhance the appearance of the resulting image. For
example, with the tree displayed in Figure 3, increasing the
number of branches in sequence makes the tree appear as if
it is growing, or as if the foliage is budding out after winter.
This is a very desirable result, but is unfortunately an often-
unpredictable result. In fact, in many cases, increasing the
number of branches may result in a loss of detail, which
can produce a very ugly, non-realistic looking tree. For
example, in Figure 4, we see that using five branches
creates an appealing tree structure reminiscent of an elm
tree. However, if we increase the number of branches to
six or seven, the resulting tree loses its detail, and is
overrun by the rendering of foliage. The resulting image
looks more like a cloud than a tree (in fact, this fractal
generator could easily be modified to generate cloud
structures!).

Figure 3: Increasing number of branches produces
appearance of tree growth or foliage budding, In this
sequence, the number of branches k is increased from 1 to

8. Note how the tree structure is the same, but the fullness
of the foliage increases.

Figure 4: Increasing number of branches sometimes results
in loss of detail and realism. In this image, the number of
daughter branches is varied from k = 5 to k = 7.

Since the simulator is based on stochastic processes, we
often get undesirable images. Excessive branches, and thus
excessive foliage, can overshadow the actual branching
structure of the tree, as we saw in Figure. In these cases,
the images begin to take on the appearance of a cloud or
ball of cotton, having a “puffy” quality. Additionally, the
generated trees may sometimes be too sparse or too
geometric in nature, revealing the mathematical
underpinnings of the model generation algorithm used. In
these cases, the resulting structures display too much
precise self-similarity, which gives an unnatural
appearance, as seen in the trees displayed in Figure 5.
Fortunately, these cases are rather rare, being seen
(empirically) in approximately 1% or less of all generated
trees. Furthermore, adding additional branches to such
trees will often change the structure of the tree enough to
make it appear natural.

Figure 5: Generated trees that show too much self-
similarity, revealing the mathematical underpinnings of the
IFS algorithm.

Beyond the number of daughter branches, the simulation
includes three global Boolean flags that affect the
structures of generated trees.

The first of these parameters is Use Branch Heights. If this
flag is set to true, then daughter branches will sprout at
random points from a mother branch. In nature, this is the

case with many conifers, such as spruce varieties. If this
flag is set to false, then daughter branches will all sprout
from the apex of their mother branch. In nature, this is the
case with many deciduous trees, such as elm and birch
varieties. The primary effect of changing this flag is to
create more “top-heavy” trees versus more irregular,
branch-distributed trees. An example is displayed in Figure
6.

Figure 6: Different tree structures generated by changing
Use Branch Heights flag. Left tree: flag off, right tree: flag
on.

The next parameter is Global Scaling. If this flag is set to
true, then all branches and foliage are scaled down based
on their order and a global scaling factor (which is stored in
the trunk branch). If set to false, then all branches are
scaled based on a scale stored in each branch, but which is
chosen randomly on each iteration. If set to true, this flag
tends to make trees more regular, and “tighter” in structure.
If set to false, the tree structures generated are more
irregular, but this can also cause excessive “puffiness” of
the tree foliage, making it again cloud-like. An example is
displayed in Figure 7.

Figure 1: Different tree structures generated by changing
Global Scaling flag. Left tree: flag off, right tree: flag on.

Finally, the third parameter is Scale By Order. If this flag
is set to true, then branches and foliage decrease in scale
more dramatically based on their order. This flag can be a
bit unpredictable on the generated tree structure. However,
in general, setting this flag to true will prevent trees from
getting too “puffy” and cloud-like. Additionally, setting
the flag to true will generally result in a slimmer,
decreasing tree structure, like a willow bush, while setting

to false will make trees more top-heavy and full, like many
deciduous trees. Another interesting effect of this
parameter is the apparent age of the tree. If set to true, the
tree will often have the appearance of a younger seedling
tree. Setting the flag to false on the same tree will generate
an older looking tree, or a tree that appears in full bloom
(like spring or summer) as opposed to barren (like fall or
winter). An example is displayed in Figure 8.

Figure 2: Different tree structures generated by changing
Scale By Order flag. Left tree: flag off, right tree: flag on.

There actually exists a fourth global parameter that controls
the tree structures generated. This flag is Use Twist, and
adds an extra element of random rotation to the branches.
While this parameter does in fact change the tree structure,
it mostly just randomizes the tree structure further, and
does not have any real useful properties (such as changing
the apparent age of the tree) other than that. As such, it is
not considered a vital parameter.

Figure 3: Trees generated using the same local parameters,
but with different states of the global flags. Letting the
four global flags (Use Branch Heights, Global Scaling,
Scale By Order, and Use Twist) form a binary string
representing the flag states, from the top left to bottom
right, the flags vary from 0000 to 1111.

The same tree has been used in the figures above to explain
the apparent differences in the generated tree structures
obtained by varying the global flags. The effects of the
parameters in combination with each other are displayed in
Figure 9. As can be seen in this figure, a wide variety of
tree structures can be generated using the exact same local
parameters, but with different states of the global flags.
This is a very useful property of the simulator, and helps to
generate trees with the same general structure, but with
varying local structures within the overall global structure
of the tree. This can, for example, be used to generate
different instances of the same variety of tree, or younger
and older versions of the same tree. A nice future
extension to this software would be the ability to slightly
change the stochastically generated values in order to
produce even more instances of the same variety of tree,
which show generally the same global structure, but with
local differences that help define a single living tree entity.

4. Conclusions and Future Research

This paper has examined the theoretical background of
fractals generated using L-systems and Iterated Function
Systems. Using such formalisms, we can describe
botanical forms, including the forms of many trees. While
mathematical in nature, the tree forms generated using
stochastic processes combined with fractal generation can
be quite convincing, even approaching photo-realism. The
simulation software written for this implementation
provides a good starting model for generating believable
tree structures using fractal geometry. The software
utilizes stochastic processes to great effect, generating an
incredible variety of convincing trees that have striking
resemblance to living, breathing organic trees. While not
all trees generated using the software are attractive and
believable, nonetheless the fact that any trees generated by
the software show that fractals are useful tools in
describing the botanical form of trees.

5. References

[1] Barnsley, M. Fractals Everywhere. Academic

Press, San Diego. 1993. Second edition.

[2] Bogomolny, A. The Collage Theorem. Cut the
Knot website. Online at http://www.cut-the-
knot.org/ctk/ifs.shtml. March, 1998.

[3] Dutil, N. Construction of Fractal Objects with
Iterated Function Systems. McGill School of
Computer Science website. Online at
http://www.cs.mcgill.ca/~ndutil/project.pdf. 2000.

[4] Frame, M., Mandelbrot, B., and Neger, N. Fractal
Geometry. Yale University website. Online at
http://classes.yale.edu/fractals/. 2006.

[5] Green, E. Fractals and Iterated Function Systems.
University of Wisconsin Computer Science website.
Online at
http://www.cs.wisc.edu/~ergreen/honors_thesis/cont
ents.html. 1998.

[6] Hickerson, K. Iterated Function Systems.
California Institute of Technology website. Online
at
http://www.ugcs.caltech.edu/~kevinh/iterated.html.
Date unknown.

[7] Honda, H. Description of the form of trees by the
parameters of the tree-like body: Effects of the
branching angle and the branch length on the shape
of the tree-like body. Journal of Theoretical
Biology, Issue 31. 1971.

[8] Lindenmayer, A. and Prusinkiewicz, P. The
Algorithmic Beauty of Plants. Springer-Verlag,
New York. 1996.

[9] Prusinkiewicz, P. et al. Algorithmic Botany:
Publications. Algorithmic Botany at the University
of Calgary website. Online at
http://algorithmicbotany.org/papers/. 2006.

[10] Reeves, W.T., and Blau, R. Approximate and
probabilistic algorithms for shading and rendering
structured particle systems. Proceedings of
SIGGRAPH ’85 (San Francisco, California, July
22-26, 1985) in Computer Graphics, 19, 3 (July
1985). ACM SIGGRAPH, New York, 1985.

[11] Wolfram, S. Fractals. Wolfram Research
Mathworld website. Online at
http://mathworld.wolfram.com/Fractal.html. 2006.

