
Fast Simulation of Lightning for 3D Games

Jeremy Bryan and SK Semwal
Department of computer Science, University of Colorado, Colorado Springs

semwal@eas.uccs.edu

Abstract

Simulating a lightning stroke supporting real time

interaction involves developing a model for the main
stroke, and then recursively generating similar models for
any branches that may occur. A number of methods have
been developed in this field, but most of the research has
concentrated on rendering algorithms. This thesis
generates volumetric data for a three dimensional lightning
stroke through the usage of cellular automata. The goal
was to develop a method where realistic lightning strokes
could be generated and displayed in real-time. An
algorithm, the complex lightning generation model has
been designed and implemented in C++. The algorithm
uses an automaton with simple rules based on random
numbers and probability. Results are presented that
compare our results to those created by other researchers in
this area.

Keywords: Simulation of lightning, Cellular Automata.

1. Introduction

Creating realistic models of physical phenomenon has
been the topic of many research papers in recent years.
Generating a lightning model in three-dimensional space
could affect a number of applications. Real-time lightning
generation could be expanded into the computer gaming
industry to enhance future games and effects. In addition,
the ability to direct the lightning stroke to any given point
could prove beneficial to the visual arts industry. In real-
life, a lightning stoke cannot happen without the presence
of a strong electrical field. This electrical field begins to
accelerate free ions in the atmosphere to a very high
velocity. These ions create a “stepped leader” which
propagates from the cloud towards ground-zero in discrete
steps. As the stepped leader approaches the ground, it
attracts an “upward positive leader.” As these two
electrical occurrences draw closer to one another, the
“attachment process” begins. The meeting of the upward
and downward leaders triggers the “return stroke” which
initiates the lightning flash we see and the thunder we hear.
The entire flash lasts about .5 seconds and carries
approximately 10,000 amps of current. Once the initial
return stroke has been established, there can be as many as
four or five subsequent strokes along the main channel.

This is where lightning gets its flickering effect.
[Reed1994]. Much of the research done in lightning
graphics has concentrated on ray-tracing a three-
dimensional model in order to produce a two dimensional
image. The benefit to creating our three-dimensional
model in real-time is being able to move the camera around
interactively. Our approach uses the concept of cellular
automata in order to propagate the lightning strokes
through the atmosphere. Cellular automata are dynamic
systems where volumes are created using cells that contain
values that change based on pre-determined rules and the
values of neighboring cells. Using this simple concept,
complex global patterns can emerge and accurate
representations are possible. We implement the cellular
automata concept by creating a three dimensional lattice to
represent the atmospheric space that we want the lightning
to propagate through. New algorithms were developed in
order to determine the path that the lightning will take. The
rules that have to be written for each cell in the automata to
perform this path selection are relatively simple and hence
easy to update or replace. [Kaushal2004] No control
points are needed to generate the stroke and branches.

2. Motivation

Reed et al [Reed1994] discussed a method for rendering
lightning using conventional ray-tracing. “Lightning is
represented as a collection of connected, finite length rays
in 3D space.” [Reed1994] used a simple method for
creating their 3D lightning model. Starting with a seed
segment in the clouds, new segments were spawned and
randomly rotated about the seed segment. One particular
website [UCCS] has done a fabulous job of describing a
lightning strike by using a computer simulation.
Unfortunately, this method is only presented for 2D
representations. Dobashi et al [Dobashi2001] (Figure 2)
used the identical modeling method described above.and
include scattering effects due to clouds and atmospheric
particles. The addition of these elements significantly
enhances the overall scene (Figure 2).

Figure 1 and 2

3. Cellular Automata

Neuman as formal models of self-reproducing
organisms [Sarkar2000]. Recently [Kaushal] have used
cellular automata in an algorithm for three dimensional
morphing. By looking at the atmosphere as a collection of
voxels and allowing the lightning leaders to propagate by
inspecting the local neighborhood, we could avoid the use
of global controls. The cellular automaton which was used
in our design has the following characteristics: (a) It is a
three-dimensional lattice. (b) The dimension of the lattice
is that of the volume. (c) Each cell can either be empty or
contain a segment of lightning stroke. (d) The position of
the cell in the lattice has no effect on its behavior. Hence,
all cells are equal. The cellular automaton is non-circular.

We wanted to control the path of the lightning, or at
least the point where the lightning strikes the ground. This
would be an attractive feature in 3D games simulation of
lightning. For example, a game may require that the car be
hit, so the lightning needs to strike where the car is. We
give users a targeting cursor which they are free to move
about the environment using the arrow keys on the
keyboard. The location of this cursor determines the
starting point for our lightning structure. The cell that
contains this point is added to a linked list data structure so
that we may reference the data later. At this point, the
algorithm must decide which cell to propagate the lightning
into next. As discussed in the introduction, every cell in
the cellular automaton has an associated r value that
represents miscellaneous atmospheric conditions. Using
this value, the electric field for each neighboring cell can be
calculated using Maxwell’s Equations. Upon finding the
neighbor with the largest electrical field, we add that cell’s
coordinates into the linked list.

In real life, lightning progresses through the atmosphere
in discrete steps. To model this behavior, the algorithm
creates a random number to represent the length of a given
segment. The segment continues to travel in its current
direction through the given number of cells. The electrical
field calculation does not have to take place until the
current segment is terminated, allowing the lightning to
have a wide range of deviations from it starting point.
Otherwise, it would just appear to be a straight, wiggly
line.
This process continues until a lightning segment reaches
the ceiling, or the maximum altitude for our simulation. At
this point, we have a linked list that contains objects we
named CVoxels. A CVoxel represents a voxel in the
cellular automata. It contains x, y, and z coordinates, an r
value, and a null header for another linked list. The
additional linked list is needed because any given cell can
be the parent or root for a branch that is to be generated.
This data represents our main stroke to be displayed.

Once the main stroke calculations have been completed,

we need to generate branches. To accomplish this, we
iterate through the main stroke data and use simple
probability to decide whether or not the current cell we are
looking at is going to be the parent of a new branch. In
reality, the likelihood of a branch being spawned increases
as the distance to the ground decreases. In other terms, the
probability of a branch being generated is inversely
proportional to the distance we currently are from the
ground. This behavior was implemented and the results
were not good. There were not enough branches at higher
elevations, and the multitude of branches near the ground
resembled the root network of a tree. Therefore, we
reverted back to using a uniformly distributed probability
function so that the chances of branching were equal at any
point on the main stroke.

PSEUDOCODE
Proc GenerateComplexLightning

// Load the starting coordinates
list.add target.coords

while height <= MAX_ALTITUDE
Assign r to 26 neighbor cells if they do not have one
Calculate E for 26 neighbor cells if not done previously
Find maximum E
list.add maxE.coords
end while

for each voxel in list
 temp = rand()
 if temp < BRANCH_PROBABILITY then
 GenerateComplexBranch()
 end if end for
end proc

4. Complex Branch Generation

Branches can occur off the main stroke as well as off other
branches. We implemented some arbitrary maximum
branch depth in the interest of keep the algorithm running
fast. In order to generate branches, we must traverse the
data structure that contains the data for the main stroke.
During that traversal, we use simple random numbers and
probability to determine if a stroke segment needs to spawn
a branch. If it is determined that a branch needs to be
created, then the appropriate function is called and branch
generation begins. The actual creation of the branch is
done identically to that of the main stroke. However, there
is a major addition to the branch method that needs to be
noted. Branches do not necessarily need to reach ground-
zero. They can terminate in the atmosphere. To achieve
this feature, a random number is created at the beginning to
represent this branch’s maximum length. Branch creation
is terminated if it reaches its maximum length or when it
encounters ground-zero.

PSEUDOCODE
Proc GenerateComplexBranch

BranchLength = rand()

while (BranchHeight >= 0 And BranchLength >=0)

Assign r to neighbor cells if they do not have one
Calculate E for cells if not done previously
Find maximum E
BranchList.add maxE.coords
end while

for each coord in BranchList.coords

 if (rand() >= BRANCH_PROBABILITY) then

 GenerateComplexBranch()

 end if

end for

5. The Lightning
The most dynamic part of the program is the ability to

create simulated lightning strikes at will. Initially, there
was some concern about the time lag between pressing the
space bar and displaying the stroke. This proved to be an
unnecessary concern. For any game (Figures 4-6) to be
interesting, you have to have some objective for the user to
accomplish. Our simple objective is to show explosion.

Figures 3 and 4

To render the car the program made use of OpenGL’s
display list capabilities. The car’s body, cab, wheels, and
bolts are all rendered at the axis origin. The body and cab
are just two rectangular boxes with the smaller one,
representing the cab, laid atop the other. Four triangle fans
are drawn and translated accordingly to appear as wheels.
Five bolts are drawn on each wheel by creating a circle
which only has five segments so that it looks like a
hexagon.In order for the car to look like it was actually
driving along the terrain, it is important for it to rotate
realistically. It must rotate about the y-axis to ensure the
nose of the car is pointed in the direction of travel (Figure
4). Once the car has been drawn and undergone rotational
transforms, it needs to be translated to its current position
on the terrain. The car just follows a simple circular path
so, based on its velocity, the next location on the circle is
calculated and then the car is translated. In order for the
user to be able to determine where they want the lightning
to strike, they must have some mechanism available to
them to designate the desired strike point. This is
accomplished through the use of a crosshairs target that can

be moved about the terrain with the use of the keyboard
arrows.

Figures 5 and 6
 Maintaining the position of the crosshairs is
simple. The program keeps track of the current x and z
coordinates and updates them accordingly upon user input.
The target varies in the y-direction based on the height of
the terrain it is currently above. This allows the target to
“hug” the terrain as it moves about. Success must be
rewarded. When the user successfully targets the car and a
collision between the car and lightning is detected, some
sort of stimulus must be provided to inform the gamer of
that status. We spent a considerable amount of time
experimenting with different explosion effects. Particle
engines, light sources, and bitmaps were all looked at and
discarded for various reasons. In the interest of simplicity,
the explosion is modeled with expanding rectangular planes
that change color (Figure 6). Three rectangles, parallel to
the coordinate axes, are used to create the effect.
5. Results

From the standpoint of attempting to create an
entertaining game environment, we believe our results
turned out very favorably. When the actual lightning
stroke is evaluated, we encounter mixed results. The main
stroke tends to look good, although not extremely dynamic
from one strike to the next. On the other hand, the
branches seem to be a little less believable. The algorithms
were run on a standard desktop PC with a single Pentium
IV processor running at 3.39 GHz and 1.0 GB of RAM.
We created a simple survey that contained four black and
white pictures of different lightning strokes created by
different researchers (Figure 7). The first choice was a 3D
model created by Andrew Glassner. [Glassner1999] The
second image was from our work. The third picture was
from the Reed publication. [Reed1994] Finally, the fourth
choice was taken from Dobashi’s results. [Dobashi2001]
The survey instructed the participants to rank the pictures
from 1 to 4 based on the realism of the shape, with 1 being
the best and 4 being the worst. The following table
illustrates the survey results:
 Glassner BR_S Reed Dobashi

Mean 3.171875 2.25 2.28125 2.296875
Median 4 2 2.5 2
Mode 4 1 3 2
StdDev 0.96863 1.140871 1.075982 1.03402
Table 1

 As you can see from the data in Table 1, the
results were close. Our model had an average score of 2.25

while the Ross’ scored 2.28 and Dobashi’s came in at 2.29.
These results are extremely similar. While this data does
not suggest that our model is any better than the other two,
it does suggest that ours is at least comparable. Our sample
size was 64. In order to get a more accurate representation
the sample size should probably be increased significantly.
6. Conclusions and Future Research

We have shown that real-time support of a realistic
lightning strike is achievable using our algorithm. The
lightning strokes can be created through the use of cellular
automata and work well by creating acceptable stroke
sequences during game play. There are several ways in
which the lightning generation quality could be improved.
For example, more efforts are needed for lightning up the
sky. The relationship of branches with the main branch
could also be improved as the branches don’t seem to
propagate away from their parent enough to emulate true
lightning. We would also like to add the capability in our
implementation where the uses can select certain voxels in
space that they want the lightning to pass through. This
feature would allow users to shape the lightning as they see
fit.
We studied current research in computer lightning models
and rendering and concluded that a one major problem is
the need for real-time model generation as opposed to ray-
traced images. We discuss a new algorithm, making use of
a simple cellular automaton. The concept of the algorithm
is relatively simple, but that does not preclude it from
producing acceptable results. Comparing our results to
those from other researchers is difficult. They had an
unlimited amount of time to produce their model where we
were attempting to display our results in real-time. Given
this difference, we feel like our results are extremely
satisfying. We have proven that the use of cellular
automata is a viable approach to modeling lightning in
three dimensions. The application of this research could

empower 3D games and visual arts industries. The project
implementation was done in C++ and several different
models were compared to ours. Analysis of the results
shows that our algorithm is ideal for game applications
because of the support of interactivity and produces good
results.
7. References

[Reed 1994] Todd Reed and Brian Wyvill, ”Visual
Simulation of Lightning” International Conference on
Computer Graphics and Interactive Techniques,
Proceedings of the 21st annual conference on Computer
Graphics and Interactive Techniques Pages: 359 – 364,
1994
[Dobashi2001] Yoshinori Dobashi, Tsuyoshi Yamamoto,
and Tomoyuki Nishita ”Efficient Rendering of Lightning
Taking into Account Scattering Effects due to Cloud and
Atmospheric Particles” Proceedings of the 9th Pacific
Conference on Computer Graphics and Applications,
Pages: 390, 2001
[Droun2003] Druon S, Crosnier A, Brigandat L “Efficient
Cellular Automata for 2D / 3D Free-Form Modeling”
Journal of WSCG (Winter School of Computer Graphics)
Volume: 11, Number 1, Pages: 102-108, 2003
[Sarkar2000] Palash Sarkar “A brief history of cellular
automata” ACM Computing Surveys (CSUR) Volume 32 ,
Issue 1 ,Pages: 80 – 107, 2000
[UCCS] “Simulating Lightning”
http://www.uccs.edu/~physics/simulations/lightning.html
[Glassner1999] Andrew Glassner “The Digital
Ceraunoscope: Synthetic Thunder and Lightning”
Microsoft Resarch Technical Report MSR-TR-99-17;Year
of Publication: 1999.
[Kaushal2005] SK Semwal and K Chandrashekhar, Cellular
Automata for 3D Morphing of Volume Data, 13th International
Conference in Central Europe on Computer Graphics,
Visuzliation, and Computer Vision, 2005, pp. 1-8, 20

Figure 7: Four images – Glassner, BR-S, Reed,
Dobashi

