FINAL EXAM: Introduction to Computer Graphics CS480/580

Sudhanshu Kumar Semwal Department of Computer Science, Phone: 262-3545

May 9th, 2006

Your NAME:

Do all FIVE questions. If you have any questions, please raise your hand and I will get to you. If you need more space to write the answer then use the back of the page.

Question 1 (a): (10 points) (Hidden Surface Removal) Briefly explain the painters algorithm. Explain how the piercing polygons will be handled. Are they a special case that must be treated explicitly, or are they accommodated by the basic algorithms. Explain your answer.

Question 1 (b): (15 points) (DCEL) For the following planar graph in Fig (a) $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, give the doubly-connected-edge-list (DCEL) data structure.

Can the DCEL data structure handle the graph in Figure (b)? Why or why not? Explain your answer.

Question 2 (a): (5 points) (Continuity) What do we mean by C^{0} and C^{1} parametric continuity? How do they differ from G^{0} and G^{1} geometric continuity? Give examples of the curves.

Question 2 (b): (15 points) (Joining Curves) Equations of two curves Q and R are given as follows:
$Q(t)=(1-t)^{3} P_{1}+\left(3 t^{3}-6 t^{2}+4\right) P_{2}+\left(-3 t^{3}+3 t^{2}+3 t+1\right) P_{3}+t^{3} P_{4}$. $R(t)=(1-t)^{3} P_{2}+\left(3 t^{3}-6 t^{2}+4\right) P_{3}+\left(-3 t^{3}+3 t^{2}+3 t+1\right) P_{4}+t^{3} P_{5}$.

For both the curves $0 \leq t \leq 1$.
Are both the curves C^{0} continuous at $\mathrm{Q}(1)$ and $\mathrm{R}(0)$? Why or why not? Are they both C^{1} and G^{1} continuous at $\mathrm{Q}(1)$ and $\mathrm{R}(0)$? Are they both C^{2} and G^{2} continuous at $\mathrm{Q}(1)$ and $\mathrm{R}(0)$? Why or why not? Explain your answers.

Question 3 (a): (10 points) (Gouraud and Phong Shading Models) Explain the Gouraud and Phong Shading models for polygons.

Question 3 (b): (5 points) (Gouraud and Phong Shading Models) Give an example where both (Gouraud and Phong) shading models result in unsatisfactory shading.

Question 4 (a): (5 points) (Phong Model) Calculate the reflection vector in terms of N and L as shown in the following figure.

Question 4 (b): (15 points) The intensity (I) at a point due to diffuse (Lambertian) reflection and ambient light can be estimated using the following equation:

$$
\mathrm{I}=I_{a} k_{a}+f_{A} I_{p} k_{d}(\bar{N} \cdot \bar{L}) .
$$

Explain the terms in the above equation. Given the constants $I_{a}=2, k_{a}$ $=.2, I_{p}=10, k_{d}=.4$, and one light source at point $\mathrm{p}=(1,1)$, and $f_{A}=$ Inverse of the distance of point B from the location of light source (See the 2D Figure below). Calculate the intensity at point B of the figure using the above information. What will be the intensity at point B using the above equation when the light source is moved from point A to C as shown in the Figure below.

Question 5 (a): (10 points) (Ray Tracing algorithm) Explain the basic idea of the ray tracing algorithm.

Question 5 (b): (10 points) (Radiosity equation interpretation) Given the following equation:

$$
B_{i}=E_{i}+\rho_{i} \sum_{i=1}^{n} B_{j} F_{j->i} \frac{A_{j}}{A_{i}}
$$

Eplain how the above equation captures the basic idea of radiosity.

