
Mayday: Distributed Filtering for Internet Services

David G. Andersen
MIT Laboratory for Computer Science

dga@nms.lcs.mit.edu

Abstract

Mayday is an architecture that combines overlay net-
works with lightweight packet filtering to defend against
denial of service attacks. The overlay nodes perform
client authentication and protocol verification, and then
relay the requests to a protected server. The server is
protected from outside attack by simple packet filtering
rules that can be efficiently deployed even in backbone
routers.

Mayday generalizes earlier work on Secure Overlay
Services. Mayday improves upon this prior work by sep-
arating the overlay routing and the filtering, and provid-
ing a more powerful set of choices for each. Through
this generalization, Mayday supports several different
schemes that provide different balances of security and
performance, continuum, and supports mechanisms that
achieve better security or better performance than earlier
systems. To evaluate both Mayday and previous work,
we present several practical attacks, two of them novel,
that are effective against filtering-based systems.

1 Introduction

Denial of service (DoS) attacks are potentially devastat-
ing to the victim and require little technical sophistica-
tion or risk exposure on the part of the attacker. These
attacks typically attempt to flood a target with traffic to
waste network bandwidth or server resources. To ob-
tain the network bandwidth necessary to attack well-
connected Internet services, attackers often launch Dis-
tributed DoS (DDoS) attacks, where tens to thousands
of hosts concurrently direct traffic at a target. The fre-
quency of these attacks is startling—one analysis of at-

This research was sponsored by the Defense Advanced Research
Projects Agency (DARPA) and the Space and Naval Warfare Systems
Center, San Diego, under contract N66001-00-1-8933. David G. An-
dersen is supported by a Microsoft Graduate Fellowship.

tack “backscatter” suggests that hundreds of these at-
tacks take place each day [19]. DDoS attacks no longer
require a high degree of sophistication. So-called “rootk-
its” are available in binary form for a variety of plat-
forms, and can be deployed using the latest off-the-shelf
exploits. Even worm programs have been used to launch
DDoS attacks [7].

While technical measures have been developed to pre-
vent [12, 20, 15] and trace [27, 10, 24] DDoS attacks,
most of these measures require wide-spread adoption to
be successful. Unfortunately, even the simplest of these
measures, filtering to prevent IP address spoofing, is not
globally deployed despite years of advocacy. While there
is some interim benefit from the incremental deployment
of earlier measures, they lack the deployment incentive
of a solution that provides immediate relief to the de-
ployer.

An ideal DDoS prevention system stops attacks as
close to their source as possible. Unfortunately, the tar-
gets of attacks have the most incentive to deploy solu-
tions, and deployment is easiest inside one’s own net-
work. Intrusive systems that perform rate-limiting or that
require router modifications hold promise, but most In-
ternet Service Providers (ISPs) are unwilling or unable
to deploy these solutions in the places where they would
be most effective—in their core or at their borders with
other ISPs.

We study a set of solutions that are more resource-
intensive to deploy, because they require overlay nodes,
but that are easily understood and implemented by ISPs
using conventional routers. Trace-based reactive solu-
tions impose no overhead during normal operation, but
suffer from a time lag before recovering from an at-
tack. Our solution, an architecture called Mayday, pro-
vides pro-active protection against DDoS attacks, impos-
ing overhead on all transactions to actively prevent at-
tacks from reaching the server. Mayday generalizes the
Secure Overlay Services (SOS) approach [18]. Mayday



uses a distributed set of overlay nodes that are trusted
(or semi-trusted) to distinguish legitimate traffic from at-
tack traffic. To protect a server from DDoS traffic, May-
day prevents general Internet hosts from communicat-
ing directly with the server by imposing a router-based,
network-layer filter ring around the server. Instead,
clients communicate with the overlay nodes, who verify
that the client is permitted to use the service. These over-
lay nodes then use an easily implemented lightweight
authenticator, such as sending the traffic to the cor-
rect TCP port on the server, to get through the filter
ring. Within this framework, SOS represents a partic-
ular choice of authenticator and overlay routing, using
distributed hash table lookups to route between overlay
nodes, and using the source address of the overlay node
as the authenticator. We explore how different organi-
zations of the authentication agents operate under var-
ious threat models, and present several lightweight au-
thenticators that provide improved levels of defense over
source address authentication.

Finally, we define several threat models with which
we evaluate pro-active DDoS protection. Within these
threat models, we present several attacks, including a
novel scanning method we call next-hop scanning, that
are effective against SOS, certain variants of Mayday,
and against conventional router-based filtering of DDoS
attacks.

2 Related Work

DoS flooding attacks have been well studied in the recent
literature. Most work in this area has been aimed at either
preventing attacks by filtering, or at detecting attacks and
tracing them back to their origin. Overlay networks have
been used in many contexts to speed deployment of new
protocols and new functionality.

2.1 Attack Prevention

The most basic defense against anonymous DoS attacks
is ingress filtering [11]. Ingress filtering is increas-
ingly deployed at the edge of the network, but its de-
ployment is limited by router resources and operator re-
sources. Ingress filtering also interferes with Mobile IP
techniques and split communication systems such as uni-
directional satellite systems. Despite these limitations,
in time, address filtering should become widespread, en-
hanced by mechanisms such as Cisco’s Reverse Path Fil-
tering. However, ingress filtering is most effective at the
edge; deployment in the core, even if it becomes techni-
cally feasible, is not completely effective [20].

Mazu Networks [1] and Arbor Networks [4] provide

DoS detection and prevention by creating models of
“normal” traffic and detecting traffic that violates the
model. If an attack is detected, Mazu’s tools suggest ac-
cess lists for routers. If the Mazu box is installed in-line
with the network, it can shape traffic to enforce a pre-
viously good model. Asta Networks’ Vantage analyzes
NetFlow data to detect DoS attacks on high-speed links
and suggest access lists to staunch the flood [5]. These
access lists must be deployed manually, and provide re-
active, not proactive, assistance to the victim of a DoS
attack. Because these schemes result in access lists be-
ing applied at routers, many of the probing attacks we
discuss in Section 4 can be used against these solutions
as well.

Pushback provides a mechanism for pushing rate-
limiting filters to the edges of an ISP’s network [15]. If
attack packets can be distinguished from legitimate traf-
fic (as in the case of a SYN flood), Pushback’s mecha-
nisms can effectively control a DoS attack. In the gen-
eral case, Pushback will also rate-limit valid traffic. If
the source of the traffic is widely distributed over the net-
work, Pushback is less effective. In any event, Pushback
is effective at reducing collateral damage to other clients
and servers that share links with the DoS target, but this
scheme requires new capabilities of routers, slowing de-
ployment.

2.2 Attack Detection

ICMP traceback messages were proposed as a first way
of tracing the origins of packets [6]. Under this scheme,
routers would periodically send an ICMP message to the
destination of a packet. This message would tell the
recipient the link on which the packet arrived and left,
allowing the recipient of a sufficient quantity of ICMP
traceback messages to determine the path taken by the
packets.

To avoid out-of-band notifications, Savage et al. use
probabilistic inline packet marking to allow victims to
trace attack packets back to their source [24]. In this
scheme, routers occasionally note in the packet the link
the packet has traversed; after sufficient packets have
been received by the victim host, it can reconstruct the
full path taken by the packets. Dean et al., treat the
path reconstruction problem as an algebraic coding prob-
lem [10]. These refinements improve the performance
and robustness of the packet marking, but the underlying
technique is similar to the original.

The probabilistic traceback schemes require that a
large amount of data be received by a victim before path
reconstruction can be performed. To allow traceback of
even a single packet, the Source Path Isolation Engine



(SPIE) system records the path taken by every packet that
flows through a router [27]. SPIE uses a dense bloom-
filter encoding to store this data efficiently and at high
speeds. While it provides exceptional flexibility, SPIE
requires extensive hardware support.

2.3 Overlay Networks

Overlay networks have long been used to deploy new
features. Most relevant to this work are those projects
that used overlays to provide improved performance or
reliability. The Detour [23] study noted that re-routing
packets between hosts could often provide better loss, la-
tency, and throughput than the direct Internet path. The
RON project experimentally confirmed the Detour ob-
servations, and showed that an overlay network that per-
forms its own network measurements can provide im-
proved reliability [2].

Content Delivery Networks such as Akamai [31], and
Cisco’s Overcast [16] use overlay networks to provide
faster service to clients by caching or eliminating redun-
dant data transmission. The ideas behind these networks
would integrate well with Mayday; in fact, the Akamai
network of a few thousand distributed nodes seems like
an ideal environment in which to deploy a Mayday-like
system.

Mixnet-based anonymizing overlays like Tarzan [13]
are designed to prevent observers from determining the
identity of communicating hosts. The principles used
in these overlays, primarily Chaumian Mixnets [8], can
be directly used in a system such as Mayday to provide
greater protection against certain adversaries. We discuss
this further in Section 3.5.

3 Design

The design of Mayday evolved from one question: Using
existing network capabilities, how do we protect a server
from DDoS attacks while ensuring that legitimate clients
can still use the services it provides? To answer this ques-
tion, we restricted ourselves to using only routers with
limited packet filtering abilities, or more powerful hosts
that aren’t on the forwarding path. We wish to provide
protection against realistic attackers who control tens or
thousands of machines, not malicious network operators
or governments. Before exploring the design of our sys-
tem, we define these attackers and the capabilities they
possess. For this discussion, the server is a centralized
resource that is required in order to provide some ser-
vice. Clients are authorized to use the service, but are not
trusted to communicate directly with the server because
clients are more numerous and more prone to compro-

mise. Overlay nodes are hosts scattered around the Inter-
net that act as intermediaries between the clients and the
server.

3.1 Attacker Capabilities

DDoS attacks can be mounted with a relatively low de-
gree of technical sophistication. We focus exclusively on
flooding attacks, and not on attacks that could crash ser-
vices with incorrect data. (Using the overlay nodes as
protocol verifying agents could prevent some data-based
attacks as well.) The simplest flooding attacks (which
may be effective if launched from a well-connected site)
require only a single command such as ping. Many so-
phisticated attacks come pre-packaged with installation
scripts and detailed instructions, and can often be used
by people who may not even know how to program. The
greatest threat to many Internet services comes from rel-
atively simple attacks because of their ease of use and
ready accessibility. We therefore concentrate on simpler
attacks.

We assume that all attackers can send a large amount
of data in arbitrary formats from forged source addresses
of their choice. Ingress filtering may reduce the number
of hosts with this capability, but is unlikely to eliminate
all of them. Certain attackers may have more resources
available, may be able to sniff traffic at points in the
network, and may even be able to compromise overlay
nodes. We consider the following classes of attackers:

The Client Eavesdropper can view the traffic going
to and from one or more clients, but cannot see traffic
that has reached an overlay node or the target.

The Legitimate Client Attacker is authorized to use
the service, or is in control of an authorized client.

The Random Eavesdropper can monitor the traffic
going to one or more overlay nodes, but cannot choose
which overlay nodes are watched.

The Targeted Eavesdropper can view the traffic go-
ing to and from any particular overlay node, but not all
overlay nodes at once (i.e., changing monitored nodes
requires non-negligible time).

The Random Compromise Attacker can compro-
mise one or more randomly chosen overlay nodes.

The Targeted Compromise Attacker can select a
particular overlay node, or a series of them, and obtain
full control of the node.

We ignore certain attackers. For instance, an attacker
capable of watching all traffic in the network, or com-
promising all nodes concurrently, is too powerful for our
model to resist. The difference between these global at-
tackers and the targeted eavesdropper or compromiser is



one of time and effort. Given sufficient time, the targeted
compromise attacker may be able to control all nodes,
but during this time the service provider may counteract
the offense.

3.2 Mayday Architecture

The Mayday architecture assumes that some entity—
perhaps the server’s ISP—has routers around the server
that provide its Internet connectivity, and is willing to
perform some filtering at those routers on behalf of its
client. We term this set of routers the filter ring. While
the ring could be implemented by filtering at the router
closest to the server, this would provide little attack pro-
tection, because the traffic would consume the limited
bandwidth close to the server. Pushing the filter ring too
far from the server increases the chance that nodes in-
side the filter can be compromised. Instead, the ring is
best implemented near the core-edge boundary, where all
traffic to the server passes through at least one filtering
router, but before the network bottlenecks become vul-
nerable to attack. To provide effective protection against
large attacks, this filtering must be lightweight enough to
be implemented in high-speed core routers.

The requirement for a fast router implementation rules
out certain design choices. One obvious mechanism
would be for clients to use IPSec to authenticate them-
selves to a router in the filter ring, at which point the
router would pass the client’s traffic through. If a service
provider is capable of providing this service, along with
rate limiting, a server should be well-protected from DoS
attacks.

The Mayday architecture is designed to work with
more limited routers. Modern routers can perform rout-
ing lookups very quickly, and many (but not all) can
perform a few packet filtering operations at line speed.
Clients, however, may be many in number, or the set of
clients may change dynamically. Client verification may
involve database lookups or other heavyweight mech-
anisms. Access lists in core routers are updated via
router configuration changes, so network operators are
not likely to favor a solution that requires frequent up-
dates. Creating an access list of authorized clients is
probably not practical due to client mobility and the
sheer size of such a list; we need filter keys that change
less often. We term these filter keys the lightweight au-
thenticators.

To handle the joint requirements of client authentica-
tion and feasible implementation, we add a fourth type of
party, the overlay nodes. Clients talk directly to an over-
lay node, the ingress node, not to the server or filter ring.
Some of the overlay nodes, the egress nodes, can talk to

Routing

Clients

Nodes
Server

Overlay

Authenticator
Client

Authenticator
Lightweight

Filter Ring

Overlay

����

Figure 1: The Mayday architecture. Clients commu-
nicate with overlay nodes using an application-defined
client authenticator. Overlay nodes authenticate the
clients and perform protocol verification, and then relay
requests through the filter ring using a lightweight au-
thenticator. The server handles requests once they pass
through the network-layer filter ring.

the server through the filter ring. If the ingress node is not
also an egress node, the request must be routed through
the overlay to an egress node. Figure 1 shows the general
Mayday architecture.

Using this architecture, a designer can make several
choices to trade off security, performance, and ease of
deployment. First, the designer can first pick one of sev-
eral overlay routing methods: more secure overlay rout-
ing techniques reduce the impact of compromised over-
lay nodes, but increase request latency. Second, the de-
signer can pick one of several lightweight authenticators,
such as source address or UDP/TCP port number. The
choice of authenticator affects both security and the over-
lay routing techniques that can be used. The security and
performance of the resulting system depend on the com-
bination of authenticator and overlay routing. We discuss
the properties of these combinations in Section 3.6 after
describing the individual mechanisms.

3.3 Client Authentication

Clients must authenticate themselves to the overlay be-
fore they are allowed to access the server. The nature
of the client authentication depends on the service being
protected. If Mayday is used to protect a small, private
service, clients could be authenticated using strong cryp-
tographic verification. In contrast, if Mayday is protect-
ing a large, public service such as Yahoo!, client authen-
tication may be only a database verification of the user’s
password. Mayday leaves client authentication up to the



system designer, since it is inextricably linked to the spe-
cific application being protected.

3.4 Lightweight Authenticators

Mayday uses lightweight authentication tokens to vali-
date communication between the overlay node(s) and the
server. Mayday requires its tokens be supported with low
overhead by commodity routers. Modern routers can fil-
ter on a variety of elements in the packet header, such as
source and destination address, UDP or TCP port num-
ber, and so on. Several of these fields can be used as
authenticators. All “source” addresses and ports refer to
the egress node; “destination” addresses and ports refer
to the server. Each of these fields has its own strengths
and weaknesses as a lightweight authenticator:

� Egress Source Address: Source filtering is well
understood by network operators, and gains effec-
tiveness when other providers deploy IP spoofing
prevention. It limits the number of overlay nodes
that can communicate with the server. SOS uses
this authenticator.

� Server Destination Port: The UDP or TCP desti-
nation port is an obvious key to use. If the over-
lay network has fewer than 65,000 nodes, this key
provides a larger space in which an attacker must
search to get through the firewall. It allows multiple
authorized sources to communicate with the server.
In other respects, it is similar to source address au-
thentication. The source port can also be used, but
this limits the total number of concurrent connec-
tions to the server.

� Server Destination Address: If the server has a
variety of addresses that it can use, the destina-
tion address can be used as an authentication token.
For example, if a server is allocated the netblock
192.168.0.0/24, its ISP would announce this entire
block to the world. Internally, the server would only
announce a single IP address to its ISP, and send
a null route for the remaining addresses. Thus, a
packet to the correct IP would go to the server, but
packets to the other IP addresses would be dropped
at the border routers. The advantage of this mech-
anism is that it requires no active support from the
ISP to change filters, and uses the fast routing mech-
anisms in routers, instead of possibly slower filter-
ing mechanisms1. Because it uses standard rout-
ing mechanisms, updates could be pushed out much

1An interesting manual use of destination filtering occurred during
the Code Red worm in 2001. The worm was designed to flood the
IP address of www.whitehouse.gov, but had a hardcoded address,
not a DNS lookup. The site administrators changed the service address

more rapidly than router reconfigurations for filter
changes. We term this effect agility, and discuss
later how it can provide freshness to authenticators.
The disadvantage is that it wastes address space (a
problem solved by IPv6, though IPv6 has its own
deployment delays). Destination address filtering
is unique in that it can be changed very dynami-
cally by routing updates, even in a large network
of routers.

� Other header fields: Some routers can filter on at-
tributes like protocol, packet size, and fragment off-
set. Each of these fields can be manipulated by the
egress node to act as a lightweight authenticator, but
they require lower-level hacks to set. While they
could be useful for providing additional bits of key
space, they are less usable than port or address fil-
tering, except to provide some security through ob-
scurity.

� User-defined fields: Firewalls can filter on user-
defined fields inside packets. This approach pro-
vides a huge keyspace and source address flexibil-
ity, but few core routers support this feature.

Authentication tokens can be combined. Using both
source address and port verification provides a stronger
authenticator than source address alone, making some of
the attacks we discuss in section 4 difficult to pull off.

3.5 Overlay Routing

The choice of overlay routing can reduce the number
of overlay nodes that have direct access to the server,
thus providing increased security. These choices can
range from direct routing, in which every overlay node
can directly access the server (i.e. be an egress node),
to Mixnet-style routing (“onion routing”), in which the
other overlay nodes do not know which is the egress
node [13].

The choice of lightweight authenticator affects which
overlay routing techniques can be used. For instance, us-
ing source address authentication with proximity routing
is extremely weak, because an attacker already knows
the IP addresses of the overlay nodes, and any of those
addresses can pass the filter.

� Proximity Routing: By picking the overlay node
nearest the client (similar to Akamai and other
CDNs [31]) or the node that provides the best per-
formance between client and server [2, 16], the
system can provide high performance with low

and filtered the old address to successfully protect themselves from the
attack.



overhead. In fact, when combined with overlay-
level caching, this design could provide better per-
formance than direct client-server communication.
Proximity routing requires that all overlay nodes
possess the lightweight authenticator.

� Singly-Indirect Routing: The ingress node passes
the message directly to the egress node, which sends
the message to the server. All overlay nodes know
the identity of the egress node.

� Doubly-Indirect Routing: Ingress nodes send all
requests to one or more overlay nodes, who then
pass the traffic to the egress node. Only a subset of
overlay nodes know the identity of the egress node.
SOS uses this scheme.

� Random Routing: The message is propagated ran-
domly through the overlay until it reaches a node
that knows the lightweight authenticator. Adds
���� additional overlay hops, but provides better
compromise containment. In most ways, this rout-
ing is inferior to mix routing.

� Mix Routing: Based on Mixnets [8] and the
Tarzan [13] anonymous overlay system. A small
set of egress nodes configure encrypted forwarding
tunnels through the other overlay nodes in a man-
ner such that each node knows only the next hop
to which it should forward packets, not the ultimate
destination of the traffic. At the extreme end of this
style, cover traffic—additional, fake traffic between
overlay nodes—can be added to make it difficult to
determine where traffic is actually originating and
going. This difficulty provides protection against
even the targeted eavesdropper and compromise at-
tacker, but it requires many overlay hops and poten-
tially expensive cover traffic.

3.6 Choice of Authenticator and Routing

The major question for implementation is which combi-
nation of overlay routing and authenticator to use. An
obvious first concern is practicality: If a service provider
is only able to provide a certain type of filtering, the
designer’s choices are limited. There are three axes on
which to evaluate the remaining choices: performance,
security, and agility. Many combinations of authenticator
and routing fall into a few “best” equivalence classes that
trade off security or performance; the remaining choices
provide less security with the same performance, or vice
versa.

High performance: Proximity routing provides the
best performance, but is vulnerable to the random eaves-
dropper. Works with any authenticator except source ad-

dress, since the address of the overlay nodes is known.
Blind DoS attacks against the system are difficult, since
all nodes can act as ingress and egress nodes. Singly-
indirect routing with source address provides equivalent
protection with inferior performance.

Eavesdropping Resistance, Moderate Perfor-
mance: Singly-indirect routing, when used with any
authenticator other than source address, provides
resistance to the random eavesdropper and random
compromise attack, because only a small number of
nodes possess the authentication key.

SOS: The SOS method uses doubly-indirect routing
with source address authentication. In the SOS frame-
work, packets enter via an “access node,” are routed via a
Chord overlay [29] to a “beacon” node, and are sent from
the “beacon” node to the “servlet” node. The servlet
passes packets to the server. This method provides equiv-
alent security to the singly-indirect scheme above, but
imposes at least one additional overlay hop.

Agility: singly-indirect routing with destination ad-
dress authentication provides an agile (and deployable)
system. Because routing updates, not manual configura-
tion changes, are used to change the lightweight authen-
ticator, it is feasible to update the authentication token
often. This agility can be used to resist adaptive attacks
by changing the authentication token before the attack
has sufficiently narrowed in on the token. Destination
address authentication can provide this benefit in concert
with other authenticators (such as port number) to pro-
vide an agile scheme with a large number of authentica-
tors.

Maximum Security: By using Mix-style routing with
cover traffic, a service provider can provide some re-
sistance against the targeted compromise attacker (With
3-hop Tarzan routing, an attacker must compromise
24 nodes to reach the egress node). By using ag-
ile destination-address based authentication, the service
provider gains resistance to adaptive attacks. By combin-
ing the agile authenticator with port number authentica-
tion, the system increases its key space, while retaining
the ability to recover from egress node failures. Alter-
nately, source address authentication would slow this re-
covery, but it practically reduces the number of attack
nodes that can successfully be used since many Internet
hosts are filtered.

3.7 Switchable Protection

By using destination address-based filtering, we can pro-
vide switchable DoS protection: When no attack is
present, clients may directly access the service. When
an attack commences, the system can quickly and au-



tomatically switch to a more secure mode, assuming that
some channel exists to notify the nodes and routers of the
change. This allows us to use Mayday as both a reactive
and a proactive solution.

The service provider is given two or more IP ad-
dresses. IP address � is the “normal” mode address,
and the other addresses are the “secure” mode addresses.
When an attack commences, the service sends a routing
update (in the same manner as destination-address based
authentication) to change to one of the secure addresses.

The limiting step in reactive DoS protection is config-
uring access lists at many routers concurrently. To speed
this step, the ISP configures two sets of access lists in
advance. The first list permits access from all clients (or
all overlay nodes, for proximity routing) to the normal
mode address �. The second list restricts access with a
lightweight authenticator, and applies to the secure mode
addresses. The server can quickly switch modes by send-
ing a routing update.

This scheme works best when normal mode is prox-
imity routing through all overlay nodes, and secure mode
involves more stringent routing and filtering. In this case,
the addresses to which clients connect do not change, and
client connections need not be interrupted at the com-
mencement of a DDoS attack. If a brief interruption is
tolerable, a DNS update can be pushed out to point new
connections to the overlay nodes.

3.8 Changing Authenticators or Overlay
Nodes

Changing the authentication key or the overlay nodes
through which traffic passes could break currently open
connections. Fortunately, the communication between
the ingress node and the server is completely under the
control of the system designer. When a connection be-
tween the ingress node and server is interrupted by ad-
dress or port changes, the designer can use mechanisms
such as TCP Migrate [26] or other end-to-end mobil-
ity solutions to transparently reconnect the session. Us-
ing these mechanisms between ingress node and server
would not require client changes.

4 Attacks and Defenses

The ability of an overlay-based architecture to resist sim-
ple flooding attacks was explored in the SOS study. For
various simple attack models, a sufficiently large num-
ber of overlay nodes can resist surprisingly strong attacks
targeted against the server or against individual overlay
nodes. In this section, we examine a more sophisticated

Attackers

O1

Overlay
Nodes

ISP
Routers

Filter

R1
Server

Internal

Filter Ring

��

Figure 2: The framework for considering attacks. Over-
lay nodes and clients are both outside the filter ring. In-
side the filter ring may be more ISP routers, which even-
tually connect to the server.

�������� ��������������

�	 ������

�	


�	
��� ��
��� �� ��� ���

�����

�����������
�� ���� ��������

Figure 3: A simple port-scan. The attacker sends packets
directly to the target to determine which ports are open.

set of attacks than the simple flooding explored in earlier
work.

We view these attacks within the environment shown
in Figure 2. We first present several probing attacks that
can quickly determine a valid lightweight authenticator
to defeat the DDoS protection. We then examine more
sophisticated flooding attacks, and examine the effects of
eavesdropping and compromise attacks. We assume that
attackers may learn the ISP router topology by various
means [28, 3] because it is a shared resource.

4.1 Probing

Several lightweight authenticators, such as destination
port or destination address, allow arbitrary hosts to com-
municate directly with the target. While this provides
flexibility and higher performance, it can be vulnerable
to simple port-scanning attacks (Figure 3). If the target
machine will reply to any packet with the lightweight au-
thenticator, it is a trivial matter to scan, say, the 64,000
possible destination ports, or the 256 addresses in a /24
netblock. On a 100 Mbps Ethernet, a full port scan takes
about 11 seconds. To prevent these attacks from succeed-
ing, a secondary key, drawn from a large keyspace, is



�������� ������

�	 ������


�������

��� ������� �	 
�
�	


��� �������

���
���� �

�������

�������
����

�� ����
��������

Figure 4: Firewalking. The attacker uses a traceroute-
like mechanism to probe the ports that are allowed
through the filter ring, without needing replies from the
actual target.

�������� ������������ ������

�	 ������� ��		��� ��	� ������

�	 ������

��� �� � 

��� �� � 

��� !�

��� !"

�	

������� #�$���

�	
��
�

���

��� �� � 

����
��


�� ������	� ����

Figure 5: Idlescan indirect probing. The attacker spoofs
a TCP SYN packet to the target. If the packet gets
through the filter, the target replies with a TCP ACK to
the overlay node. The overlay generates a RST because
the connection does not exist. The attacker notices the IP
ID increment at the overlay node when it sends the RST
to determine if the packet got through the filter ring.

needed. While packets with a valid lightweight authenti-
cator will go through the firewall, the server will respond
to only packets with the proper secondary key. Clearly,
this approach requires considerable attention to detail at
the host level for filtering out host responses (ICMP port
unreachables or TCP resets). The secondary key could
be the addresses of the valid correspondent hosts, a key
inside the packets, or heavier weight mechanisms such
as IPSec.

The application of the secondary key is complicated
by techniques such as Firewalking [14] that use Time-
To-Live (TTL) tricks to determine what ports a firewall
allows through, without requiring that the target host re-
ply to such messages. Figure 4 shows an example of fire-
walking. Firewalking can be defeated by blocking ICMP
TTL exceeded messages at the filter ring, but this breaks
utilities like traceroute that rely on these messages.

�������� ������
�������

�	 ������� ��		��� ��	� ������

�	 
�

��� �� � 

��� �� � 

��� !�

��� !"

�	
 �� �%����������� #�$���& ��� ������

���� �
�������

�� #��
���� %�

���##

��� �� � 

����
��

��� ������� �	 
�


� ������	� ����

Figure 6: Next-hop scan. This attack combines the idles-
can and firewalking to determine from an interior router
if packets got through the firewall.

If the filter ring uses source address authentication, at-
tackers can use indirect probing mechanisms to deter-
mine the set of source hosts that can reach the server.
Tools such as Nmap [30] and Hping [22] can use IP ID
increment scanning (or Idlescanning) [21] to scan a host
indirectly via a third party. Figure 5 shows an idlescan
wherein the attacker watches to see if the overlay node
has received TCP ACK packets from the target. If it has,
it will reply with a TCP RST packet, because it didn’t
originate a connection to the target. Transmitting this
RST causes the overlay node to increment its IP ID, and
therefore an attacker can conclude that the probe packet
passed the filter by watching the overlay node’s IP ID se-
quences. This technique is limited to TCP, and can be de-
terred by implementing IP ID randomization techniques
on the overlay nodes. This technique also depends on
low or predictable traffic volumes on the overlay nodes.

A variant on idlescanning that we call next-hop scan-
ning can use other routers behind the filter ring to deter-
mine if spoofed packets are getting through. Figure 6
shows next-hop scanning. Like firewalking, next-hop
scanning sends a TTL-limited probe at the target, which
expires at some interior router ��. �� generates an
ICMP time exceeded message. Instead of directly receiv-
ing this message (if it’s filtered or the source address was
spoofed), the attacker indirectly observes the generation
of the ICMP reply by the IP ID increment at ��.

Figure 7 shows a next-hop scan in action. Between
sequence 93 and 94, the attacker machine sent 40 TTL-
limited probes at the target, causing a large jump in ��’s
IP ID. This trace was taken using hping on a production
Cisco router on the Internet; the IP addresses have been



Source Seq # IP ID change rtt
192.168.3.1 seq=91 id=+19 76.5 ms
192.168.3.1 seq=92 id=+16 233.4 ms
192.168.3.1 seq=93 id=+14 259.6 ms
192.168.3.1 seq=94 id=+61 76.2 ms
192.168.3.1 seq=95 id=+12 76.6 ms
192.168.3.1 seq=96 id=+10 75.5 ms

Figure 7: Next-hop scan showing IP ID increase at the
router after the filter. After packet 93, the attacker sent
a burst of packets that went through the filter. This scan
method can be used to determine if spoofed packets are
permitted to go towards a target, but it requires that the
attacker be able to communicate with a router on the path
after the filter.

obscured.

Other host vulnerabilities can be used in a similar way,
but require that the overlay nodes run vulnerable soft-
ware. Unlike application or specific host vulnerabilities,
the IP ID scans are applicable to a wide array of host and
router operating systems. They are difficult to defeat in
an overlay context because they require either upgrades
to the interior routers to prevent next-hop scanning from
working, or much more extensive firewalling techniques
than may be practical on shared core routers.

4.2 Timing Attacks

In an � -indirect Mayday network in which only certain
overlay nodes are allowed to pass traffic to the server,
a malicious client may be able to determine the identity
of these nodes by timing analysis. Requests sent to an
egress overlay node will often process more quickly than
requests that must bounce through an extended series of
intermediate nodes; in SOS, overlay traversal adds up to
a factor of 10 increase in latency. This attack could al-
low an attacker to determine the identity of the egress
node even in a randomly routed overlay. This attack can
be mitigated by using multiple egress nodes and always
relaying requests to a different egress node.

4.3 Adaptive flooding

This attack is one step up from blindly flooding the tar-
get with spoofed IPs. If the attacker can measure the re-
sponse time of the target, by collusion with a legitimate
client or passively monitoring clients, he can launch a
more effective attack than pure flooding. The success of
a DoS attack is not binary—intermediate levels of attack
may simply slow down or otherwise impair the service
provided.

Consider a lightweight authenticator whose keyspace
has� possible values (all 64,000 TCP ports, or the 1,000
source addresses of overlay nodes). One value allows
traffic to reach the target and consume limited resources.
The target has a certain unused capacity, its reserve, �.
The attacker can generate a certain amount of traffic, � .
If � � �, the attacker uses up the target’s resources, and
the target’s service degrades.

In most DDoS attacks, � �� �: the attacker’s force
is overwhelmingly large. In this case, the attacker can
attack with multiple authenticators concurrently. If the
attacker uses �

�
different authenticators, then 50% of the

time, one of those authenticators is valid, and ��
�

traffic
will reach the target. If the service slows down, the at-
tacker knows that the authenticator was in the tested half
of the keyspace. By recursively eliminating half of the
remaining nodes in a binary-search like progression, the
attacker can identify the authenticator in������� attack
rounds. After this, the full ferocity of the attack will pen-
etrate the filter ring. Even intermediate rounds will likely
damage the target.

This attack is slowed down by a large keyspace. When
the attack power is sufficiently diluted (i.e., ��

�
� �),

the attack must first linearly probe small batches of the
keyspace before identifying a range into which the binary
search can proceed. Because this attack takes multiple
rounds, key agility is effective at reducing the threat by
allowing the system to change the key, ensuring that it
remains fresh in the face of an attack.

4.4 Request Flood Attacks

Without careful attention to design, the overlay itself can
be used by a malicious client to attack the target. An
attacker can use the Akamai network, for example, by
requesting identical content from many Akamai nodes
concurrently. By reading very slowly from the network
(or using an extremely small TCP receiver window), the
attacker uses very little bandwidth. The caching overlay
nodes, however, request the content as quickly as possi-
ble from the origin server, causing an overload.

These attacks are fairly easy to trace, and apply more
to large, open systems (such as Akamai) than to closed
systems with more trusted clients. However, they point
out the need for caution when designing a system to im-
prove performance or security, to ensure that the result-
ing nodes cannot themselves be used to launder or mag-
nify a DoS attack.



4.5 Compromised Overlay Nodes

Controlling an overlay node allows an attacker not only
the ability to see source/destination addresses, but to see
the actual contents of the information flowing across the
network. An attacker knows anything a compromised
node knows.

Furthermore, the attacker can now launch internal at-
tacks against the overlay itself. For example, the SOS
system uses Chord [29] to perform routing lookups. The
Chord system, and similar distributed hash tables, are
themselves subject to a variety of attacks [25]. Any other
component of the lookup system is similarly a potential
source of cascaded compromise when an overlay node is
compromised. This observation argues for keeping the
overlay routing as simple as possible, unless the com-
plexity results in needed security gains.

Proximity routing and singly-indirect routing can be
immediately subverted when nodes are compromised.
Doubly-indirect routing provides a degree of resilience to
an attacker who compromises a node in a non-repeatable
fashion (physical access, local misconfiguration, etc.).
Random routing and mix routing can provide increased
protection against compromise, but even these tech-
niques will only delay an attacker who exploits a com-
mon flaw on the overlay nodes.

4.6 Identifying Attackers

It is possible to reverse the adaptive flooding attack to
locate a single compromised node, if the lightweight au-
thenticator can be changed easily. The search operates
in an analogous fashion to the adaptive flooding attack:
The server distributes key � to half of the nodes, and
key � to the other half. When an attack is initiated with
key �, the server knows that the attacker has compro-
mised a machine in that half of the nodes. The search
can then continue to narrow down the possibly compro-
mised nodes until corrective action can be taken. This
response almost certainly requires the agility of destina-
tion address authentication.

5 Analysis

Analysis of “backscatter” traffic suggests that more than
30% of observed DDoS SYN-flood or direct ICMP
attacks involved 1000 packets per second (pps) or
more, and that about 5% of them involved more than
10,000 pps [19]. This study did not observe indirect at-
tacks that can take advantage of traffic amplifiers, and
which can achieve even larger attack rates. Fortunately,
these indirect attacks can often be stopped using source

address authentication: There are no known attacks that
can indirectly generate spoofed traffic.

How powerful are these attacks relative to the sites
they attack? A T1 line (� ���� Mbps) is likely the small-
est access link that would be used by a “critical” service.
With full-size packets (typically 1500 bytes), a T1 line
can handle just 128 packets per second. The 30th per-
centile of DoS attacks is nearly an order of magnitude
larger than this. A server in a co-location center with a
10 Mbps Ethernet connection can handle about 830 pps,
and a 100 Mbps connected server could not withstand the
upper 5% of DoS attacks at 10,000 pps.

For a victim on a T1 line, the top 5% of attacks could
mount an adaptive flooding attack against a 100 node
overlay with source authentication in under 8 rounds: Di-
viding the 10,000 pps by 50 nodes gives 200 packets per
spoofed node per second, more than the T1 can handle.
Thus, an attacker can immediately binary search in the
egress node space, taking about ���

�
����� rounds.

Many of the IP ID attacks take about 10 packets per
attempted key. At 1000 pps, an attacker could dis-
cover a destination-port key in about five minutes. In a
doubly-indirect overlay using source address authentica-
tion (SOS), the attacker could expect to locate the egress
node’s IP address in about 50 seconds. Using both of
these keys, however, would force the attacker to spend
nearly 4 days scanning at extremely high packet rates.

Resource consumption attacks, such as SYN floods,
can be more destructive at lower packet rates; One study
noted that a Linux webserver could handle only up to
500 pps of SYN packets before experiencing perfor-
mance degradation [9]. SYN packets are also smaller,
and are thus easier for an attacker to generate in large vol-
ume. By attacking multiple ingress nodes, and attacker
could attempt to degrade the availability of the overlay.
The top 5% of the attacks, over 10,000 pps, could disable
about ������

���
	 
� overlay nodes. Modern TCP stacks

with SYN cookies or compressed TCP state can handle
higher packet rates than older systems, but SYN floods
still consume more server resources than pure flooding
attacks do.

6 Practical Deployment Issues

Could a Mayday system be practically deployed? We
believe so. Service providers like Akamai [31] have ex-
isting overlay networks that number in the thousands
of nodes. Over the last year, router vendors have cre-
ated products like Juniper’s M-series Internet Processor
II ASIC that are capable of performing packet filtering at
line speed on high-bandwidth links [17]. ISPs have his-
torically been willing to implement filtering to mitigate



extremely large DoS attacks; this willingness was tem-
pered by the inability of their routers to do line-speed
filtering. With the deployment of ASIC-assisted filters,
ISPs should be able to deploy a few access list entries for
major clients.

Mayday is primarily useful for protecting centralized
services. Services may use a central server to ease their
design, or it may not be economically feasible for a sin-
gle service to purchase many under-utilized nodes to pro-
tect itself from attacks. In these cases, it may be par-
ticularly useful to take a service-provider approach, in
which multiple clients contract with a single Mayday
provider, who provides a shared overlay infrastructure.
The service-provider approach helps amortize the cost of
the overlay across multiple clients, and provides shared
excess capacity to deal with transient load spikes. Pro-
tecting clients in this manner allows a larger overlay net-
work, and reduces the number of entities that ISPs must
deal with for creating router access lists.

Finally, DDoS protection is only the first line of de-
fense for servers. The objective of Mayday is to prevent
flooding attacks from overwhelming servers. In the real
world, servers have a host of additional security prob-
lems that they must contend with, and interior lines of
defense must still be maintained.

7 Conclusion and Future Work

We have presented a general architecture for using effi-
cient router filtering with semi-trusted overlay nodes to
provide denial of service resistance to servers. By gener-
alizing from earlier work, we present several novel mech-
anisms that can provide improved performance with
equivalent security. Designers implementing the May-
day architecture gain the flexibility to trade security for
performance to better create a system that matches their
needs.

To understand how overlay-based DoS protection
would work in the real world, we presented several at-
tacks that are effective against many router-based DoS
prevention schemes. By providing options for more pre-
cise filtering and more agile rule updates, the Mayday
architecture can successfully reduce the impact of these
attacks.

While the Mayday architecture can provide a practi-
cal and effective proactive defense against DoS attacks,
much work remains. Current router architectures are vul-
nerable to probes like our next-hop scan, and correcting
these vulnerabilities will take time. Not all services can
afford to protect themselves with Mayday, but still re-
quire some protection. There have been many proposals
for detecting and preventing DoS attacks at the network

layer and up, and sorting through the options remains a
formidable task.

Acknowledgments

Many thanks to Alex Snoeren for suggesting the title,
and being the initial sounding board for many of these
ideas. Angelos Keromytis and Dan Rubenstein pointed
out several improvements to this paper, and wrote the
original SOS paper that inspired this work. Sanjit Biswas
suggested the caching overlay node attack, and Mike
Freedman helped shape the discussion about Tarzan and
cover traffic. I am indebted to Hari Balakrishnan, Frans
Kaashoek, Kevin Fu, Robert Morris, and the USITS re-
viewers for great discussion and feedback.

References

[1] Mazu networks. http://www.mazunetworks.
com/solutions/, 2002.

[2] ANDERSEN, D., BALAKRISHNAN, H., KAASHOEK,
M., AND MORRIS, R. Resilient Overlay Networks.
In Proc. 18th ACM SOSP (Banff, Canada, Oct. 2001),
pp. 131–145.

[3] ANDERSEN, D. G., FEAMSTER, N., BAUER, S., AND

BALAKRISHNAN, H. Topology inference from BGP
routing dynamics. In Proc. Internet Measurement Work-
shop (Marseille, France, 2002).

[4] ARBOR NETWORKS. Peakflow for enterprises datasheet.
http://arbornetworks.com/up_media/up_
files/Pflow_Enter_datasheet2.1.pdf%,
2002.

[5] ASTA NETWORKS. Convergence of security and
network performance (vantage system overview).
http://www.astanetworks.com/products/
data_sheets/asta_data_sheet.pdf, 2002.

[6] BELLOVIN, S. ICMP Traceback Messages, Internet-
Draft, draft-bellovin-itrace-00.txt, Work in Progress, Mar.
2000.

[7] CAIDA Analysis of Code-Red. http://www.caida.
org/analysis/security/code-red/, 2002.

[8] CHAUM, D. Untraceable electronic mail, return ad-
dresses and digital pseudonyms. Communications of the
ACM 24, 2 (1981), 84–88.

[9] DARMOHRAY, T., AND OLIVER, R. Hot spares for DoS
attacks. ;Login: The Magazine of USENIX and SAGE
(July 2000).

[10] DEAN, D., FRANKLIN, M., AND STUBBLEFIELD, A.
An algebraic approach to IP traceback. Information and
System Security 5, 2 (2002), 119–137.

[11] FERGUSON, P., AND SENIE, D. Network ingress filter-
ing: Defeating denial of service attacks which employ IP
source address spoofing. RFC 2267, Jan. 1998.



[12] FERGUSON, P., AND SENIE, D. Network Ingress Filter-
ing. Internet Engineering Task Force, May 2000. Best
Current Practice 38, RFC 2827.

[13] FREEDMAN, M. J., AND MORRIS, R. Tarzan: A peer-
to-peer anonymizing network layer. In Proceedings of the
9th ACM Conference on Computer and Communications
Security (Washington, D.C., Nov. 2002).

[14] GOLDSMITH, D., AND SCHIFFMAN, M. Firewalking:
A traceroute-like analysis of IP packet responses to de-
termine gateway access control lists. http://www.
packetfactory.net/firewalk/, 1998.

[15] IOANNIDIS, J., AND BELLOVIN, S. M. Implementing
Pushback: Router-Based Defense Against DDoS Attacks.
In Proc. Network and Distributed System Security Sympo-
sium (NDSS) (San Diego, CA, Feb. 2002).

[16] JANNOTTI, J., GIFFORD, D. K., JOHNSON, K. L.,
KAASHOEK, M. F., AND O’TOOLE JR., J. W. Over-
cast: Reliable multicasting with an overlay network. In
Proc. 4th USENIX OSDI (San Diego, California, October
2000), pp. 197–212.

[17] JUNIPER NETWORKS. M-series Internet Pro-
cessor II ASIC Frequently Asked Questions.
http://www.juniper.net/solutions/faqs/
m-series_ip2.html.

[18] KEROMYTIS, A. D., MISRA, V., AND RUBENSTEIN, D.
SOS: Secure overlay services. In Proc. ACM SIGCOMM
(Pittsburgh, PA, 2002), pp. 61–72.

[19] MOORE, D., VOELKER, G., AND SAVAGE, S. Inferring
Internet denial of service activity. In Proc. USENIX Se-
curity Symposium (Aug. 2001).

[20] PARK, K., AND LEE, H. On the effectiveness of route-
based packet filtering for distributed DoS attack preven-
tion in power-law Internets. In Proc. ACM SIGCOMM
(San Diego, CA, 2001).

[21] SANFILIPPO, S. Posting about the IP ID re-
verse scan. http://www.kyuzz.org/antirez/
papers/dumbscan.html, 1998.

[22] SANFILIPPO, S. hping home page. http://www.
hping.org/, 2000.

[23] SAVAGE, S., COLLINS, A., HOFFMAN, E., SNELL, J.,
AND ANDERSON, T. The End-to-End Effects of Internet
Path Selection. In Proc. ACM SIGCOMM (Boston, MA,
1999), pp. 289–299.

[24] SAVAGE, S., WETHERALL, D., KARLIN, A., AND

ANDERSON, T. Network support for IP traceback.
IEEE/ACM Transactions on Networking 9, 3 (June 2001).

[25] SIT, E., AND MORRIS, R. Security considerations for
peer-to-peer distributed hash tables. In Proc. 1st Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS) (Cam-
bridge, MA, Feb. 2002).

[26] SNOEREN, A. C., AND BALAKRISHNAN, H. An End-to-
End Approach to Host Mobility. In Proc. 6th ACM/IEEE
MOBICOM (Aug. 2000).

[27] SNOEREN, A. C., PARTRIDGE, C., SANCHEZ, L. A.,
JONES, C. E., TCHAKOUNTIO, F., SCHWARTZ, B.,
KENT, S. T., AND STRAYER, W. T. Single-packet IP
traceback. IEEE/ACM Transactions on Networking (ToN)
(to appear) 10, 6 (Dec. 2002).

[28] SPRING, N., MAHAJAN, R., AND WETHERALL, D.
Measuring ISP topologies with Rocketfuel. In Proc. ACM
SIGCOMM (Aug. 2002).

[29] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK,
M. F., AND BALAKRISHNAN, H. Chord: A scalable
peer-to-peer lookup service for Internet applications. In
Proceedings of the ACM SIGCOMM ’01 Conference (San
Diego, California, Aug. 2001).

[30] VASKOVICH, F. Nmap stealth port scanner. http://
www.insecure.org/nmap/index.html, 2002.

[31] Akamai. http://www.akamai.com, 1999.


