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Abstract— The growing popularity of consumer broadband
connection technology, in particular cableTV and ADSL, has
started a quiet revolution that will reshape the Internet connec-
tivity solutions for commercial enterprises. One emerging theme
is the replacement of dedicated lines based on frame relay or
ISDN technologies with multiple inexpensive ADSL/cableTV links
each of which potentially is subscribed from a different ISP.
The key enabling technology for this revolution is multihoming
load balancing, which spreads an enterprise’s Internet traffic
among multiple access links to increase the aggregate throughput,
and diverts traffic away from non-functional links when they
fail. Although there exist several commercial multihoming load
balancing products in the marketplace, very little is published
about the design tradeoffs and their performance implications.
In this paper, we describe the design space of multihoming
load balancing systems, discuss the tradeoffs involved in load
balancing and fail-over implementation strategies, and present
quantitative performance measurements collected on a commer-
cial multihoming load balancing system.

I. INTRODUCTION

The idea of using multiple access links to improve the
aggregate bandwidth and the overall availability of Internet
connectivity is not new to network administrators. When the
access links are subscribed from different ISPs, this approach
is called multihoming. With the advent of inexpensive and
high-bandwidth broadband connection technologies for home
users, multihoming is poised to emerge from a niche technique
for large enterprises and become a dominant technology
that underlies the Internet connectivity solutions for small
to mid-sized businesses. The agent of change that triggers
this evolution is the dramatic drop in broadband connectivity
price, especially in East Asia. This trend is expected to
happen in other parts of the developed world as well in the
near future. For example, the monthly charge for a 500Kbps
(downstream) ADSL link in Taiwan is less than $15 (US
dollars) per month. By subscribing to four such ADSL links,
it is possible for a site to enjoy a downstream bandwidth
higher than a dedicated T1 line but at less than one fifth
of the cost. Of course, the reliability and quality of service
(QoS) of these ADSL links is not yet comparable to T1
lines. But the technology trend suggests that when broadband
access links reach economies of scale, their reliability and
QoS are expected to attain the same level as those based on
frame relay and ISDN technologies. Before that day comes,
multihoming load balancing is a technology that can convert
a set of lower-bandwidth and somewhat unreliable broadband

connections into a high-bandwidth Internet access link that
is sufficiently robust for enterprise applications. Just as the
RAID (Redundant Array of Inexpensive Disks) technology
exploits commodity disks for higher performance and better
availability, we believe multihoming load balancing systems
will achieve the same benefits for Internet connectivity with
commodity broadband connections.

At the conceptual level, a multihoming load balancing
system must be able to determine the available bandwidth
to a remote subnet through an access link, assign incoming
and outgoing Internet traffic to the available access links, and
detect failed access links and divert Internet traffic around
them. From a user’s standpoint, an ideal multihoming load
balancing system should be plug-and-play, and requires no
other modification to the existing network infrastructure than
adding more access links.

However, perhaps the most important factor affecting the
design of a multihoming load balancing system is whether the
user site has its own set of public IP addresses that are assigned
from the Internet Assigned Number Authority (IANA) rather
than from the local ISPs. If a user site has a set of public IP
addresses that are independent of the block of addresses owned
by their ISPs, multihoming load balancing can be achieved
through BGP peering [1][3][5][6], which requires the user site
to set up a BGP router that can peer directly with the BGP
routers of their ISPs, and thus exploit standard routing protocol
to improve throughput and to bypass failed links. BGP peering
requires a user site to acquire an AS (Autonomous System)
number, build up a BGP peering relationship with ISPs, and to
maintain BGP tables, etc. While this approach is conceptually
straightforward, the administration overhead of BGP router
maintenance is non-trivial and therefore only large enterprises
or ISPs can afford it. For small and mid-size corporate users,
neither obtaining a separate IP address range nor maintaining
BGP routers is feasible.

In the case that a user site is assigned a distinct set
of public IP addresses from each of its ISPs, the way to
implement multihoming load balancing is through Network
Address Translation (NAT) technique [7][8][9][11][10], which
dynamically binds public IP addresses to internal hosts. Using
NAT, a multihoming load balancing system can be deployed
between a user site and its ISP, and works as a black box in
a way transparent to the internal hosts and ISPs. Note that
this approach is equally applicable to user sites that have their
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own ISP-independent IP addresses. Compared with the BGP
peering approach, the only disadvantage of the NAT approach
is that it can only exploit inter-connection parallelism, but not
intra-connection parallelism, i.e., it is impossible to “stripe”
the packets of a network connection across multiple access
links.

Even though multihoming load balancing systems are gain-
ing importance in commercial development and deployment,
very few publications in the public literature discussed their
practical design considerations and implementation tradeoffs.
It is the goal of this paper to present the design space of
multihoming load balancing systems, discuss the implemen-
tation issues in more detail, and quantitatively evaluate their
performance implications based on a commercial multihoming
load balancing system. With this paper, we hope to stimulate
more future research on the development of more advanced
multihoming load balancing systems.

The rest of this paper is organized as follows. Section II
surveys previous research related to multihoming load bal-
ancing. Section III presents the design space of multihoming
load balancing systems, their practical implementation issues
and possible solutions. Section IV reports the results of a per-
formance study on a commercial multihoming load balancing
system based on instrumentation, measurement, and test-bed
emulation using real traffic traces. Section V concludes the
paper with a summary of its major contributions and an outline
of future work.

II. RELATED WORK

Along the BGP solution line, several solutions are proposed.
RFC 2260 [1] proposes a BGP peering scheme to provide
fault tolerance without increasing routing overhead in the
“default-free” zone of the Internet. They assume enterprises
can get their IP addresses via the “address lending” policy,
i.e., get IP addresses from the IP pool of each ISP. Normally
enterprises only advertise the IP prefixes to the ISP where
they get those prefixes. This will allow ISPs to aggregate
the prefixes. After aggregation, there is no need to advertise
these prefixes to the “default-free” zone. When connectivity
between enterprise and ISP goes down, the failed IP prefixes
will be either advertised to the whole Internet (case 1) or only
advertised to active ISPs (case 2). In case 1, Internet routing
will achieve failover automatically. In case 2, ISP will forward
the packets to enterprise via tunnelling. When enterprise want
to have independent IP prefixes, RFC 1518 [2] proposes to
assign the enterprise only one prefix that is independent from
ISPs. This allows multihomed organization to aggregate the
network within that organization to a single prefix.

Cisco in [3] shows how to use normal BGP techniques
to achieve fault tolerance and load sharing. They can use
multiple links to share the load of outbound traffic via static
policy. For inbound traffic, the best that one can do is to
divide the enterprise network to multiple subnets. Then the
enterprise advertises one subnet to each ISP. This contradicts
the suggestions in RFC 1518. It increases the number of route
in the “default-free” zone. Since load can only be statically

split, this technique is called load sharing instead of load
balancing in Cisco’s documents. In Cisco’s term [4], load
balancing means better load distribution among multiple paths.
In the best case, load balancing can distribute the first packet
to link 1 and the second packet to link 2. That means all links
will be apply almost the same load simultaneously.

RouteScience [5], netVmg [6], etc go further to measure the
performance of links to better manage the traffic distribution
on the links. They can measure latency, loss to some prefixes,
link utilization, etc to decide which link is better. To control
the traffic distribution, they use BGP to update routers’ routing
table. So they can control the distribution of the outbound
traffic on links in prefixes granularity. For inbound traffic,
it seems they cannot go any further than Cisco can. The
enterprise prefixes advertised is the same to all networks. They
cannot control which network receives which kind of BGP
advertisements.

Along the NAT line, Radware [7], F5 Networks [8], Nor-
tel Networks [9], FatPipe [11], etc propose to use NAT to
distribute traffic to multiple links. They also measure the
performance of links as vendors such as RouteScience do.
The difference lies in how to control the distribution of
traffic to links. For enterprise initiated connections, the load
balancing device will first decide which link to use. Once
the link is selected, the public IP address of NAT should be
the IP addresses assigned to that link. The inbound traffic
of this connection will also go through the same link. For
Internet initiated connections, the vendors above use DNS to
dynamically return one IP address whose associated link is
least loaded. This way they can also control which link to use
for the Internet initiated connections.

Cisco in [12] proposes a different NAT scheme. It will
translate both source IP address and destination IP address
in a packet. Compared to normal NAT, it further translates the
destination IP address of the packets for outbound traffic and
the source IP address of the packets for inbound traffic. The
purpose of the above two extra translations is to force packets
in a connection to go to the same link. The scheme can control
the IP address returned by DNS to choose which link to use.
But this scheme doesn’t consider the real-time load of links to
control the return value of DNS. So it is only a kind of static
load sharing.

Zhiruo Cao et al. [13] presented a comprehensive study on
hashing based load balancing. They use hash to split traffic
over multiple links. Their results show hashing does show
good load balancing performance based on their traced flows.

Tao Zhou [15] presented the multiple default gate-
ways/routers configuration in Win2K and NT 4.0. It reflects the
efforts for network fault tolerance in the operating system field.
But these multiple routers are not used for load balancing but
fault tolerance. Windows can detect dead path to Internet [16].
So windows can switch to other available routers if possible. In
[15], load balance is only achieved via static address division.

DNS Cycling (or DNS-based redirection) technology is
widely employed in server selection, which serves for two
major purposes: to do load balancing among servers based
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Fig. 1. The generic context in which a multihoming load balancing system
works. Each ISP gives a specific IP prefix to an enterprise network, and only
forward incoming (outgoing) packets whose destination (source) address uses
the same IP prefix.

on their loads, and to choose the closest server to a client
for best response time. In response to a DNS request for a
specific server, the DNS server will set the value of the TTL
field to be zero or small values (compared with the typical
value of 24 hours) to prevent the client from caching the result.
Anees Shaikh et al. [14] quantify the impact of low DNS TTL
values on client-perceived latency. It reports that small TTL
values allow fine-grained load balancing and rapid response to
changes in server or network load, although disabling clients
caching may cause latency and degrade the scalability of the
DNS.

III. DESIGN SPACE

A. Problem Formulation

Figure 1 shows the context in which a multihoming load
balancing system operates. We will refer to such a system
an Internet Service Management Device (ISMD) hereafter. An
enterprise network connects to multiple ISPs via ISMD, which
can balance the loads on the access links to these ISPs. In
addition, ISP1 and ISP2 allocate an IP address prefix PREFIX1
and PREFIX2 to the enterprise network, respectively. ISP1
will only forward outgoing (incoming) packets whose source
(destination) IP address is PREFIX1. ISP2 behaves similarly.

Because an ISP only forwards packets with source or
destination address that falls into a proper range, ISMD can
use an access link associated with an ISP only when the
packets are marked with proper source or destination address.
If an IP address is statically assigned to each internal host,
then all traffic into and out of an internal host will follow the
ISP link whose associated prefix is the prefix of its IP address.
That is, the load distribution granularity is at the host level. To
support finer-grained load distribution strategies, each internal
host should be allowed to bind to different public IP addresses

simultaneously. Although statically assigning multiple public
addresses to an internal host is technically feasible, it leads to
wastage of IP addresses, which small and mid-sized enterprises
typically cannot afford. A more realistic solution is based on
network address translation (NAT), which is able to assign
each individual network connection a different IP address, thus
achieving connection-level load distribution.

For an internally initiated network connection, its first
packet comes from an internal host. When this packet reaches
ISMD, ISMD uses NAT to change its original source address
and port number to a public IP address and port number.
The remote host of this connection will use the same public
IP address and port number as destination address and port
number in its response packets. As a result, once ISMD
fixes the source address and port number of the first packet
of an internally initiated connection, all subsequent packets
in both directions will flow through the ISP link whose IP
address range covers the chosen public IP address. As an
example, assume an internal host whose IP address is 10.0.0.2
initiates a connection to a remote server whose IP address
is 3.0.0.1. When the initiating packet reaches ISMD, ISMD
changes its source address to 1.0.0.1, which has the same
prefix as ISP1. Consequently, all subsequent packets, both
inbound and outbound, will go through ISP1. Therefore, when
ISMD uses NAT to modify the first packet of an internally
initiated connection, it implicitly dispatches packets from that
connection to a particular access link associated with an ISP.

For an externally initiated connection, ISMD cannot directly
control the access link that the remote initiating host will
use to reach an internal host. However, externally initiated
connections typically target at internal hosts that are well-
known servers. To access these servers, remote hosts usually
need to issue a DNS query to resolve their host names to
the corresponding IP addresses. ISMD can take advantage of
this pattern by embedding load distribution into DNS query
servicing. More concretely, each well-known server host is
assigned multiple IP addresses using the port forwarding
mechanism of NAT, one from each ISP’s prefix. When a DNS
query for a well-known server arrives, ISMD responds to it by
choosing one of its assigned IP addresses according to its load
balancing policy. Through this DNS re-direction mechanism,
externally initiated connections can also be distributed evenly
among the access links. As an example, assume there is an
internal web sever whose private IP address is 10.0.0.1 and
whose domain name is www.a.com. To allow this web server
directly accessible from the Internet, it must have at least
one public IP address. In this case, it has two: 1.0.0.2 and
2.0.0.2. To access the web server www.a.com, a remote host
(4.0.0.1) first makes a DNS query to retrieve the IP address
of www.a.com. If ISMD responds to this query with 1.0.0.2,
all packets of this connection will go through ISP1.

In summary, by associating a public IP address/link with
an internal host when a connection is established, ISMD is
able to dispatch that connection’s packets to a particular ISP
link. For an internally initiated connection, this binding occurs
through NAT when its first packet reaches ISMD. For an
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externally initiated connection, this binding occurs through
DNS redirection if its set-up is preceded by a DNS query. Once
the internal host of a network connection is bound to a public
IP address, all subsequent packets of that connection in both
directions will go through the access link whose ISP’s prefix
covers the chosen the public IP address. In this scheme, the
load balancing granularity is individual network connections.

In addition to dispatching network connections to specific
access links, ISMD performs two more functions. First, ISMD
determines the degree of availability of each access link, i.e.,
whether each link is available and how much bandwidth is
remaining in each link. Second, ISMD chooses which access
link to use and balances the loads among the access links
and to avoid failed links whenever they are detected. In the
following subsections, we will discuss these two issues in more
detail.

B. Determining Link Availability

In the ideal world, ISMD should be able to determine, for
each access link, whether it is possible to reach each network
subnet represented by a BGP prefix, and the bandwidth
available to each such subnet if it is reachable. Armed with this
information, it is straightforward for ISMD to decide which
access link to use for a new network connection. In practice,
however, ISMD (and other Internet routers) is rarely able to
obtain such a clear picture of the Internet at any point in
time, because Internet traffic conditions fluctuate constantly.
Therefore, some compromises must be made in terms of
the scope (only some prefixes rather than all prefixes) and
the accuracy (only reachability rather than bandwidth/latency
characteristics). The other end of the spectrum is to determine
whether an access link is available and therefore usable in
shouldering a user site’s Internet traffic. The focus here is
limited to the availability of the link between a user site and
its ISP.

There are two general approaches to Internet traffic con-
dition determination: passive monitoring and active probing.
Passive monitoring is unobtrusive, requires less network re-
source, but is less accurate. Active probing provides more
flexibility, requires more network resource, but is also more
accurate. To determine whether an access link is still available,
passive monitoring is sufficient in most cases. Because most
network connections are bi-directional (at the transport or
application level), there should be some inbound traffic on
an access link as long as at least one connection is using that
link. If there is only inbound traffic on an access link, passively
monitoring the inbound traffic only may fail to detect failure of
the outbound path. One way to address this problem is to check
if the incoming packets are either pure TCP ACKs or TCP
DATA segments with increasing ACK sequence number. The
disadvantage of this approach is that it requires per-connection
state.

When there is only outbound traffic but no inbound traffic,
or when there is neither inbound nor outbound traffic, passive
monitoring alone cannot ascertain whether an access link is
available or not. In particular, it cannot distinguish between

TABLE I

PASSIVE MONITORING INFERENCE RULES. NORMALLY, THE EXISTENCE

OF INBOUND TRAFFIC WILL REPRESENT GOOD HEALTH. THE LACK OF

INBOUND TRAFFIC SHOULD REMIND US TO DOUBT THE HEALTH.

Outbound Inbound Link health

No No Possibly bad, need to check

No Yes Available

Yes No Possibly bad, need to check

Yes Yes Available

the case that there is no incoming traffic, and the case that the
access link is down. In these cases, some sort of active probing
methods need to be brought to bear on this problem. Table I
summarizes the limitations of passive monitoring. Note that it
is still important to determine a link’s availability even when
there is no inbound or outbound traffic because the information
is needed for supporting externally initiated connections.

There are two main design issues in the use of active probing
to determine link availability. First, which set of hosts should
be used as probe targets? Because the goal is to determine
access link availability, it is important the chosen probe targets
be at the other end of an access link. In addition, the chosen
probe targets should be able to handle a large number of probe
requests. The second issue of active probing is what type of
probe packets should be used. Because TCP connection set-up
is too expensive, typically UDP or ICMP packets are preferred.
However, many firewalls are set up to drop ICMP packets.
Therefore, UDP packets seem to be more appropriate. Taking
into account these two considerations, ISMD chooses a set of
DNS servers on the Internet as the probe targets and uses DNS
queries as probe packets.

To reduce the traffic load induced by active probing on the
network and probe targets, ISMD uses active probing mainly
as a fall-back mechanism to passive monitoring. Since passive
monitoring works when there is inbound traffic, active probing
will be triggered only in the absence of incoming traffic. If
active probing finds that it is a false positive, the probing will
stop until passive monitoring report possible outage again. If
it is a true positive, the probing will continue indefinitely. But
if the link is down, such probing will not impose additional
load to the Internet. Figure 2 shows a state machine that uses
a combination of passive monitoring and active probing to
determine the availability of an access link. The POSSIBLY
DOWN state is used to eliminate false positives of passive
monitoring. In this state, the link is still treated as UP. But we
will start active probing to ascertain if it is UP or DOWN.

In some cases, an access link may be available but it cannot
be used to reach certain remote subnets because, for example,
the associated peering link between the access link’s ISP and
its upstream ISP is highly congested or simply goes down.
To address this problem, ISMD needs to maintain availability
state for each BGP prefix, which is clearly not feasible in
practice. A more realistic approach is to maintain availability
state for a subset of BGP prefixes, and the choice of this subset
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UP
Action: Passive monitoring

(1) (2)

(3)
(4

)

(1)No inbound traffic
(2)Receive all responses of N1 consecutive probes
(3)No responses for N2 probes
(4)Receive all responses of N3 consecutive probes

DOWN
Action: Active probing

POSSIBLY DOWN
Action: Active probing

Fig. 2. A state machine that determines link availability using passive
monitoring and active probing.

is based on either their geographic locations [8] or based on
how often a user site has interacted with them in the past.
One can take one step further to determine the packet latency
to these selective subnets so that load distribution can also
take into account performance factor. This can be achieved
via DNS queries [17], or passively monitoring of TCP ACKs
[18].

C. Assigning Traffic to Links

The first question in assigning traffic to access links is the
granularity. Finer granularity tends to achieve better load bal-
ance and fault tolerance, but may require more infrastructural
support. Packet-by-packet link assignment is only possible for
network connections whose internal hosts have a public IP
address that is covered by the BGP routers of the ISPs, and
therefore is not compatible with NAT-based multihoming load
balancing systems. Connection-by-connection link assignment
is feasible for NAT-based multihoming load balancing systems
in theory, but does not always work in practice. The reason
is that some network applications require setting up several
network connections that should have the same IP addresses
as end points. For instance, in Figure 1, the enterprise client
10.0.0.2 wants to connect to a remote FTP server 3.0.0.1. FTP
needs to set up a control connection and a data connection.
Assume the control connection is assigned to L1 and the public
IP address of the enterprise client for this connection is 1.0.0.1.
If the data connection is assigned to L2, the public IP address
of the enterprise client for this connection will be in the range
of 2.0.0.0/24. As a result, the remote FTP server may reject
the data connection because it finds the remote IP address
for the data connection is different from that of the control
connection. Therefore, it is essential that both connections of
a FTP session be assigned to the same access link. There are
other network applications that have a similar requirement,
e.g., RTP/RTCP, P2P file sharing, etc. For them, assigning the
set of network connections that belong to a logical session to
the same link is required for correct operation.

However, identifying all connections in a session for all
applications is difficult, if not impossible. A simpler way
to address the problem is to assign packets to links based

on their source and destination IP address only, rather than
the four-tuple connection identifier that also includes source
and destination port number. The disadvantage of this simple
session-by-session link assignment approach is that its load
distribution granularity becomes coarser, and may lead to
suboptimal performance in some cases. For instance, it is
quite common for a client to download data from a web
server through multiple simultaneous HTTP connections. With
session-level link assignment, these HTTP connections will be
assigned to the same link, and therefore cannot benefit from
the availability of multiple access links. To optimize for these
common cases, ISMD uses connection-level link assignment
for specific cases like these and leave all other connections
session-level link assignment.

Which access link to be used for a network connection
should be determined at the beginning of the connection.
Given the connection ID (four-tuple) or session ID (two-
tuple), there are two possible approaches to the link assign-
ment problem. The first approach is stateless, and applies
random hashing on the connection/session ID to obtain the
link ID [13]. Since the hashing result is invariable for a
given connection/session ID, there is no need to keep any
state. However, there are two problems associated with this
approach. First, it is not possible to use hashing to determine
the access link for an externally initiated connection, because
the choice of access link must be made before the choice of the
public IP address for the connection’s internal host. The only
way to resolve this problem is to assign all the traffic to and
from a well-known internal host to only one access link, but
this denies the benefits of multiple access links to such hosts.
The second problem with the hashing approach is that it does
not take into account dynamic traffic load characteristics. As a
result, it is possible that the loads distributed among the access
links may not be balanced because the hash function is biased
for a given traffic load.

The second link assignment approach is stateful, and explic-
itly takes into account such factors as latency, throughput, and
availability. This stateful approach typically requires a look-up
table to record the dispatch decision so that all the subsequent
packets of a network connection will follow the same link
assignment decision made at the beginning of the connection.
One possible variant of this approach is to assign link based
mainly on latency, in the hope to decrease the user response
time. The assumption of latency-based link assignment is that
throughput is not an issue. For example, the total download
time of a web page is mainly affected by the latency instead
of throughput of the access path, because typical web page
size is small. Several commercial route control products [8],
[5] are based on this approach.

Unfortunately, latency-based link assignment may not be al-
ways feasible. First, most of the traffic on an enterprise access
link is inbound traffic. This makes it difficult to determine
the latency to a remote subnet based on passive monitoring.
Second, because of the limited bandwidth on the access links,
there is every incentive to fully utilize them. As a result,
throughput may well become the dominant factor that affects
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the user response time, and it thus makes sense to assign
links based on the traffic load on the access links. This load-
based link assignment approach requires a way to accurately
estimate the load on an access link. Because most network
connections are TCP-based, and a single TCP connection is
capable of using up all the bandwidth of a link as long as
the connection’s lifetime is sufficiently long, there is no point
of keeping track of the link load based in terms of bytes/sec.
Instead, it is better to estimate the load on a link based on the
number of connections assigned to that link. Because different
connections may carry different amount of traffic, a weighted
sum of these connections should be more accurate than a
simple count. However, it is not clear how to derive the weights
since the traffic volume of each network connection cannot be
easily determined before the connection is terminated.

A related issue of load-based link assignment is traffic
volume asymmetry. In many cases, the load on an access link
can be heavily biased toward a particular direction because
the connections assigned to the link are biased. If load-based
link assignment ignores the directionality, it is possible to
choose an access link whose total load is smaller but whose
load on the direction towards which the new connection is
biased is actually higher than other access links. One way
to resolve this problem is to balance the traffic load on each
direction separately for the access links. However, this again
requires a priori knowledge of the bias direction of each
network connection. While it is relatively easy to infer the
directionality of some network connections such as HTTP
connections, it is not clear how to infer this knowledge for
arbitrary connections in general. In the case traffic volume
asymmetry of a connection cannot be inferred, link assignment
decision can be made based on the load of the links’ bottleneck
direction.

D. Other Design Issues

1) Bandwidth Guarantee and Multihoming: There is a
subtle interaction between bandwidth guarantee and multihom-
ing. When an enterprise has only one access link, providing
bandwidth guarantee for a group of connections is relatively
straightforward, because all connections will go through the
same link. However, when there are multiple access links,
there is the possibility that the sum of the residual capacities
of the access links can support a reservation, but none of
each individual link can support the reservation on its own.
In this case, if there is only one network connection in that
reservation, this connection cannot use up all the reservation’s
bandwidth because a network connection cannot use more
than one access link. Essentially this is an instance of the
resource fragmentation problem due to the indivisibility of a
connection’s traffic.

As an example, suppose the bandwidth guarantee for group0
and group1 are both B, and there are two access links whose
maximum bandwidth is also B. Let’s assume further group1
already consumes all its reserved bandwidth and spreads its
traffic between the two access links evenly. Therefore, each
access link now has a residual capacity of B/2. When the first

connection from group0 comes along, it can be assigned to
either access link, and consume at most B/2 bandwidth, even
if it is the only connection from group0. This clearly violates
the bandwidth guarantee requirement but is inevitable because
of the indivisibility of the traffic associated with a connection
or session.

One way to solve this problem is to increase the amount of
bandwidth reservation of each group of traffic to accommodate
the loss in fragmentation. Assume we can cap the maximum
throughput requirement of each network connection at M for
a traffic group whose total bandwidth reservation is R (R ≥
M). Then it can be shown that on an N-link system, as long
as the total reservation for a traffic group with an original
bandwidth reservation of R is R + M * (N - 1), the traffic
group is guaranteed a bandwidth reservation of R. In practice,
it is not clear how to derive M in advance. On the other hand,
the fragmentation problem arises only in specific scenarios and
does not occur all the time. Therefore, a good compromise is
to reserve α ∗ B for a logical reservation of B, where α is
an empirical parameter that depends on the number of access
links and the dynamic traffic distributions.

2) Preventing Denial of Service: In addition to incurring
higher performance overhead, the stateful load balancing ap-
proach is also vulnerable to denial-of-service attacks. A remote
user can exhaust the state memory of ISMD by initiating
a large number of network connections. Moreover, it can
evade ISMD’s detection by IP address spoofing. When the
state memory is used up, no more new connections can be
serviced. A simple way to address this problem is to monitor
the state memory usage, and to give up the load balancing
capability when the state memory is about to be exhausted.
This way, only the load balancing capability of ISMD is
lost in the presence of a denial of service attack, but not its
connectivity. To prevent IP spoofing, we can further check
the three-way handshake of each TCP connection, because
hosts that use IP spoofing typically cannot finish three-way
handshake. State allocated to connections that cannot finish
three-way handshake is timed out and reclaimed quickly.

A more refined approach is to bound the state memory
consumption of each traffic group, and thus isolate the state
memory usage of one group from the others. When the state
memory allocated to a traffic group is used up, only this
traffic group loses the load balancing functionality. With this
approach, ISMD can at least better prevent those traffic groups
that have their own resource reservations.

3) Link and Node Fault Tolerance: To provide highly
available Internet connectivity, both ISMD itself and the access
links have to be highly available. While multihoming load
balancing increases the failure resilience of the access links,
it needs to be integrated with ISMD’s fault tolerance mecha-
nism to form an end-to-end availability solution for Internet
connectivity. ISMD is built on a reusable fault tolerance imple-
mentation framework called Duplex [20], which is designed to
provide fault tolerance specifically for edge network devices.

The Duplex framework provides two alternative configu-
rations for a pair of fully redundant edge network devices,
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Fig. 4. Serial dual-device configuration for ISMD’s own fault tolerance.

one serving as the master while the other as the slave. The
first configuration is a parallel dual-device configuration as
shown in Figure 3. In this configuration, the two ISMD devices
are connected with hubs, and work in promiscuous mode. So
both devices can see all the packets. Because both devices run
the same link assignment algorithm and carry out the NAT
functionality, they will make the same decision and eventually
reach the same internal state. In the beginning, it is possible
that the two devices may not have the same state. But since the
NAT state and load balancing state is soft state, gradually the
inconsistencies will time out and be removed. When the master
fails, the slave takes over automatically. Because both the NAT
and link assignment state remain unchanged, no connections
are disrupted and thus the fail-over is completely transparent.

One problem with the parallel dual-device configuration is
that it relies on the hubs to duplicate the packets, which limit
the traffic to be half duplex. In the second configuration in
the Duplex framework, the serial dual-device configuration as
shown in Figure 4, the two ISMD devices are connected in
series, work in promiscuous mode, and each have a watchdog-
based hardware bypass. Moreover two routers (NAT1 and
NAT2) are added to perform NAT functionality. ISMDs only
needs to balance the load on the access links, L1 and L2.
At any point in time, both devices are running the same

algorithm and thus having the same state. When the master
dies, the slave takes over. When both devices fail, the bypass
hardware will turn the ISMD pair into a passive cable, and
the traffic still goes through but without load balancing.
Although this configuration provides an additional level of
fault tolerance when both devices fail, it does so at the expense
of additional latency because both devices need to perform
the same link assignment algorithm even though only one of
them takes effect. The other disadvantage of this configuration
is that the NAT functionality needs to be moved to the edge
routers. However, this requirement is not absolutely essential
if tolerance for double device failures is not required.

IV. PERFORMANCE EVALUATION

In Section III, we discussed the design issues of a multi-
homing load balancing system and their possible solutions.
In this section, we will evaluate the effectiveness of some
of these solutions using a commercial multihoming load
balancing system from Rether Networks Inc. called ISMD,
which is a Linux-based edge network appliance using a 850-
MHz PentiumIII as the main CPU. We used a trace-driven
emulation approach to evaluate the performance of these
schemes whenever possible. We collected packet traces in
a random week from the access router of an engineering
company that has an Internet access link running at 500Kbps.
This company represents a typical small to mid-sized business
that is likely to use an NAT-based multihoming load balancing
system to improve the aggregate throughput and fault tolerance
of its Internet connectivity.

A. Effectiveness of multihoming fault tolerance and latency
based link selection

An ideal latency-based link selection algorithm will keep
track of the latency to each of the remote subnets with which
a user site interacts in the recent past. To determine whether
it is feasible to maintain such a list, we count the number
of network prefixes that show up in our week-long trace
according to a default-free BGP routing table available from
Routeview [21], which has 141325 entries in total. From this
analysis, we found the engineering company accessed about
4632 different hosts on the Internet, which fall into 1541
different network prefixes. In this case, the visited network
prefixes during one week is only 1.07% of the prefixes in the
routing table.

Among those subnets visited in our trace, the access fre-
quency is also highly biased, as shown in Figure 5. That
is, most of the accessed subnets concentrate on a small
subset of the visited prefixes. For example, the top most
10% most popular prefixes account for more than 60% of the
Internet access. These results suggest that a multihoming load
balancing system can reap most of the benefit of latency-based
link selection by maintaining a small number of prefixes.

To measure the potential gain of latency-based link selec-
tion, we extract prefixes from a trace that corresponds to one
randomly chosen day from the tracing week. Then we probe
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Fig. 5. Each point (X, Y) in the curve means that the top X% of network
prefixes cover Y% of the destination addresses in a week long trace. The
prefixes are sorted from larger destination coverage to smaller.

one host in each of these prefixes one by one simultaneously
from the engineering company and from a nearby university.

These two probing sites use different ISPs and thus together
represent a typical multihoming site. We started the latency
probing tasks on both sites at the same time. Each probe
transaction uses TCP SYN and TCP SYN//ACK to measure
the round-trip time and thus the network latency to the probed
subnet. If the TCP SYN/ACK response doesn’t come back
within 3 seconds after the corresponding TCP SYN is sent,
the test program will retransmit the SYN packet up to twice,
and claims the particular destination subnet is unreachable. For
latency analysis, unreachable subnets/prefixes are ignored. For
each reachable subnet/prefix, we have two measurements, one
from each probing site. An ideal latency-based link selection
algorithm should always choose the faster of these two access
links, and therefore its latency should be the smaller of the
two.

We started a probing run every five minutes on both sites
at the same time, and conducted this latency probing test for
one full day. The final latency value for each subnet/prefix is
calculated based on the average of these latency measurements.
Figure 6 shows the ratios between the latency of a multihom-
ing solution based on an ideal link selection algorithm and
that of the company’s link and that of the university’s link,
respectively, for all the prefixes tested. From the figure, there
is plenty of room of optimization for a latency-based link
selection algorithm because the latency ratio in some cases
could be more than an order of magnitude.

The number of unreachable subnets in this test gives a hint
on the usefulness of a multihoming system as a network fault
tolerance solution. In the full-day test, there are two subnets
which could sometimes be reached via ISP1 and sometimes via
ISP2. Because the test is far from comprehensive, it is difficult
to draw any definitive conclusions from this result, but it does
suggest that a multihoming system can indeed provide some
form of tolerance against faults or serious congestion on the
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Fig. 6. The network latency improvement between single-linked and multi-
homing solution: the improvement ratio is (S-M)/M, where S is the latency
through a certain access link and M is the latency through a multihoming
system that uses latency-based link selection algorithm.
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Fig. 7. The topology of the emulation testbed for evaluating the effectiveness
of load balancing algorithms

ISP or Internet links.

B. Effectiveness of load balancing

1) Testbed setup: To evaluate the effectiveness of the load
balancing algorithms discussed in Section III, we set up a
testbed to emulate an enterprise network connected through
a multihoming system such as ISMD to multiple ISPs, as
shown in Figure 7. Router0, router1 and router2 represent
three ISPs. Server out and client out represent Internet servers
and Internet clients. Server in and client in represent enterprise
servers and clients. All the above machines run Linux 2.2.5.
The speed of each link, L0, L1 and L2 is 500Kbps, the same
link speed as the link where the trace was collected. ISMD
uses NAT to allow client in to use any of the three links
to initiate connections and communicate with server out. To
allow externally initiated connections, ISMD uses DNS and
static port mapping to allow client out to obtain one of the IP
addresses of server in, and thus uses one of the three links to
connect and communicate with server in.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



TABLE II

THE NUMBER OF CONNECTIONS AND VOLUME OF DATA FOR THE TWO

TRACES USED IN THE TEST OF LOAD BALANCING ALGORITHMS. BOTH

TRACES ARE COLLECTED ON A 500 KBPS INTERNET ACCESS LINK ON A

NORMAL WEEKDAY. THE DURATION OF EACH TRACE IS 4 HOURS.

Number of Total data

connections volume (MBytes)

Trace 1 4,774 218

Trace 2 6,020 153

We used two four-hour traces in this study, whose character-
istics are shown in Table II. From these traces, we extracted the
start time and traffic volume in both directions for each TCP
connection, and replayed them using real TCP connections on
the testbed. Therefore, data is exchanged between two ends of
a TCP connection as fast as TCP and the network link allow.
To speed up the emulation process, we compress the four-hour
tracing period into one hour, but keep the volume of each TCP
connection unchanged.

2) Asymmetric traffic: hashing based vs. load based link
selection algorithm: In this test, we only use client in to create
connections with server out. So most traffic is from client in
to server out and the traffic is asymmetric. The purpose of this
experiment is to simulate the case when the traffic on an access
link is highly asymmetric. We run the two traces against three
configurations. In first configuration, there is only one access
link through router0. This represents the base case. The second
configuration represents a multihoming site with two access
links, L0 and L1, both of which run at 500Kbps, and their
corresponding routers are router0 and router1, respectively.
The third configuration represents a multihoming site with
three access links, L0, L1, and L2, all of which run at
500Kbps, and their corresponding routers are router0, router1,
and router2, respectively.

We test three load balancing algorithms. The first algorithm
is DRR (Deficit Round-Robin) for each packet. There is no
NAT in this case. The returning traffic of each connection
will go through one router: router0. But the returning traffic is
small. So it doesn’t affect the performance results. This algo-
rithm represents a packet-granularity load balancing algorithm
and thus corresponds to the best load balance result one can
achieve. The second algorithm is hashing based selection algo-
rithm. The hashing function is: selected link = (source ip addr
+ source port + destination ip addr + destination port) %
number of links. The third algorithm is load based selection
algorithm. When a connection needs to be assigned to one link,
we always select the least loaded link. Both hashing based
algorithm and load based algorithm represent flow-granularity
or connection-granularity load balancing algorithms. Even
though we have only two servers and two clients, the above test
set-up faithfully emulates the dynamics of these load balancing
algorithms in the real world.

We use the sum of the durations of the TCP connections in a
trace as the comparison metric because each TCP connection’s

TABLE III

TOTAL DURATION OF ALL CONNECTIONS, THE SMALLER THE VALUE, THE

BETTER THE AGGREGATE THROUGHPUT

Test cases Trace1 (seconds) Trace2 (seconds)

1-ISP, 500 Kbps 79,400 6,957

2-ISP, packet, DRR 29,932 2,059

2-ISP, flow, hash based 30,924 3,357

2-ISP, flow, load based 30,618 2,222

3-ISP, packet, DRR 14,553 1,408

3-ISP, flow, hash based 16,596 2,019

3-ISP, flow, load based 17,531 1,930
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Fig. 8. The durations of the top 100 longest flows in the one-ISP, two-
ISP and three-ISP configurations under Trace1. For two-ISP and three-
ISP configurations, we use the flow-granularity load-based link selection
algorithm.

duration typically represents the user waiting time. Table III
shows the resulting duration sum for the two traces and under
different configurations and load balancing algorithms. Sur-
prisingly, despite its stateless nature, hashing based algorithm
exhibits a similar performance to load based algorithm, except
when they use flow granularity in the two-ISP configuration
under Trace2. Moreover, as the number of access links in-
creases, the performance difference between hashing based
and load based algorithms decreases, because hashing tends to
produce more evenly distributed results when the hash table is
larger. Finally, the performance difference between the packet-
granularity DRR and the two flow-granularity load balancing
algorithm is not that significant, under 15% for all cases except
the three-ISP configuration under Trace2. This result shows
that being able to exploit inter-connection parallelism in many
cases can already achieve pretty good performance without
exploiting intra-connection parallelism.

Figure 8 shows the duration of the top 100 longest connec-
tions in the three configurations under Trace1, when the flow-
granularity load balancing algorithm is used. This figure shows
that multiple access links can indeed dramatically decrease the
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Fig. 9. Example to demonstrate the duration decrement factor can be greater
than 2. The magic lies in the fact that the duration will be affected by
when there are concurrent active connections and how many concurrent active
connections are.

duration of long-life-time connections, sometimes by a factor
that is more than the number of access links, in this case
2. For example, under Trace1, the total sum of connection
durations is 79K seconds in the one-ISP configuration and 30K
seconds in the two-ISP configuration. The decrement factor
is 2.6. This result is somewhat counter-intuitive, but can be
explained by the fact that connections may overlap in time
and an overlapped period is counted by as many times as the
number of connections that cover it.

Figure 9 showed a concrete example to demonstrate why
the sum of connection durations can be decreased by a factor
of more than 2 for a 2-ISP configuration. Two cases are
considered here, the one-link case and the two-link case. The
link speed and the traffic load in both cases is the same. There
are totally four connections, each with the same amount of data
to be sent. The duration of a connection is 1 if the connection
can use the whole link. Two connections, f0 and f1, start at
time 0, and two other connections, f2 and f3, start at time 1.

Assume we can achieve perfect load balance in the two-
link case. Two connections, f0 and f1, start at time 0, and are
assigned to L0 and L1, respectively. At time 1, f0 and f1 are
done and f2 and f3 start. At time 2, f2 and f3 are done. The
duration of each connection is 1 and the sum of connection
durations is thus 4. In the one-link case, at time 1, f0 and
f1 only finish 0.5 of their task since they two share one link.
Flow f2 and f3 will start just as in the two-link case. Now
four connections share one link. At time 2, f0 and f1 finish
0.75 of their task. Flow f2 and f3 finish 0.25 of their task. At
time 3, f0 and f1 are done. Flow f2 and f3 finish 0.5 of their
task. After time 3, only f2 and f3 use the link. So at time 4,
f2 and f3 will be done too. The duration of each connection
is 3 and the sum of connection durations is 12. Therefore, the
ratio between the sums of connection durations of these two
cases is 3. Interesting enough, if f2 and f3 start at time 0 or
start at time 2, the ratio between these two cases will be only
2.

Figure 10 shows the load imbalance between two access
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Fig. 10. The load difference between two access links (solid line) under a
flow-granularity load-based link selection algorithm is small, especially when
the sum of the loads on the two links (dashed line) is high. When the sum
of the two links’s loads is low, the load difference of these two links matters
less because one link can already serve all the requests.

links for a flow-granularity load based link selection algorithm
in the two-ISP configuration. When the sum of the two links’
loads is high, the load difference between the two links is
small. Significant load imbalance occurs mostly when the sum
of the links’ loads is small. However, load imbalance does not
affect the overall performance that much in these scenarios,
because a single link is sufficient to carry the load. This
result explains why flow-granularity load balancing algorithm
can achieve similar performance as packet-granularity DRR
algorithm.

3) Symmetric traffic: direction known vs. direction un-
known: To determine the importance of load balancing along
each traffic direction separately, we test two load balanc-
ing algorithms, one maintaining a separate load statistic for
each traffic direction on each access link and requiring the
knowledge of the dominant traffic direction of each TCP
connection, and the other maintaining a single load statistic
for each access link ((outgoing load + incoming load)/2) and
not requiring any knowledge of the dominant traffic direction
of each TCP connection. To generate traffic, we start the
same traffic from client out to server in and from client in
to server out. Server in has two public IP address and one
public name. ISMD will return one IP address to client out
based on the load of the links. There are two routers in the
test. Client out will query ISMD for the IP address of server in
via DNS each time it create connections with server in because
ISMD answers the query with TTL as zero.

Table IV shows the sum of all connection durations in
each direction under Trace1 and Trace2 when the two load
balancing algorithms are used. The result indicates that a
load balancing algorithm that works on each traffic condi-
tion separately is only 11% better than a bi-directional load
balancing algorithm under Trace1, but is 36% better under
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TABLE IV

THE SUM OF CONNECTION DURATIONS ASSUMING THE DOMINANT TRAFFIC DIRECTION OF EACH CONNECTION IS KNOWN OR UNKNOWN. THE

COMPARISON SHOWS THE KNOWLEDGE OF TRAFFIC DIRECTION ONLY HELPS A LITTLE BIT IN DECREASING THE SUM OF CONNECTION DURATIONS.

Algorithm Trace1 Incoming (seconds) Trace1 Outgoing (seconds) Trace2 Incoming (seconds) Trace2 Outgoing (seconds)

Bi-Directional 45,462 34,924 4,474 3,885

Uni-Directional 36,475 35,034 2,623 2,685

Trace2. Although it requires additional information on the
dominating traffic direction of each connection, uni-directional
load balancing algorithms appear to be worthwhile in practice.

V. CONCLUSION

The advent of inexpensive broadband connections motivates
the development of multihoming load balancing technology to
convert a set of access links that are somewhat unreliable and
do not have predictable performance into a high-performance
and robust Internet connection, much like a RAID controller
turns a set of inexpensive PC-based disks into a high-
performace disk subsystem that is comparable in reliability
to custom-made mainframe-class disks. Despite its promising
role in future Internet connectivity solutions for small and mid-
sized enterprises, very little is published in the open literature
about its design tradeoffs and implementation considerations.
The first contribution of this paper is a comprehensive analysis
of the design space of multihoming load balancing systems.

The second contribution of this paper is that it presents the
first quantitative measurements to evaluate the effectiveness of
various design decisions of load balancing algorithms. These
measurements are collected by running a real packet trace
against a commercial multihoming load balancing system.
Among the important lessons from this study are

• Although hashing based link selection algorithm is state-
less, its effectiveness is comparable to load based link
selection algorithm,

• Performance difference between connection-granularity
and packet-granularity load balancing algorithms is rel-
atively modest, suggesting NAT-based load balancing
schemes are quite adequate in practice, and

• Balancing the loads on the access links separately for
each traffic direction is worthwhile, although it requires
additional information on the dominating traffic direction
information for each connection.

As for future work, we plan to carry out a more thorough
study on the performance behavior of other aspects of a
multihoming load balancing system, including the comparison
between active probing and passive monitoring, the tradeoff
between effectiveness and performance overhead of latency-
based link selection algorithm, the performance cost of inte-
grating node and link fault tolerance, etc.
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