
 1

Cover page

Secure Collective Defense System

C. Edward Chow, Yu Cai, David Wilkinson and Ganesh Godavari
Department of Computer Science

University of Colorado at Colorado Springs
Colorado Springs, CO 80933-7150, USA

(719)262-3110
{chow, ycai, dbwilkin, gkgodava }@cs.uccs.edu

Abstract

In this paper, we present the design and implementation of the Secure COLlective Defense (SCOLD) system against DDoS
attacks. The key idea of SCOLD is to follow intrusion tolerance paradigm and provide alternate routes via a set of proxy servers
and alternate gateways when the normal route is unavailable or unstable due to network failure, congestion, or DDoS attack. The
BIND9 DNS server and its DNS update utilities were enhanced to support new DNS entries with multiple indirect route
information. Protocol software for supporting the establishment of indirect routes based on the new DNS entries was developed
for Linux systems. Experimental results show that SCOLD can improve the network security, availability and performance.
Preliminary simulation results using NS2 indicate that the performance is scalable with respect to the indirect route initial setup
overhead and processing overhead.

Keyword: Intrusion Detection, Intrusion Tolerance, DDoS, Secure Collective Defense, Indirect Route, Secure DNS update

 2

Secure Collective Defense System*

C. Edward Chow, Yu Cai, David Wilkinson and Ganesh Godavari
Department of Computer Science

University of Colorado at Colorado Springs
Colorado Springs, CO 80933-7150, USA

{chow, ycai, dbwilkin, gkgodava }@cs.uccs.edu

Abstract

In this paper, we present the design and implementation
of the Secure COLlective Defense (SCOLD) system against
DDoS attacks. The key idea of SCOLD is to follow
intrusion tolerance paradigm and provide alternate routes
via a set of proxy servers and alternate gateways when the
normal route is unavailable or unstable due to network
failure, congestion, or DDoS attack. The BIND9 DNS
server and its DNS update utilities were enhanced to
support new DNS entries with multiple indirect route
information. Protocol software for supporting the
establishment of indirect routes based on the new DNS
entries was developed for Linux systems. Experimental
results show that SCOLD can improve the network
security, availability and performance. Preliminary
simulation results using NS2 indicate that the performance
is scalable with respect to the indirect route initial setup
overhead and processing overhead.

Keyword: Intrusion Detection, Intrusion Tolerance, DDoS,
Secure Collective Defense, Indirect Route, Secure DNS
update

1. Introduction
The increasing frequency and severity of network attacks

nowadays reveal one of the fundamental security problems
of today’s Internet. Many network services like Domain
Name Server (DNS) and protocols like TCP were not
originally designed with security as one of the basic
requirements. The highly distributed and interdependent
nature of Internet provides opportunities and resources for
the coordinated and simultaneous malicious actions by
some participants. Due to the same nature, it is difficult to
enforce common security policies, measurements and
coordination among the participants of Internet. Therefore,
the existing Internet architecture needs to be strengthened
and services / protocols need to be enhanced or re-designed
with security in focus.

The objective of the Secure Collective Defense (SCOLD)
project is to create a secure collective Internet defense
system that utilizes resources allocated by participating
organizations. The key idea of SCOLD is to provide clients
with alternate routes via a set of proxy servers when the

normal route is unavailable or unstable. The main
techniques utilized in SCOLD are Indirect Route and
Secure DNS Update. SCOLD can be used to defend against
DDoS attacks, or to provide alternate or additional routes
for dynamic bandwidth provisioning.

The rest of this paper is organized as follows. In Section
2, we give an overview of the SCOLD system. In Section 3,
we present the design and implementation of enhanced
secure DNS update with multiple indirect route entries and
DNS query via indirect route. In Section 4 the indirect
routing using IP Tunnel is presented. In Section 5 we
present experimental results and simulation results. Related
work is surveyed in Section 6 while the conclusion is drawn
in Section 7.

2. SCOLD System Overview
2.1 Motivation

Most organizations today deploy multiple gateways or
multi-homing scheme to defend against a large scale DDoS
attack. When the main gateway is under DDoS attack, the
clients’ traffic should be redirected to the alternate
gateways. However, once the alternate gateways are
exposed to public domain, they are subject to DDoS
attacks.

Therefore, the two challenges are how to utilize alternate
gateways while hiding their IP addresses from public
domain, and how to redirect the heterogeneous clients’
traffic to alternate gateways.
2.2 System architecture

Most DDoS defense techniques presume the scenario
where packets are transmitted along a normal Internet route
while the intermediate network topology is unchanged.
Under large-scale DDoS attacks, such techniques may
suffer significant performance degradation.

The SCOLD system defends against DDoS attacks by
setting up indirect routes between clients and target server
via a collection of geographically separated proxy servers
and alternate gateways. The traffic between clients and
target server is transported over Internet through the
indirect routes.

Figure 1-3 illustrates how SCOLD system works. Figure
1 shows a target site under DDoS attacks where R is the
main gateway, and R1-R3 are the alternate gateways. In the
figure the majority of the traffic from net-a.com is

* This research work was supported in part by a NISSC AFOSR Grant award
under agreement number F49620-03-1-0207.

 3

 Target

Proxy1 Proxy2 Proxy3

A A A

DNS1

Net-a.com

R

C C C

DNS3

Net-c.com

R

Target server

DNS

R
R1 R2 R3

Coordinator

Secure DNS update

SCOLD Control Msg

B B B

DNS2

Net-b.com

R

Proxy4

 Target

Proxy1
Proxy2

Proxy3

A A A

DNS1

Net-a.com

R

C C C

DNS3

Net-c.com

R

Target server

DNS

R
R1 R2 R3

Coordinator
Client Traffic

DDoS attack Traffic

Indirect Route

B B B

DNS2

Net-b.com

R

Proxy4

 Figure 1: Target site under DDoS attack Figure 2: The control flow in SCOLD Figure 3: Indirect route in SCOLD

malicious, that of net-b.com is legitimate, and that of net-
c.com is mixed.

Figure 2 shows the control flow of the SCOLD system.
When the target site is under DDoS attacks, its Intrusion
Detection System (IDS) raises an intrusion alert and
notifies the SCOLD coordinator, who sits in the same or
trusted domain of the target server. The coordinator then
notifies some selected proxy servers (proxy 2 and 3 here) to
set up indirect routes. The proxy servers notify the DNS
servers of the legitimate clients to perform a secure DNS
update. The clients from net-b.com and net-c.com are
notified with indirect route, but net-a.com is not notified
due to its malicious traffic pattern.

Figure 3 shows how an indirect route is setup in SCOLD
system. After a secure DNS update, the client side DNS
server gets the new DNS entry containing the designated
proxy servers IP addresses. The clients query the DNS
server, get the proxy server IP addresses, and can set up
indirect routes to the target server via the selected proxy
servers. The proxy servers examine the incoming traffic
and relay it to a designated alternate gateway on the target
site.

On the client side, the name resolve library needs to be
enhanced and the routing table needs to be modified to
support the indirect routing. In enterprise environment, the
internal clients go outside through an enterprise gateway (or
an enterprise proxy server). Instead of modifying the
clients, the enterprise gateway needs to be enhanced to
support the indirect route.

Note that the scheme we proposed here doesn’t help the
existing connections. One way to affect the existing
connections is to install software on the client machines
that listen to the indirect routing message from the SCOLD
proxy servers.

In SCOLD, the IP addresses of the alternate gateways
and the SCOLD coordinator(s) are revealed only to the
trustworthy proxy servers to protect them from being
attacked by malicious clients. The clients in public domain
can connect to the target side through the designed proxy
servers.

The proxy servers in SCOLD are enhanced with IDS and
firewall filters to block malicious traffic that may try to
come in through the indirect route. The detection of
intrusion on the proxy servers can provide additional
information for identifying and isolating the spoofed attack
sources. In Figure 3, the attack source from net-c.com could
be more accurately identified by combing the intrusion

detection results from the main gateway R and the proxy
server 3.

A proxy server itself may suffer from DDoS attacks or
get congested when large volume of traffic comes through
it. Assuming a large collection of proxy servers available,
the impact of heavy traffic can be alleviated by spreading
traffic over multiple proxy servers. However, detecting and
handling the comprised proxy servers is not an easy task.
To avoid traffic analysis by intruders, multiple proxy
servers can be deployed on each indirect route.

The procedure for resuming normal route is similar to
setting up indirect route. The proxy servers need to notify
the client DNS servers with another secure DNS update to
restore the normal DNS records. The clients query the DNS
server and start to resume the normal direct route. We can
also set an “expiration time” on indirect route so that
SCOLD can automatically revoke obsolete indirect routes.

All the control messages communicated in SCOLD
system are encrypted using Secure Sockets Layer (SSL)
and all nodes involved must be mutually authenticated.
Experiments show that this is one of the major causes of
overhead in SCOLD system.

Proxy servers can be provided by the participating
organizations of SCOLD, or fee-based service providers.
2.3 More SCOLD applications

An enhanced SCOLD with integrated IDS can be used to
defend against very large-scale DDoS attacks like
MyDoom [4], which knocked the SCO website offline in
2004.

The SCOLD coordinator collects and analyzes the target
server system load, available network bandwidth and the
statistics of the client traffic. Based on the information, the
coordinator can inform each proxy server what is the
allowed maximum bandwidth usage connecting to the
target server. The proxy servers equipped with admission
control and rate-limiting mechanism can enforce such
bandwidth throttling. In Figure 3, the coordinator may
assign different allowed maximum bandwidth to proxy 2
and 3, depending on the sever load and client behavior. The
integrated IDS can control aggressive or malicious clients
and reserve resources for normal operation.

A slightly revised version of SCOLD can be used to
protect the Root DNS servers from DDoS attacks, like the
one caused a brief service disruption on the nine of the
thirteen DNS root servers in 2002 [3]. In Figure 4, the DNS
servers 1-3 are clients and the root DNS server is the target.
The steps to set up indirect routes are similar to what we

 4

described before. The server side IDS raises alert and
notifies the coordinator; the coordinator notifies the
selected proxy servers (proxy 2, 3 here); the proxy servers
notify the DNS servers with their IP addresses; the DNS
servers then set up indirect routes to the root DNS via the
proxy servers and the alternate gateways.

3. Secure DNS update
As discussed in Section 2, one of the challenges in

SCOLD is to inform clients about the proxy server IP
addresses. We propose to utilize existing DNS system by
adding additional proxy server IP addresses in DNS record.
The new DNS record in the DNS zone file looks like the
following.

target.targetnet.com. 10 IN A 133.41.96.71
target.targetnet.com. 10 IN ALT 203.55.57.102
 10 IN ALT 203.55.57.103
 10 IN ALT 185.11.16.49

The first line is a normal DNS entry, containing host
name and its IP address. The next 3 lines contain the IP
addresses of proxy servers, as newly defined “ALT”
(alternate) type. Such DNS entries need to be securely
updated from target side DNS server to client side DNS
servers upon request. When client queries its own DNS
server, it gets informed whether an indirect route needs to
be set up and how to set it up, by checking the entries with
“ALT” type data.

During the DNS record transfer from the target DNS
server to the client DNS server, the main gateway on target
domain may be unavailable or unstable due to DDoS
attacks. Therefore, we use indirect route to perform the
update. Figure 5 illustrates how secure DNS update via
indirect route works. The target side IDS raises intrusion
alert, notifies the coordinator; the coordinator notifies the
selected proxy server(s); the proxy server notifies the client
DNS server; the client DNS server set up indirect route to
the target DNS server via the proxy server and the alternate
gateway; the client DNS server performs the secure DNS
update and get DNS records from target DNS server.

The existing DNS server needs to be modified to support
the new DNS record format. On client side, the domain
name resolve library needs to be modified to enable the
automated setup of indirect route. The routing table on
client needs to be modified at run time.

There are other secure DNS solutions like DNSSEC [5]
(DNS Security Extensions) and secure DNS dynamic
update [6]. But they don’t support the new DNS record

format and the secure DNS update through indirect route.
Therefore, they don’t fit into the SCOLD context.

4. Indirect route
We investigate several alternatives for implementing

indirect route, including SOCKS proxy [7], Zebedee [8],
IPSec [9] and IP tunnel [10].

SOCKS proxy server is like an old switchboard and can
cross wire between connections. The main drawbacks of
SOCKS are that it doesn’t support UDP and FTP.

Zebedee is an application to establish an encrypted and
compressed tunnel between two systems. But it requires
specific configuration per network application.

IP tunnel is a technique to encapsulate IP datagram
within IP datagram. This allows datagram destined for one
IP address to be wrapped and redirected to another IP
address. IP tunnel provides what we want for indirect route.

IPSec is an extension to the IP protocol which provides
security to the IP and the upper-layer protocols. We believe
whether client traffic needs to be encrypted is a client
decision. Therefore, we choose IP tunnel to support basic
indirect routing. However, the implementation using IP
tunnel can be migrated to using IPSec easily. IP tunnel and
IPSec have been used widely in Virtual Private Network
(VPN) [14] to set up “tunnel” between network nodes and
redirect traffic.

The advantages of using IP tunnel are as follows. IP
tunnel is a layer three protocol. All the upper layer
protocols and applications can utilize it. Second, IP tunnel
is a widely used protocol and supported by most modern
operating systems. Last but not the least, IP Tunnel
consumes limited system resources since it is a device
descriptor.

There is overhead associated with IP Tunnel due to the
extra set of IP header and the reduced payload size. This
can also cause fragmentation and reassembly overhead. In
our experiments, the overhead in term of response time
varies between 30% and 200%. But compared with the
impact of DDoS attack, which may cause unbearable delay,
the overhead of IP tunnel is still in an acceptable range.
Fragmentation overhead can be avoided if we restrict the
message transfer size at the sender.

Figure 6 illustrates how the indirect route is set up by
using IP tunnel. The client queries its DNS and get the IP
addresses of proxy servers; the client sends a request to a
proxy server for indirect route; if the proxy server grants
permission, it notifies the designated alternate gateway; the
alternate gateway notifies the target server, then an indirect

Figure 4: Protect the root DNS server Figure 5: Secure DNS update via indirect route

 5

route can be set up between the client and the target server
via the proxy server and the alternate gateway. We set a
timeout value at client side in case the communication is
lost or the indirect route is broken.

5. Experimental and simulation results
In this section, we present some preliminary experimental
and simulation results on SCOLD.
5.1 Prototype implementation

We implemented the secure DNS update and DNS query
via indirect route on Bind9 (v.9.2.2) DNS package [11], by
modifying the nsreroute command, and putting add-ons to
the BIND9 DNS server. The domain name resolve library
was enhanced (v.2.3.2) by modifying the res_query()
routine to support the indirect route. In Redhat Linux, the
resolve library is usually located in /usr/lib or /lib directory,
and named as libresolv-nnn.so (nnn is the version). The
indirect route on Linux Redhat 8 and 9 was realized with IP
tunnel. We also tested indirect route on Windows 2000
server using IP tunnel. OpenSSL (v.0.9.6) [2] is utilized for
authentication and encryption.
5.2 Experimental setup

We set up a test bed consists of more than 20 nodes with
various machine settings. The test bed includes HP Vectra
machines (PIII 500MHz, 256MB RAM, 100Mb Ethernet
connection), HP Kayak machines (PII 233MHz, 96MB
RAM, 10/100 Mb Ethernet connection), Dell machines
(PIII 1GHz, 528MB RAM, 100 Ethernet connection) and
virtual machines (96MB RAM, 100 Mb virtual Ethernet
connection, running on a Dell machine with dual PIII
1.2GHz and 4G RAM). The operating systems are Linux
Redhat 8, 9 and Windows 2000 server.

StacheldrahtV4 [12] is used as the DDoS attack tool.
5.3 Analysis of the experimental results

We first evaluate the time taken to initially set up an
indirect route in SCOLD. As discussed previously, there are
three steps involved. Step 1, "IDS -> coordinator -> proxy".
The overhead comes from the secure communication
among nodes. Step 2, "Proxy -> client DNS -> perform
secure DNS update". The overhead comes from the secure
communication and the secure DNS update. Step 3, "client
-> client DNS -> set up indirect route". The overhead
comes from the secure communication, the client side
resolve library processing overhead and the time to set up
indirect route.

Table 1 shows the initial setup time in SCOLD. It is
observed that the overhead comes primarily from the secure
DNS update and the secure communication among nodes.

Table 2 further shows that the secure DNS update time
increases dramatically when the number of client DNS
servers increase. This suggests that there is a limit on how
many client DNS servers a proxy server can handle
concurrently.

Table 1: Initial setup time (second)
Step 1 Step 2 Step 3 Total

2.1 4.7 2.7 9.5

Table 2: Secure DNS update time (second)

1 DNS 10 DNS 25 DNS 50 DNS

4.7 25 96 240

Table 3 shows the processing overhead by using indirect

route after it is set up. It comes from the IP tunneling
overhead and more Internet hops involved in indirect route.
We can observe that the overhead of indirect route in term
of response time is about 70%. Further experiments shows
the overhead varies from 30%–200%. However, under
DDoS attack, the response time of using direct route
increases dramatically (15 times to infinity), while the
response time of using indirect route keep the same
(Assuming no DDoS attack against proxy servers directly).

Table 3: Indirect Route processing overhead vs.
Direct Route delay under DDoS attack

No attack Under DDoS attack

Test Direct
Route

Indirect
Route

Indirect
Route

Overhead

Direct
Route

Direct
Route
Delay

Indirect
Route

Ping

49 ms 87 ms 77% 1048 ms 21 times

HTTP(100k) 6.1s 11s 80% 109s 18 times

HTTP(500k)

41s 71s 73% 658s 16 times

HTTP(1M)

92 s 158s 71% timeout infinity

FTP(100k)

4.2 s 7.5s 78% 67s 16 times

FTP(500k)

23 s 39s 69% 345s 15 times

FTP(1M)

52 s 88s 69% 871s 17 times

same
as no
attack

Table 4: The influence of how many tunnels exist

Test 1 tunnel 10 tunnels 50 tunnels 100 tunnels

Ping 87 ms 87 ms 87 ms 87 ms

HTTP(100k) 11s 11s 11s 11s

Table 4 shows that the number of IP tunnels on network

nodes doesn’t affect the performance, because IP tunnel
itself consumes very limited system resources.

It is observed that, compared with the impact of DDoS
attacks, SCOLD can improve the network security,
availability and performance with acceptable initial setup
overhead and processing overhead.
5.4 Preliminary simulation results
 To further analyze the overhead in SCOLD, the ns2
simulator [13] was used to perform the simulation study for
large-scale network. The topologies used in simulation are
generated using GT-ITM [15]. We create transit-stub

Figure 6: Indirect route by using IP tunnel

 6

graphs with 100-500 nodes. We pick nodes in the same stub
for target server, target DNS server, coordinator, main
gateway and 3 alternate gateways. We randomly pick 10%
nodes as proxy servers, 5% nodes as DDoS attackers, 20%
nodes as clients and 4% nodes as client DNS servers.

For simplicity, we set the overhead of IP tunneling and
the overhead of secure communication to be a fixed
percentage with a small random change. We randomly
generate background traffic whose average is 60% of the
total network bandwidth. We generate DDoS attack traffic
which can completely shutdown the victim. We keep proxy
servers away from being attacked directly.

Figure 7 shows that the average initial setup time of
indirect route increases slowly when the network size
increases. Figure 8 shows that the indirect route processing
overhead keeps nearly constant when the network size
increases. In both figures, SCOLD demonstrates good
scalability with respect to the initial setup overhead and the
processing overhead.

6. Related works
J. Mirkovic, et al. presented a taxonomy of DDoS attacks

and DDoS Defense Mechanisms [16]. SCOLD falls into the
category of reconfiguration and cooperative mechanism.
Related works in reconfiguration mechanism include
reconfigurable overlay networks ([17], [18]), resource
replication services [19] and attack isolation strategies
([20]). These works focused on either adding more
resources to the victim or isolating the attack machines by
reconfiguring the network. SCOLD also changes the
intermediate network topology but with different
techniques and purposes. The cooperative DDoS defense
mechanism is limited by the highly independent nature of
Internet. SCOLD manages to utilize collective resources
with tighten coordination and cooperation.

Akamai [1] is a distributed content delivery system which
significantly alleviates service bottlenecks and shutdowns
by delivering content from the Internet’s edge. Akamai
redirects client requests to the nearest available server
likely to have the requested content. With more than 12,000
servers in over 1,000 networks, Akamai routinely delivers
15% of the total Web traffic. The similar between SCOLD
and Akamai is that both redirect client traffic. Even though
they are used for different purposes, they could benefit
from each other by sharing the service servers.

7. Conclusions
We present the SCOLD architecture to defend against

DDoS attacks by redirecting the traffic between clients and
servers through indirect routes via proxy servers and
alternate gateways. BIND9 DNS package was modified to
support secure DNS update. IP tunnel was utilized to
implement indirect routing. The preliminary results show
that SCOLD can improve the network security, availability
and performance. It is our hope that the research results of
SCOLD can produce a valuable secure software package,
and provide insights for network security and Internet
cooperation.

References
[1] Akamai.com, http://www.akamai.com
[2] OpenSSL, http://www.openssl.org
[3] Internetnews, “Massive DDoS Attack Hit DNS Root
Servers”, http://www.internetnews.com/
[4] Internetweek, “SCO Moves Web Site To Battle
MyDoom”, http://www.internetweek.com/
[5] DNSSEC, http://www.dnssec.net/
[6] Secure DNS dynamic update,
http://www.faqs.org/rfcs/rfc3007.html
[7] SOCKS proxy server,
http://www.tldp.org/HOWTO/Firewall -HOWTO-11.html
[8] Zebedee, http://www.winton.org.uk/zebedee/
[9] IPSec, http://www.ietf.org/html.charters/ipsec-
charter.html
[10] “IPIP tunnel”, http://www.europe.redhat.com/
documentation/HOWTO/Net-HOWTO/x1284.php3
[11] DNS BIND 9, http://www.isc.org/products/BIND/
[12] StacheldrahtV4, http://cs.uccs.edu/~scold/ddos
[13] NS2, http://www-mash.cs.berkeley.edu/ns
[14] Virtual Private Network, http://www.vpnc.org/
[15] GT-ITM, http://www.cc.gatech.edu/projects/gtitm/
[16] Jelena Mirkovic, et al. “A Taxonomy of DDoS Attacks
and DDoS Defense Mechanisms”, UCLA Technical Report
[17] D. G. Andersen, et al., "Resilient Overlay Networks,"
In Proceedings of 18th ACM SOSP, October 2001.
[18] Information Sciences Institute, “Dynabone”,
http://www.isi.edu/dynabone
[19] J. Yan, S. et al., "The XenoService – A distributed
defeat for DDoS", In Proceedings of ISW 2000.
[20] BBN Technologies, "Applications that participate in
their own defense," http://www.bbn.com/infosec/apod.html

0

5

10

15

20

100 200 300 400 500
Network size

in
iti

al
 s

et
up

 t
im

e
 (

s)

0%

20%

40%

60%

80%

100%

100 200 300 400 500
Network size

pr
oc

es
si

ng
 o

ve
rh

ea
d

 Figure 7: average initial setup time vs. network size Figure 8: indirect route processing overhead vs. network size

