Secure Collective Internet Defense (SCID)
A midterm report submitted to
Network Information and Space Security Center (NISSC)
for Summer 2003

C. Edward Chow
Yu Cai
David Wilkinson

1. Introduction

1.1 Project Goal
The objective of this project is to create a secure collective internet defense system (SCID) that utilizes new cyber security defense techniques. SCID will push back intrusion attacks using an enhanced Intrusion Detection System and Isolation Protocol (IDIP) among a set of routers, and tolerate Distributed Denial of Services (DDoS) attacks with secure Domain Name System (DNS) updates, and alternate routes via a set of proxy servers with intrusion detection.

[image: image1.png]net-b.com
!

Need to Inform Clients or
Client DNS servers!

But how to tell which Clients

DNS are not compromised?

> DDoS Attack Traffc Alternate How to hide
== Client Traffic Gat IP addresses of
ateways Alternate Gateways?

[image: image2.png]net-b.com
!

Sends Reroute
distress Command with DNS/IP Addr. Of

Proxy and Victil

Figure 1: DDoS attack without alternate routes [12]

Figure 2: DDoS attack with alternate routes [12]

Figure 1 shows the attacked target under DDoS attack, without the implementation of alternate routes. As a consequence, the bandwidth of legitimate clients is greatly reduced. Figure 2 shows the attacked target under DDoS attack, with the implementation of alternate routes. The attack network will be blocked at proxy servers, but the legitimate users will get updated alternate DNS entry information, and be re-directed to alternate routes.

1.2 Project Status

So far, we have reached two significant milestones in the SCID project:

a) Developed client side indirect routing by setting up IP tunnels.
We have successfully set up IP tunnels among machines running either linux (Redhat 8 or 9) or windows (2000 server version). The configuration can be linux to linux, windows to windows, or between linux and windows. We have implemented a demon process running on client machine / proxy server / alternate gateway, listening to a certain port, waiting for message from a SCID coordinator, and setting up IP tunnel automatically. We are working on changing the resolver library on linux so that the setup of IP tunnel will be automatically and transparent to client. All the communications between client and the SCID coordinator will be SSL connections, encrypted and mutually authenticated.

b) Extended Bind9 DNS server software package to include indirect routing entries.
When a client queries the modified DNS server, the client will get a DNS record with multiple proxy server IP addresses in addition to ordinary domain name and IP address mapping information. An indirect route can then be setup on client machine through the selected proxy server. We are working on using SSL to authenticate and encrypt the communication between DNS server and the SCID coordinator.

The rest of the report is organized as follows: in Section 2, we present the detailed design of indirect route using IP tunnel. Section 3 presents the extension of Bind 9 DNS server software package with indirect routing entries included. Section 4 presents a performance test on IP tunnel overhead. Section 5 presents the future work.

2. Indirect Routing

2.1 Introduction to IP tunnel
We have investigated several alternatives for implementing indirect routing. The alternatives include Zebedee [1], SOCKS proxy server [2], and IP tunnel. The advantage of using IP tunnel is that it is a layer three protocol; therefore all the upper layer protocols and applications can use it. Second, IP tunnel is installed with Redhat 8 and 9 by default, and setting up IP tunnel doesn’t require additional software installation or kernel compilation.
IP tunnel (also called IP encapsulation) is a technique to encapsulate IP datagram within IP datagrams. This allows datagrams destined for one IP address to be wrapped and redirected to another IP address. There are 3 kinds of tunnels: IP over IP tunnel, GRE tunnel and tunnels that live outside the kernel [3]. In this project, we choose IP over IP tunnel, also noted as IPIP tunnel. In the next stage, we might investigate the possibility of using IPsec tunnel for secured IP tunnel.
Even through IP Tunnel supports any upper layer transport protocols, it increases overhead by an extra set of IP headers. Typically this is 20 bytes per packet, so if the normal packet size (MTU) on a network is 1500 bytes, a packet that is sent through a tunnel can only be 1480 bytes big, therefore the payload size is reduced. This also causes fragmentation and reassembly overhead. But these overheads can be reduced or avoided by setting smaller MTU at the client side.
Here is an IP tunnel diagram:

[image: image3.jpg]Tunnel Endpoints

Transt
Intemetvork
Header

Paybad <

Transit Internetwork \

Tunnel

Tunneled
Protiong:

2.2 Setup IP over IP tunnel on Redhat Linux

The steps for setting up an IP tunnel are:
1) Check if IP tunnel package installed or not. If not, install IP tunnel package.
2) Configure network interface / route tables / firewall rules on the machines you want to set up IP tunnel.
3) Verify that the IPIP tunnel has been set up successfully
2.2.1) Check if IP tunnel package installed or not.
The Redhat 8 and 9 distributions have IP tunnel package installed by default installation. You can check this by running command "ip tunnel add tunl1 mode ipip remote 192.168.1.1". If you can successfully add a new ip tunnel, then you are OK. Otherwise you need to recompile linux kernel to enable IPIP tunnel [4] .
2.2.2) Config network interface / route tables / firewall rules
Below is the test bed we have set up in our network labs (all machines are running redhat 9)

[image: image4.png]-Tunnel 1-

~Tunnel 2—

Client
128.198.61.51

Tunnel 3

=
Proxy
128.198.60.42

Gateway
128.198.60.200

—Tunnel 4—

Proxy 2
128.198.61.100

Gateway 2
128.198.60.199

/Attacked Target
128.198.60.201

In most IP tunnel scenarios, two addresses, one public IP address and one private IP address, are used to config the tunnel. It makes sense because connecting two private LANs through IP tunnel is one of the major uses of IP tunneling. But in our project, we also explore the configuration of the IPIP tunnel with only public IP addresses. Below are scripts on each machine.

a) IPIP tunnel config script on client side
	#!/bin/sh
#define var
client_ip=128.198.61.51
client_gw=128.198.61.1
proxy_ip=128.198.60.42
proxy_gw=128.198.60.1
gw_ip=128.198.60.200
gw_gw=128.198.60.129
target_ip=128.198.60.201
tunl=tunl1

#config tunnel between client and proxy
ip tunnel add $tunl mode ipip remote $proxy_ip dev eth0
ifconfig $tunl $client_ip
ip link set $tunl up
ip route add $proxy_ip via $client_gw dev $tunl onlink

#route traffic between client and gateway through tunnel
ip route add $gw_ip via $client_gw dev $tunl onlink

#route traffic between client and target through tunnel
ip route add $target_ip via $client_gw dev $tunl onlink

b) IPIP tunnel config script on proxy side

	#!/bin/sh
iptables -F
iptables -P INPUT ACCEPT
iptables -P FORWARD ACCEPT
#enable ip forwarding
echo "1" > /proc/sys/net/ipv4/ip_forward

#define var
client_ip=128.198.61.51
client_gw=128.198.61.1
proxy_ip=128.198.60.42
proxy_gw=128.198.60.1
gw_ip=128.198.60.200
gw_gw=128.198.60.129
target_ip=128.198.60.201

#config tunnel between proxy and client
tunl=tunl1
ip tunnel add $tunl mode ipip remote $client_ip dev eth0
ifconfig $tunl $proxy_ip
ip link set $tunl up
ip route add $client_ip via $proxy_gw dev $tunl onlink

#config tunnel between proxy and gateway
tunl=tunl2
ip tunnel add $tunl mode ipip remote $gw_ip dev eth0
ifconfig $tunl $proxy_ip
ip link set $tunl up
ip route add $gw_ip via $proxy_gw dev $tunl onlink

#route between proxy and target through tunnel
ip route add $target_ip via $proxy_gw dev $tunl onlink

c) IPIP tunnel config script on gateway side
	#!/bin/sh

iptables -F
iptables -P INPUT ACCEPT
iptables -P FORWARD ACCEPT
echo "1">/proc/sys/net/ipv4/ip_forward

#define var
client_ip=128.198.61.51
client_gw=128.198.61.1
proxy_ip=128.198.60.42
proxy_gw=128.198.60.1
gw_ip=128.198.60.200
gw_gw=128.198.60.129
tunl=tunl2

#config tunnel between gateway and proxy
ip tunnel add $tunl mode ipip remote $proxy_ip dev eth0
ifconfig $tunl $gw_ip
ip link set $tunl up
ip route add $proxy_ip via $gw_gw dev $tunl onlink

#route traffic between client and gateway through tunnel
ip route add $client_ip via $gw_gw dev $tunl onlink

d) IPIP tunnel config script on target side

	#!/bin/sh

#define var
client_ip=128.198.61.51
gw_ip=128.198.60.200

#route between client and target through gateway
ip route add $client_ip via $gw_ip dev eth0 onlink

2.2.3) Verify your config and make sure the IPIP tunnel set up successfully.
After the configuration, one should be able to see the ip tunnel device using the commands illustrated below.

	[root@client root]# ifconfig
eth0 Link encap:Ethernet HWaddr 00:0C:29:47:59:30
inet addr:128.198.61.51 Bcast:128.198.61.63 Mask:255.255.255.192
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:116492 errors:0 dropped:0 overruns:0 frame:0
TX packets:543 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:8552726 (8.1 Mb) TX bytes:48894 (47.7 Kb)
Interrupt:18 Base address:0x10a0

tunl1 Link encap:IPIP Tunnel HWaddr
inet addr:128.198.61.51 P-t-P:128.198.61.51 Mask:255.255.255.255
UP POINTOPOINT RUNNING NOARP MTU:1480 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

[root@client root]# ip link show
1: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100 link/ether 00:0c:29:47:59:30 brd ff:ff:ff:ff:ff:ff
2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop link/ipip 0.0.0.0 brd 0.0.0.0
3: tunl1@eth0: <POINTOPOINT,NOARP,UP> mtu 1480 qdisc noqueue link/ipip 0.0.0.0 peer 128.198.60.42

[root@client root]# route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
128.198.60.42 128.198.61.1 255.255.255.255 UGH 0 0 0 tunl1
128.198.61.0 0.0.0.0 255.255.255.192 U 0 0 0 eth0
0.0.0.0 128.198.61.1 0.0.0.0 UG 0 0 0 eth0

Also, you should be able to ping the gateway from the client, and vice verse, by passing through the IPIP tunnel. How does one know that the packages are going through IPIP tunnel, not a regular internet route? Run "netstat -i" on the client or gateway machine several times during the ping session, one will see IP packages passing through tunnel interfaces.

	[root@proxy root]# netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 76651 0 0 0 863 0 0 0 BMRU
tunl1 1480 0 0 0 0 0 0 0 0 0 OPRU

<After a few seconds>

[root@proxy root]# netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 76676 0 0 0 878 0 0 0 BMRU
tunl1 1480 0 52 0 0 0 52 0 0 0 OPRU

<After a few seconds>

[root@proxy root]# netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 76676 0 0 0 878 0 0 0 BMRU
tunl1 1480 0 104 0 0 0 104 0 0 0 OPRU

To disable the tunnel interface, run "ifconfig tunl1 down".

2.2.4) Setup IP tunnel with private IP and public IP
In most IP tunnel scenarios, people use public IP address and private IP address to config the tunnel. It makes sense because connecting two private LANs through IP tunnel is one of the major uses of IP tunneling. Below is the testbed view graph for IP tunnel with private IP and public IP.

[image: image5.png]-Tunnel 1-

~Tunnel 2—

Client
128.198.61.51
192.168.4.1

Proxy
128.198.60.42
192.168.2.1

Gateway
128.198.60.200
192.168.3.1

Attacked Target
128.198.60.201
192.168.3.2

Below is the config script.

a) IPIP tunnel config scipt on client side
	#---
IPIP tunnel config scipt on client side
#---
#config tunl1 connecting client and proxy
ip tunnel add tunl1 mode ipip remote 128.198.60.42 dev eth0
ifconfig tunl1 192.168.4.1
ip link set tunl1 up

#route between client and proxy
ip route add 192.168.2.1 via 128.198.61.1 dev tunl1 onlink
ip route add 192.168.3.1 via 128.198.61.1 dev tunl1 onlink

b) IPIP tunnel config scipt on proxy side

	#---
IPIP tunnel config scipt on proxy side
#---
iptables -F
iptables -P INPUT ACCEPT
iptables -P FORWARD ACCEPT
echo "1" > /proc/sys/net/ipv4/ip_forward

#config tunl1 between proxy and client
ip tunnel add tunl1 mode ipip remote 128.198.61.51
ifconfig tunl1 192.168.2.1
ip link set tunl1 up
ip route add 192.168.4.1 via 128.198.60.1 dev tunl1 onlink

#config tunl2 between proxy and gateway
ip tunnel add tunl2 mode ipip remote 128.198.60.200
ifconfig tunl2 192.168.2.1
ip link set tunl2 up
ip route add 192.168.3.1 via 128.198.60.1 dev tunl2 onlink

c) IPIP tunnel config scipt on gateway side

	#---
IPIP tunnel config scipt on gateway side
#---
#config tunl2 between proxy and gateway
ip tunnel add tunl2 mode ipip remote 128.198.60.42
ifconfig tunl2 192.168.3.1
ip link set tunl2 up
ip route add 192.168.2.1 via 128.198.60.129 dev tunl2 onlink
ip route add 192.168.4.1 via 128.198.60.129 dev tunl2 onlink

2.2.5) Setup IP tunnel on Windows.
If you want to setup IP tunnel on windows, make sure you have windows 2000 server or advance server. Since IP tunnel requires advanced features of routing and remote access, windows Me, window XP, window 2000 professional don't support IPIP tunnel. (This is kind of weird, because windows XP support IPsec tunnel, but not IPIP tunnel.).

Also, IP tunnel on Windows didn't support public IP only configuration, you have to config the machines with private IP as well as public IP. You can set up IP tunnel between two windows machines, or a windows/ a linux. Below is the test bed view graph: (Client is windows 2000 advance server, proxy/gateway/target are redhat 9)

[image: image6.png]-Tunnel 1-

~Tunnel 2—

Win 2000 Client
128.198.60.45
192.168.10.1

Proxy
128.198.60.42
192.168.2.1

Gateway
128.198.60.200
192.168.3.1

Attacked Target
128.198.60.201
192.168.3.2

Here is a step by step guide on how to configure IP tunnel between a windows 2000 advance server and a redhat 9 machine
[client (win 2000, IP 128.198.60.45 and 192.168.10.1) and proxy (redhat 9, IP 128.198.61.51 and 192.168.4.1) in above graph].

	1) On windows 2000 machine (client), see if Routing and Remote Access Service is running
	Windows Control Pane or Administrative Tools ==>Service ==> Routing and Remote Access Running.
If it is not running,
Windows Control Pane or Administrative Tools ==>Routing and Remote Access
==>In the console tree, click the server you use
==> right click "Config Routing and Remote Access"
==> select "Manually Configure server"
==> follow the instruction.

[image: image7.png]| acon weu || & » | B@XERB @

Tee |

Routing and Remote Access

WINA (ocal)

Name.

| & Routing Interfaces
| EL Rerote Access Cints (0)
Eports

5 1P Routing

Fremots Accesspolies
Remote Access Logang

	2) Create Tunnel Interface
	Windows Control Pane or Administrative Tools ==>Routing and Remote Access

==> In the console tree, click the server you use & select Routing Interface

==> R-click Routing Interface & choose 'New IP tunnel'

==> In interface name, type a name for the tunnel, and click OK

Now we have a new IP tunnel interface, below is how we use it.

==> In the console tree, click IP Routing, r-click General, and then click New Interface

==> In Interfaces, click the IP-in-IP tunnel you just created

==> On the Tunnel tab

 - Local address : IP address of the tunnel start point (your public IP)

 - Remote address: IP address of the tunnel endpoint (remote public IP)

[image: image8.png]T E

Genersl Tuvel | Mot Boureaies | Molias Heabeat |

‘Yo can create an[P-in 1P tunnel etuesn two computers and pass deta,
such as mulicast ralfc, tiough i

Local addess:
Remale addess:

Time to Live (TTL:

198 60 45
12819 61 51
=

	3) Add new Static Route

	In Administrative Tools ==> Routing & Remote Access
==> Choose the server you want
==>IP Routing ==> R-click 'Static Route'
==> Select 'New Static Route'
==> Enter the parameter below:
 - Interface : the IP tunnel which you just created.
 - Destination : IP address of the tunnel endpoint (remote private IP)
 - Net Mask : 255.255.255.255
 - Gateway: IP address of the tunnel start point (your public IP)

[image: image9.png]Inteface:

Destination:
Network mask:
Gateway:

Mt

==,
O -
(92 168 4 1

[2% 2% 25

128,19 60 . 45
=

|

I Lse his toute o i e el corretios

	4) Above is the manual configuration on windows 2000. We can use netsh script to setup the ip tunnel on windows.
	#---
IPIP tunnel config batch script on windows 2000 advance server

By Yu Cai (ycai@uccs.edu) at UCCS, June 2003
#---
netsh interface add interface tunl1 tunnel
netsh routing ip set ipiptunnel tunl1 128.198.60.45 128.198.61.50 5
netsh routing ip add rtmroute dest=192.168.4.1 mask=255.255.255.255 nameorindex=tunl1

	5) Now the config on windows 2000 is finished.

Let's config on the redhat 9 machine (Proxy). Here is the script.
	#!/bin/sh
#--
IPIP tunnel config scipt on proxy side
connecting a redhat linux 9 and a windows 2000 advance server

By Yu Cai (ycai@uccs.edu) at UCCS, June 2003
#--

#config tunl1 between win2000 and redhat9
ip tunnel add tunl1 mode ipip remote 128.198.60.45 dev eth0
ifconfig tunl1 192.168.4.1
ip link set tunl1 up

ip route add 192.168.10.1 via 128.198.61.1 dev tunl1 onlink

	6) See if the IP tunnel is really setup.
	Ping 192.168.10.1 from 192.168.4.1 and vice verse.
Run ethereal on one side, you should catch some TCP packages like below.
Notice that the packages have two IP header with different IP address.

[image: image10.png]£ 9. GPie 443368, L3

LLEEINAEL, g ioe g (D redly
e e e T -
Pripsotil s BT e LT
350 203 161 ek e g (e ey
T 3o 102100 211 fiiercetel g e e
3 2 16 etk Ecre (o
R i e A e R A
Ve e SR Sl SLE DR

s e

I T

e e e e rer o

v s TR SR s s amaman o
S B SRS S AN

krwier Coraran Wevtige 5ect0c

]
SF Sa b ca i 0b 05 i oo e O

3. Extend Bind9 Package.
We have extend Bind9 v.9.2.2 DNS server software package, which is written and maintained by the Internet Software Consortium [5, 8], by modifying the nsreroute command, and an add-on to the BIND9 DNS software.
The purpose of nsreroute is to help the victim of a DDOS (distributed denial of service) attack keep network services available to legitimate clients during the attack. At the onset of a DDOS flood, the victim host (or a computer on another network that can act on behalf of the victim) executes nsreroute, which parses the contents of a file that contains the following elements:

	reroute [legitimate client's SOA hostname] [victim hostname] [victim IP address] [proxy server IP address] [proxy server IP address] ...

nsreroute first sends a query to the Internet requesting the IP address of the server of authority (SOA) for a legitimate client. After receiving the reply, nsreroute constructs a DNS message that includes the following three tuple: {victim hostname, victim IP address, (list of proxy server IP addresses)}. (Currently the maximum number of proxy server IP addresses that can be contained in the message is 10.) The reroute message is sent to the SOA of the legitimate client, which authenticates the identity of the sender. Upon successful authentication, the server writes a new zone file to disk that contains the new mappings for victim hostname, IP address, and proxy server IP address. The proxy server IP addresses will be designated by the new type, "ALT", instead of the "A" type for regular IP addresses. The server also appends a new zone statement to its named configuration file for the new zone file. Finally the server rereads the named configuration file and reloads all zone files into memory. It will then be ready to retrieve all resource records (i.e. hostname/IP address mappings, including those of type "ALT") to a querying client.
The nsreroute command enables friendly clients to get hostname/IP address records of a DDOS victim from their own DNS servers instead of from the SOA of the victim. The presence of the "ALT" type IP addresses in the query reply means that the victim is being attacked and that the client should send the message intended for the victim to the IP address of one of the listed proxy server addresses. The proxy server will forward the message to the victim at a new, secret IP address. This strategy allows previously known legitimate clients to maintain contact with the victim while the victim is under attack.

EXAMPLE
dr_doug.familypetclinic.com is being flooded with hundreds of thousands of packets, including echo replies, UDP datagrams, and TCP connection requests. Fortunately, Dr. Doug was ready for such an attack, because Dr. Doug himself is a computer enthusiast and enjoys hacking into unprotected networks in his spare time. But that is beside the point. Immediately Dr. Doug's network intrusion detection system issues an alert, and Dr. Doug's server sends a distress signal to a machine on another network. This friendly machine automatically launches the following command:

	nsreroute -v client_file

where client_file contains the line:

reroute spike.niceolddog.com dr_doug.familypetclinic.com 133.41.96.71 203.55.57.102 203.55.57.103 185.11.16.49 221.46.56.38

In this case, Dr. Doug had only one line in the client_file, because he had only one preferred client name in his database. If his website had more customers, this file could contain thousands, perhaps hundreds of thousands, of lines starting with "reroute", depending on how many client hostnames had legitimately accessed his web server. Evidently Dr. Doug doesn't do too much business online.
This command sends Dr. Doug's hostname, his IP address (first in the list), and list of proxy server addresses to spike.niceolddog.com. After both client and server verify each other's identity, the server processes the reroute message, writing a new zone file to the directory where it stores zone files (usually /var/named). This zone file will look like:

	$TTL 86400
@ IN SOA spike.niceolddog.com. root.niceolddog.com. (
 1 ; Serial
 3h ; Refresh after 3 hours
 1h ; Retry after 1 hour
 1w ; Expire after 1 week
 1h ; Negative caching TTL of 1 hour
)
 IN NS spike.niceolddog.com.

dr_doug.familypetclinic.com. 86400 IN A 133.41.96.71

dr_doug.familypetclinic.com. 86400 IN ALT 203.55.57.102
 86400 IN ALT 203.55.57.103
 86400 IN ALT 185.11.16.49
 86400 IN ALT 221.46.56.38

This zone file is called "db.familypetclinic.com". As is evident, the IP address of dr_doug.familypetclinic.com is 133.41.96.71 and is designated as type A. The other IP addresses are all proxy servers and are designated as type ALT.
Also, in the server's configuration file (located at /etc/named.conf), a new zone statement has been appended:

	zone "familypetclinic.com" IN {
 type master;
 File "db.familypetclinic.com";
};

The BIND9 named software immediately reloads all zone files into memory, so queries from clients in the zone covered by spike.niceolddog.com for dr_doug.familypetclinic.com will get all IP addresses from the zone file shown above, including both type A and type ALT.

4. IP tunnel performance benchmark
To evaluate the overhead of indirect routing over IP tunnel, we measure the response time and the throughput on direct and indirect routes in our testbed. Test is based on configuration in Section 2.2.2: linux machines with public IP only.

4.1 Testbed machine configuration.

	Machine
	Settings

	Client
	Virtual Machine on ardor.uccs.edu, 256MB RAM, 2 GB hard disk

	Proxy
	Same

	Gateway
	Same

	Target
	Same

	Proxy 2
	Virtual Machine on athena.uccs.edu, 256MB RAM, 2 GB hard disk

	Gateway 2
	Virtual Machine on wait.uccs.edu, 256MB RAM, 2 GB hard disk

4.2 Response Time benchmark using Ping
From a client, the gateway is “pinged”. Below is the testing result (result is the average of 10 tests).

	With direct route
	With indirect route through IPIP tunnel

	0.54 ms
(only 1 hop)
	1.18 ms
(2 hops, you can't see them with traceroute)

4.3 Throughput benchmark using FTP
I installed VSFTP Server [6] on gateway machine as FTP server. On client machine, retrieve a 100MB file from gateway. Below is the testing result (result is the average of 10 tests).

	With direct route
	With indirect route through IPIP tunnel

	12.8 second
	24.5 second

4.4 Result Analysis
When the main gateway got attacked, the performance on the direct route will go from seconds to days or infinity. The overhead occurs in the indirect route include more hop, more protocol processing (it goes through proxy server; and IP over IP overhead related to fragmentation and reassembly; can be reduced if the client can set MSB to max - 20 (additional IP header)). Therefore the IP tunnel overhead is still acceptable.

5. Future work

	Timeframe
	Task to be finished

	7/15/ 2003 – 7/31/2003
	1. Demon Process to setup tunnel automatically
2. Modify resolver library on linux to setup tunnel automatically
3. Extend Bind9 DNS with Secure DNS update/query using SSL
4. Design the protocol for coordinator to communicate with client, proxy, DNS server and attacked target, use SSL to encrypt if needed.

	8/1/ 2003 – 8/31/2003

May extend to Fall 2003
	1. Enhance A2D2IDS with IDIP protocol
2. Develop SLP for locating enhanced proxy server

3. Create test scripts and benchmark to evaluate SCID version 0.1 system;

4. Suggest improvements to SCID version 0.2 system.

6. References

1. Zebedee Secure IP tunnel, http://www.winton.org.uk/zebedee/
2. SOCKS proxy server, http://www.tldp.org/HOWTO/Firewall-HOWTO-11.html

3. IPIP tunnel, http://www.europe.redhat.com/documentation/HOWTO/Net-HOWTO/x1284.php3
4. IP tunnel kernel compilation, http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/custom-guide/s1-custom-kernel-modularized.html
5. DNS BIND 9, http://www.isc.org/products/BIND/
6. VS FTP Server, http://www.siliconvalleyccie.com/linux-hn/ftp-server.htm

7. Edward. Chow, “Security Related Research Projects at UCCS network research lab”, http://cs.uccs.edu/~Echow/research/security/uccsSecurityResearch.ppt, 2002

8. DNS and BIND, http://www.oreilly.com/catalog/dns4/chapter/ch11.html
9. Linux IP tunnel, http://www.europe.redhat.com/documentation/HOWTO/Adv-Routing-HOWTO-5.php3
10. SCID proposal to NISSC, http://cs.uccs.edu/~scid/doc/SCID_Proposal_to_NISSC.doc

