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ABSTRACT
Currently the Internet has only one level of name resolution, DNS,
which converts user-level domain names into IP addresses. In this
paper we borrow liberally from the literature to argue that there
should be three levels of name resolution: from user-level descrip-
tors to service identifiers; from service identifiers to endpoint iden-
tifiers; and from endpoint identifiers to IP addresses. These addi-
tional levels of naming and resolution (1) allow services and data
to be first class Internet objects (in that they can be directly and per-
sistently named), (2) seamlessly accommodate mobility and multi-
homing and (3) integrate middleboxes (such as NATs and firewalls)
into the Internet architecture. We further argue that flat names are a
natural choice for the service and endpoint identifiers. Hence, this
architecture requires scalable resolution of flat names, a capability
that distributed hash tables (DHTs) can provide.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks—Internet; C.2.1 [Computer-Communication
Networks]: Network Architecture and Design; C.2.4 [Computer-
Communication Networks]: Distributed Systems—Distributed
databases
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1. INTRODUCTION
Despite its tremendous success, the Internet architecture is

widely acknowledged to be far from ideal, and the Internet’s in-
creasing ubiquity and importance have made its flaws all the more
evident and urgent. The case for architectural change has never
been stronger, as witnessed by the burgeoning set of architectural
critiques and counter-proposals emerging from the research com-
munity (e.g., [2,5–8,41,45,55,56]). Ironically, the growth that mo-
tivated these proposals now makes their success unlikely: the sheer
size of the Internet’s installed router infrastructure renders signifi-
cant changes to IP almost impossible. The decade-long struggle to
deploy IPv6 should give any aspiring network architect pause.

Rather than attempt the Sisyphean task of modifying routers,
we focus on improving a more malleable facet of the architecture:
naming.1 Although this restriction in focus prevents us from ad-
dressing issues that inherently involve routers (such as complete
denial-of-service protection, fine-grained host-control over routing,
and quality-of-service) there are many issues for which changes to
IP would be irrelevant—and for which changes to the naming ar-
chitecture would be crucial.

The current Internet has only two global namespaces, DNS
names and IP addresses, both of which are tied to pre-existing struc-
tures (administrative domains and network topology, respectively).
The rigidity and paucity of these namespaces are responsible for
a variety of architectural ills. For instance, the Internet is now
widely used by applications to gain access to services (processes
that are remotely invoked by clients, such as Web servers) and data
(files, streams, etc.), yet the Internet does not have a mechanism
for directly and persistently naming data and services. Instead,
both are named relative to the hosts on which they reside. Us-
ing DNS to name data overloads the names and rigidly associates
them with specific domains or network locations, making it incon-
venient to move service instances and data, as well as to replicate
them [23, 36, 50, 51, 59]. In this sense, the Internet’s current host-
centric naming treats data and services as second-class network cit-
izens.

In addition, users and system administrators often resort to ar-
chitecturally suspect middleboxes—such as NATs/NAPTs [52],
firewalls and transparent caches—because they cannot get sim-
ilar functionality within the architecture. The well-known ar-
chitectural problems posed by today’s middleboxes include vio-
lating IP semantics and making the Internet application-specific;

1Of course, our naming proposal requires alterations to host soft-
ware and, as we discuss later, a new name resolution infrastructure.
These alterations are a significant deployment barrier but not one
as unyielding as changing the router infrastructure. We will return
to this issue in Section 6.
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see [15,31,60] for details.
To remedy these and other architectural problems, in this paper

we revisit the issue of naming. We begin by describing four general
design principles about the nature and use of names. While these
principles are seemingly innocuous, they are routinely violated in
today’s Internet. We claim that adherence to these principles re-
quires a naming framework with four layers: user-level descriptors
such as search keywords, e-mail addresses, etc.; service identifiers
(SIDs); endpoint identifiers (EIDs); and IP addresses or other for-
warding directives.2 We then propose an architecture that makes
essential use of these namespaces. This architecture has the fol-
lowing benefits: (1) services and data become “first-class” Internet
objects, in that they are named independent of network location or
DNS domain and thus can freely migrate or be replicated across
host and administrative boundaries, (2) mobility and multi-homing
of hosts can be gracefully accommodated, and (3) network-layer
and application-layer middleboxes (which we rechristen “interme-
diaries”) can be interposed on the data path between two commu-
nicating endpoints.

Our principles, naming framework, and architecture rely heav-
ily on existing proposals. From Nimrod [7] and the Host Identi-
fication Protocol (HIP) proposal [32, 33, 35], we borrow the idea
of decoupling the transport and networking layers to address mo-
bility and multi-homing. From the Unmanaged Internet Protocol
(UIP) proposal [14], we borrow the idea of using this same de-
coupling to address problems that result from private addressing
realms, such as those created by NATs. From the Internet Indirec-
tion Infrastructure (i3) [53], we borrow the idea of source-directed
indirection. From Semantic-Free Referencing (SFR) [59], we bor-
row the idea that the service identifier namespace beflat (meaning
that the identifiers are unstructured and not overloaded with any se-
mantics about the object being named,e.g., a flat identifier might be
a number chosen uniformly at random from[0, 2128−1]), and from
HIP and UIP again, we borrow the idea that the endpoint identifiers
be flat. Our proposal thus requires a name resolution infrastruc-
ture that can scalably resolve flat names. Distributed hash tables
(DHTs) represent one possible solution to this resolution problem
(see [3,40,42,54,61] for background on DHTs), and so we borrow
from that literature as well.

Thus, this work is a pastiche of borrowed elements; our con-
tribution is both the distillation of some basic principles and their
synthesis into a coherent architecture. We present our four basic
design principles in Section 2, followed by a description of the ar-
chitecture and its benefits in Section 3. A key aspect of the proposal
is flat names, and we discuss the issues associated with them in Sec-
tion 4. We survey related work in Section 5, and in Section 6 we
conclude with a brief discussion.

2. DESIGN PRINCIPLES

Those are my principles, and if you don’t like them...
well, I have others.

Groucho Marx

We now present four basic design principles that we feel are es-
sential to the nature and use of Internet names.

2This naming hierarchy is nothing more than a particular realiza-
tion of Saltzer’s taxonomy of network elements [44], in which he
identified users/services (our SIDs), hosts (our EIDs), network at-
tachment points (IP addresses), and paths. Since we don’t consider
aspects of the architecture that require router involvement, we don’t
address the issue of naming paths.

2.1 Names and Protocols
Our first design principle addresses the role of names in proto-

cols.

Principle #1:Names should bind protocols only to the
relevant aspects of the underlying structure; binding
protocols to irrelevant details unnecessarily limits flex-
ibility and functionality.

This seemingly innocuous principle is routinely violated in to-
day’s architecture. When applications request a service or data,
they care only about the identity (for service) or content (for data)
of the object they requested; the particular end-host servicing a re-
quest is immaterial. However, today’s DNS-based names for ser-
vices and data (e.g., URLs like http ://abc.org/dog.jpg) force
applications to resolve service and data names down to an IP ad-
dress (e.g., to fetch the data named by the URL above, the Web
browser itself, rather than a lower level software module, has to
learn the IP address represented byabc.org), thereby binding the
application request to a particular network location, as expressed
by an IP address. This resolution violates Principle #1 twice over:
it binds data and services to particular end-hosts—and, even worse,
to the network locations of those end-hosts. (In the rest of this pa-
per, for brevity, we mostly use the term “service” to mean “service
and data.”)

Rectifying this double violation requires the introduction of two
(and only two) new naming layers. First, Principle #1 implies that
applications be able to refer to services with persistent names that
aren’t tied to the endpoint hosting the service. We therefore claim
that a class of names calledservice identifiers (SIDs) should exist
that give applications exactly this ability. We think that humans and
the software they use should get these SIDs as the output of various
mapping services that take as inputuser-level descriptors. By user-
level descriptors, we mean handles in various formats that humans
can exchange (e.g., search queries, e-mail addresses). See [37, 58,
59] for discussion about such mapping services.

Second, transport protocols exchange data between two end-
points, and the network locations of the endpoints are irrelevant
to the basic semantics of transport. Only at the IP layer is the
IP address naturally part of the protocol semantics of best-effort
packet delivery between network-layer addresses. Today, however,
the semantics of IP are wound into the transport layers. For ex-
ample, hosts name TCP connections by a quadruple that includes
two IP addresses. As a result, a TCP connection fails when the IP
address of an endpoint changes,3 and a TCP connection on a multi-
homed endpoint cannot use more than one of the IP addresses at
a time. Principle #1 suggests that transport protocols should be
able to refer to endpoints in a manner independent of their IP ad-
dress or network topology. We thus adopt—from previous work,
as mentioned in Section 1—the idea of a topologically independent
endpoint identifier (EID) that uniquely identifies a host.

These two new naming layers that have been motivated by Prin-
ciple #1 require two additional layers of name resolution: from
SIDs to EIDs and from EIDs to IP addresses. To interact with a

3One solution to this problem, Mobile IP [34], treats the mobile
host’s “home” IP address as a permanent identifier and relies on
IP-layer packet interception and redirection. Another solution is
migrating TCP connections “in-band” [48]. A third is allowing
connections to break but using a session layer to re-initiate broken
connections [47, 49], giving applications the abstraction of an un-
interrupted connection. These three solutions workaround the fun-
damental issue: endpoints are named by topological identifiers (IP
addresses). None directly addresses the architectural shortcoming.
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service (e.g., a Web server), the application initiates acommuni-
cation session whose destination is named by the service’s SID.
When an application resolves that SID, it gets one or more EIDs
that identify the end-hosts that run the service. The session will
typically involve one or more transport-layer (e.g., TCP) connec-
tions between the client and service EIDs. Before invoking IP, the
transport layer resolves the EID to the current set of IP addresses to
which the EID is attached.

A crucial property of this layering is that the resolution of a SID
to the eventual set of IP addresses for the communication session
does not happen prematurely. More concretely, applications gener-
ally deal with SIDs (after perhaps resolving user-level descriptors),
transport protocols generally deal with (or bind to) EIDs, and only
IP itself deals with IP addresses. The resulting bindings are thus ac-
curate and appropriate even in the face of host mobility and service
migration. For instance, if the EID-to-IP mapping changes, then
the transport layer can re-initiate an EID lookup to rebind [35,48].
If a service moves, or is copied, to another location, a new SID
lookup provides the current SID-to-EID bindings; if a service were
to move while a session were in progress, the application might
initiate such a lookup to continue the session.

2.2 Namespaces and Network Elements
Principle #1 concerned how names should relate to protocols.

Our second design principle discusses how names should relate to
their referents. When users care about the identity of an object
rather than its location, the object’s name should bepersistent in
that it remains unchanged even when the object’s location changes.

Principle #2: Names, if they are to be persistent,
should not impose arbitrary restrictions on the ele-
ments to which they refer.

The two current global namespaces, IP addresses and DNS
names, are each closely tied to an underlying structure. Achieving
scalable routing requires that IP addresses reflect network topology.
DNS names, though more flexible, nonetheless reflect administra-
tive structure.

As has been noted in the URN literature [23,50,51] and by oth-
ers [4,37,59], DNS-based names for data are inherently ephemeral.
Data does not naturally conform to domain boundaries, so data is
likely to be replicated on, or moved to, hosts outside the originat-
ing domain. When this replication or movement happens, exist-
ing references to the data become invalid;e.g., if the file dog.jpg
moves todef.org from abc.org, existing Web links that reference
abc.org are now useless. (For a more complete discussion of the
problems of hostname/pathname URLs, see [50, 51, 59] and cita-
tions therein.) The same difficulty arises when services move and
there are pre-existing pointers to those services (e.g., when a pop-
ular FTP server encodes a DNS name that is no longer correct),
though one might argue that services are less peripatetic than data.

Thus, no namespace currently exists that can persistently name
data and services. Some of the URN literature proposes a new
namespace and resolution mechanism [11] for eachgenre (e.g.,
ISBN numbers would have their own canonical resolver). Parti-
tioning allows resolution to scale since different resolver types can
incorporategenre-specific knowledge, but then adherence to Prin-
ciple #2 depends on an accurate mapping of elements to genres
and on an element’s never changing genres. In contrast, the Globe
project [4], Semantic-Free Referencing [59], and Open Network
Handles [37] take an entirely different approach: they advocate a
single newflat namespace that can serve all present and future net-
work elements. A flat namespace has no inherent structure and so
does not impose any restrictions on referenced elements, ensuring

Dest
(Target)

Delegate

EID e, IP = y

EID: e
IP: x

Source
(Querier) 

EID Resolution 
Service

IP: y

EID e, IP = ?

Intent:
“send to EID e’’ 

Figure 1: EID-level delegation. A source queries on a given EID
and is given the IP address of a delegate. The source could also
be given the delegate’s EID or multiple EIDs (not shown).

universal compliance with Principle #2. In this paper, we adopt this
second approach, using a flat namespace for SIDs and EIDs.

2.3 Resolution and Delegation
Our first two design principles concerned the role of names. Our

third addresses how these names are resolved. The typical defi-
nition of “resolving a name” is mapping a name to its underlying
“location”. In our case, an SID’s “location” would usually be an
(EID, transport, port) triple4 and an EID’s location would be an IP
address. However, we think this typical definition is too restrictive
and instead adopt the following more general notion of resolution.

Principle #3:A network entity should be able to direct
resolutions of its name not only to its own location, but
also to the locations or names of chosen delegates.

In any logical network connection, the initiator at any level (e.g.,
a human requesting a Web page or an endpoint initiating a trans-
port connection) intends to connect to a destination entity. In our
case, for example, transport protocol entities connect to destination
EIDs. However, the destination entity may not want to handle the
connection directly, preferring instead to direct the connection to
a chosendelegate, as shown in Figure 1. This kind of delegation
neither alters essential trust relationships (if you trust an entity, you
trust its delegates), nor interferes with established protocol seman-
tics, as will be seen when we describe the details of such delegation
in Section 3.2.5

While the recipient-controlled delegation in Principle #3 might
seem esoteric at first, it is crucial to the overall architecture. As we
describe in Section 3, delegation allows the architecture to grace-
fully incorporateintermediaries, which we define as cleaner and
more flexible versions of middleboxes. Delegation also yields some

4Resolving an SID can also return meta-data (such as a pathname
on a Web server) in addition to the “location”, thereby allowing
data (in this case a Web page) to be named by an SID.
5Recipient-controlled delegation could accommodate the kind of
distributed network element envisioned in [9]; that is, the destina-
tion and its delegate could be part of the same logical element even
if they are physically distinct.
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protection against denial-of-service attacks, as discussed in Sec-
tion 3.2.

2.4 Sequences of Destinations
In traditional IP routing, the routing protocol is responsible for

choosing the packet’s path through the network. However, there
have been manysource routing proposals in which sources are
given the power to specify the path or, in the case ofloose source
routing, a few points along the path. We believe that this ability
should be available not just at the routing layer (which is not our
concern here) but also at the endpoint and service layers.

More specifically, the abstraction of sending to a destination
should be generalized to allow sources to indicate that their pack-
ets should traverse a series of endpoints (specified by a sequence
of EIDs) or that their communications, the granularity of which we
address later, traverse a series of services (specified by a sequence
of SIDs). Such abstractions would generalize the notion of a desti-
nation to a sequence of destinations. Note that since these various
destinations are not specified at the IP layer, but rather at the end-
point and service layers, these intermediate points do not merely
forward the packets but may act on them in non-trivial ways.

Combining this sentiment with Principle #3 suggests that end-
points and services should be able to have their names resolve not
just to a single location but more generally to a sequence of iden-
tifiers (either IP addresses or EIDs). In this way, both senders and
receivers could loosely dictate the paths of packets sent from them
or destined for them. This idea is captured in our fourth, and final,
design principle.

Principle #4:Destinations, as specified by sources and
also by the resolution of SIDs and EIDs, should be
generalizable to sequences of destinations.

3. ARCHITECTURE
We should first note that our belief in the general principles

above is deeper than our conviction about any of the architectural
details that follow. The description below is intended to illustrate
how to achieve the benefits that flow from these principles, but one
should view this architecture merely as an existence proof that the
general principles can be realized, not as their definitive embodi-
ment. In fact, many of the details here arose during an implemen-
tation effort, described in [60].

The four general principles led us to claim that (1) two additional
sets of names (SIDs and EIDs) should exist, (2) these names should
be flat, (3) the architecture should support delegation as a basic
primitive, and (4) destinations, whether specified by the source or
receiver, can, in fact, be sequences of destinations. In this section,
we present an architecture that results from these claims, first fo-
cusing on the consequences of SIDs and EIDs (Section 3.1), then on
delegation (Section 3.2). We defer discussing the consequences of
flat names to Section 4, and we incorporate the notion of sequences
in our description of delegation. In the process of describing the
architecture, we note how it yields the three benefits stated in Sec-
tion 1, namely making services and data first-class objects, support
for mobility, and graceful incorporation of intermediaries.

3.1 EIDs and SIDs
We start by describing how this architecture works in the basic

case. The discussion of intermediaries in Section 3.2 will compli-
cate the story. Although we will refer to SIDs and EIDs throughout
Section 3, not every application will require both SIDs and EIDs.
The two mechanisms are logically distinct and need not be coupled.

user-level descriptor (ULD) lookup
(e.g., e-mail address, search string, etc.)

SID resolution

App obtains SIDs corresponding to ULD 
using a lookup or search service

EID resolution

App’s session protocol (e.g., HTTP) resolves 
SID to EIDs using SID resolution service

IP address “resolution” (routing)

Transport protocol resolves EID to 
IP addresses using EID resolution service

Figure 2: The naming layers.

Principle #1 led us to claim that applications should bind to SIDs
and transport protocols should bind to EIDs. Thus, applications
must use a layer between them and transport that resolves SIDs to
EIDs, and similarly, transport protocols must use a layer between
them and IP that translates between EIDs and IP addresses. We will
call the layersresolution layers, though they do more than simply
resolve identifiers. These layers could be separate libraries or soft-
ware that is part of the application or transport protocol. The reso-
lution layers result in the naming architecture depicted in Figure 2.
We now give more details on how these resolution layers are used,
focusing on how they fit into the overall architecture. We defer the
mechanics of resolution to Section 4.

In what follows, we assume that humans and the applications
under their control have already used an auxiliary mapping service
(e.g., a search engine) to map a user-level descriptor (e.g., a search
query) to an SID. As a result, we will not discuss user-level
descriptors and will instead assume that applications have in hand
an SID representing a service or data.

SID resolution: Consider an SID-aware application,a, run-
ning on a given host,h, and say thata wishes to gain access
to a service or data represented by an SIDs. The application
handss to the SID resolution layer, which contacts the resolution
infrastructure (one realization of which is described in Section 4)
and is handed back one or more (EID,transport,port)6 triples,
where each triple represents an instance of the desired service.
Following the approach in [59], if the SID abstracts a data item, not
just a service, then the SID resolution layer would also receive, for
each triple, an application directive. For example, ifs represented
a Web server, then the triple returned might be (EID of the Web
server, TCP, port 80). Ifs represented a Web page, not just a Web
server, then a pathname on the Web server might also be returned.

The functions we next describe might be abstracted by an
application-independent library. However, since the library would
be undera’s control, and since some applications might want
different behavior and thus elect not to use the library, we will
describe the actions as performed bya, not by the library. Given

6Since EIDs are not required, the triple could be (id,transport,port),
whereid is another host identifier, such as a DNS name or an IP
address. However, as we have noted, such usage would not cope
with host mobility.
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a triple of the kind mentioned above,a would communicate with
the specified EID using the specified transport protocol and port
number (or other transport-specific information). The transport
protocols, now bound to EIDs (instead of IP addresses), would
useh’s EID as the source EID and the one from the triple as the
destination EID. Depending on the application semantics,a might
use multiple triples for simultaneous connections, or it might use
multiple triples as backups in case the current connection failed. If
all of the triples failed,a could re-invoke the SID resolution layer
to re-resolves to check for new triples.

EID resolution: The transport protocol prepares one or more
packets to send, which it passes down to the EID resolution layer.
The EID resolution layer resolves the destination EID into one
or more IP addresses. (Multiple IP addresses could arise for
multi-homed hosts and also when a logical endpoint represented
a collection of physical machines, each with its own IP address.)
When handing control to the IP layer, the EID resolution layer uses
one of the returned IP addresses as the destination IP address, and
the source IP address is that of the sending host. If the destination
host is unreachable, the EID layer can use another IP address if
it received more than one from the resolution step.7 If none of
the previously returned IP addresses works, the EID resolution
layer re-resolves the EID in case the corresponding destination IP
addresses have changed.

Where do these identifiers go? Packets are logically des-
tined for endpoints, which are identified by EIDs. Hence, we
imagine that EIDs would be carried in packets to identify the
packet’s logical endpoint. In Section 3.2, we say why the sender
must put the destination EID in the packet. See [60] for a more
complete description of one instantiation of this architecture at the
EID level.

The case of SIDs is conceptually identical. SIDs name services
or data, and so the SID must often be carried in band, like the EID.
However, the SID is not required to be in every packet but rather
in eachlogical piece of data being communicated between sender
and recipient. The actual location of SIDs in data streams would
vary by application and by what the SID is being used for. For
example, the SID corresponding to a given SMTP server might be
carried in an e-mail header. Similarly, the SID corresponding to an
HTTP Web proxy might be in the HTTP header. If an SID named
a Web page, the SID might again be somewhere in the HTTP
header. We will use the termapplication data unit [10] to mean
“a coherent unit of data transmitted between applications.” In
the examples above, the e-mail and HTTP requests were the ADUs.

Benefits: As explained in Sections 2.1 and 2.2, naming data
and services with SIDs overcomes the problems of using DNS-
based URLs for that purpose. Naming endpoints with EIDs
provides natural solutions to mobility and multi-homing: if an
endpoint identified by EIDe changes its IP address, then the
EID resolution layer on a peer of the endpoint will re-resolvee
to find the new IP address.8 As explained in [32, 33, 35], this
rebinding enables continuous operation in the presence of mobile
or renumbered hosts and provides smooth failover for multi-homed
hosts; we direct the reader to these references for more details.

7We envision, as in HIP, using explicit end-to-end signaling for ex-
pected address changes and using EID resolution layer keepalives
to detect unexpected address changes or other failures.
8This re-resolution could conceivably occur on each packet but
more likely will be invoked only when the EID layer on the peer
detects failure.

3.2 Delegated Bindings and Intermediaries
The other major aspect of our architecture, delegation, is

dictated by principle #3. In this section we explain the mechanics
of delegation, and then describe how delegation provides support
for intermediaries.

Delegation: At the EID layer, a host with EIDe can insert
the IP address or EID of a different host in the resolution infras-
tructure. As a result, when a third host establishes a transport
connection toe, its packets actually go to the delegated host. The
host identified bye must establish state at the delegated host—
through some protocol outside the scope of our discussion—so that
when packets arrive at the delegated host they can be forwarded.
The intermediary uses the destination EID, which is carried in
every packet, to determine the intended ultimate recipient of the
packet. This type of intermediary isnetwork-level, in that it is a
delegate for an endpoint, not a service.

At the SID layer, the mechanism is similar: a services, running
on a hosth, rather than listing the EID ofh in the resolution in-
frastructure, instead lists the EID of some other endpoint,o. (s
could also list an SID instead of an EID, and this SID would map
to an EID.)s would have to establish state ato so thato would
know how to handle ADUs destined fors. o could be, for example,
an application-level gateway: hosts trying to contacts would have
their connections terminated at endpointo, and the gateway would
inspect the ADUs, and then make a decision about whether to for-
ward them. The reason thats’s SID must be in the data stream near
or in the ADU is to leto know which service is the logical desti-
nation of the ADU:o might be a gateway for other servicess′, s′′,
etc. We will call endpoints such aso application-level intermedi-
aries and give examples of such intermediaries below.

In accordance with Principle #4, at the SID (resp., EID) level, re-
ceiving entities could express the fact that more than one intermedi-
ary should be involved: services (resp., endpoints) could list in the
resolution infrastructure asequence of SIDs (resp., EIDs). Each of
these identifiers represents an intermediary that the receiver wants
the ADU (resp., packet) to visit on the way to the final destination.

However, Principle #4 also applies to the source, so our architec-
ture allows sources to specify a sequence of EIDs or SIDs to be tra-
versed, via the well-known mechanism of stacked identifiers (used
by i3 [53] and others). One can think of these waypoints as source-
controlled (as opposed to receiver-controlled) intermediaries; the
source can express that it wants one or more intermediaries tosend
on its behalf, just as the destination can express through the resolu-
tion of its EID that it wants one or more intermediaries toreceive on
its behalf. An intermediary, which is assumed to be a chosen dele-
gate of either sender or receiver, can also make decisions on behalf
of the delegator (which might include pushing additional identifiers
onto the destination stack). These two mechanisms, sender- and
receiver-controlled indirection, are not exclusive: when both enti-
ties specify intermediaries, the source creates the actual sequence
of intermediaries by concatenating its desired sequence to the se-
quence specified by the receiver (which is returned in the resolution
step).

When the receiver and sender switch roles, the original receiver
may need to resolve the original sender’s EID to determine the
path back to the sender. The same thing could occur at the SID
level, which might require introducing the notion of asource SID.

Example use: At the EID level, the delegation mechanism
described above—in which an endpoint inserts into the resolution
infrastructure a map from its EID to the IP address of a delegate—
can support standard network-level intermediaries (NATs/NAPTs,
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VPNs [19], and firewalls) cleanly and coherently. Depending on
the scenario and the security assumptions, the intermediary may
be configured for no access control if it is only doing NAT, for
some access control if it acts as a firewall that allows only certain
ports, or for much more stringent access control if it acts as a VPN
box, logically interposed between a private network and the global
Internet and only accepting packets from pre-specified EIDs.

To expand slightly on the firewall example, all hosts belonging
to an institution could logically reside behind its network-level fire-
wall; each such host would list the firewall’s EID in the resolu-
tion infrastructure, and then would send to the firewall their own
EID (and possibly IP address and security information allowing
the firewall and the endpoint to authenticate each other), so that the
firewall would know where to forward packets. This approach is
detailed in [60].

One could also use EID-level delegation to provide some protec-
tion against denial-of-service (DoS) attacks. A server could shield
itself from attackers by placing a forwarding intermediary between
itself and untrusted clients and by installing traffic filters at the for-
warding intermediary. This approach is identical in spirit to the
overlay DoS protection schemes proposed in SOS [25] and May-
day [1]; our point here is merely to illustrate how their basic tech-
niques can be implemented within our architecture. Of course, an
attacker could launch a DoS attack by sending packets directly to a
server’s IP address, which our architecture cannot prevent since it
leaves alone current routers. However, having all incoming packets
directed through the same intermediary would simplify router-level
packet filtering.

At the SID level, the delegation mechanism allows the owners
of services and data items to invoke application-level proxies. For
example, say that a given e-mail user, user@domain, wants to re-
ceive e-mail from an SMTP mail server after having it first scanned
for spam and viruses at a third-party site specializing in this task.
To achieve this functionality today, the administrator of “domain”
makes the MX record of “domain” resolve to the third-party site.
This approach is limited, however: first, an e-mail address cannot
map to more than one intermediary, and, second, different e-mail
addresses in the same domain are forced to resolve to the same mail
server (though this limitation could be overcome by deploying the
MB resource record [30], which works at the granularity of e-mail
addresses).

SIDs can address these limitations. Before continuing, we em-
phasize that the following details give one possibility; better ap-
proaches, also based on SIDs, likely exist. Using SIDs, the owner
of the address could insert into an auxiliary mapping service (one
such service being DNS with a record type mapping e-mail ad-
dresses to SIDs) the mapping from user@domain (which functions
here as a user-level descriptor) to a single SID,s, which identi-
fies the e-mail account. The owner of the address would also have
inserted into the SID resolution infrastructure a map froms to a se-
quence of destinations,[s1, s2], wheres1 identifies the third-party
virus filtering service ands2 identifies the user’s SMTP server. Ob-
serve at this point that the services can change administrative do-
mains or be mobile or multi-homed, and as long as the mapping
from thesi to the corresponding EIDs is correct, the owner of the
address need not get involved.

To send e-mail to user@domain, a mail agent would first resolve
the user-level descriptor to gets, then resolves to get[s1, s2], and
then send the e-mail to the endpoint represented bys1 (which re-
quires resolvings1 to get an EID). Once the e-mail arrived at the
third-party service, the third-party service would resolves2 to an
endpoint and then send the e-mail message. The pseudo-code in
Figure 3 gives more detail. Of course, for this approach to work,

// M is the message to be sent
// s1 is SID of virus filter
// s2 is SID of mail server
send_message()
{

SID s <-- lookup(user@domain);
SID_Sequence [s1 s2] <--- sid_resolve(s);
send_email(s2|M, s1); // send "s2|M" to s1

}

send_email(s2|M, s1)
{

EID e1 <-- sid_resolve(s1);
tcp_connect(e1); // note: TCP sees EIDs
tcp_send(s2|M, eid1);

}

// s1 now sends cleaned message M’ to s2
forward_cleaned_email(M’, s2) {

EID e2 <-- sid_resolve(s2);
tcp_connect(e2); // note: TCP sees EIDs
tcp_send(M’, e2);

}

Figure 3: Pseudo-code showing SID-level delegation in e-mail
example.

e-mail agents would have to be “SID-aware”. In general, taking
advantage of SIDs requires changes to application software, as dis-
cussed in Section 1.

Other examples of application-level intermediaries include those
for the Web. Owners of Web servers or particular Web objects
could direct the resolution of the appropriate SID to a cache or
to a sequence of transcoders with the result that Web clients re-
questing the given objects would be directed to this sequence of
intermediaries. Senders could also invoke proxies by using SIDs.
Both sender- and receiver-invoked intermediaries here would re-
quire changes to HTTP.

Although much of the functionality provided by our inter-
mediaries can be achieved with today’s middleboxes, we think
intermediaries are a better approach, for several reasons. First,
the intermediaries do not violate layering principles or protocol
semantics; they only inspect packets or ADUs explicitly addressed
to them. Second, they are explicitly invoked by endpoints (at the
network level) or services (at the application level); no endpoint is
forced to send its traffic through intermediaries. Of course, people
may still deploy architecturally suspect middleboxes that impose
their will on endpoints. Our point here is that these middleboxes
are no longer necessary to achieve much of the same functionality.
Third, because intermediaries are explicitly requested and globally
addressed, they need not lie on the IP routing path between logical
source and logical destination.

The purpose of this section was to illustrate, in general
terms, how one might build an architecture around the principles
of Section 2. We leave many fine points unresolved, such as the
signaling protocols required to set up state at intermediaries, the
software and API to interpret and create stacks of identifiers, and
the detailed implications of this layered naming for host software.

Also, we have not discussed security. For now, we make only
the following brief comments. Broadly speaking, the security is-
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sues of our proposal exist at the network and the application levels;
at both levels, we believe our proposal makes things worse and bet-
ter. At the network level, decoupling location and identity means
that using IP routing to send a packet to a givenlocation (via IP)
no longer means that the packet is going to the host with the in-
tendedidentity (EID). On the other hand, because EIDs are flat,
they can hold cryptographic meaning;e.g., the identifiers could be
derived by hashing a public key. As a result, two communicating
parties, given each other’s identifiers, can authenticate each other in
a way that they could not if hosts were identified only by IP address.
HIP [32, 33, 35] and UIP [14] are premised on these facts—HIP
is exactly designed to address security issues—and we can inherit
many of the mechanisms therein. Moreover, as discussed above, we
think our proposal provides a set of primitives that endpoints can
use for network-level protection. At the application level, trade-
offs again arise. Our proposal sacrifices some convenience—one
cannot tell by looking at an SID whether it corresponds to one’s
“intended” target—but achieves stronger security properties, since
one’s computercan tell by looking at an SID or EID whether the
accompanying meta-data is correct. These issues are discussed in
more depth in Section 4.2 and in [37,59].

We now turn to an issue we’ve ignored until now: how can one
effectively handle a flat namespace?

4. COPING WITH FLAT NAMES
As we argued in Section 2, flat names are uniquely able to pro-

vide persistence for all uses. However, flat names also pose sig-
nificant problems. Several systems have been designed to meet
these challenges, such as the Globe project [4], Open Network Han-
dles [37], and SFR [59]. Here we discuss two troubling aspects of
flat names: they are hard to resolve and they aren’t human-readable.
We discuss these issues in turn.

4.1 Resolution
DNS achieves scalability through hierarchy. It has been an

assumption, often implicit, that scalable resolution required such
structure. As a result, most network architecture proposals shied
away from requiring new global namespaces. The advent of
distributed hash tables (DHTs) suggests that flat namespaces can
indeed be scalably resolved with a resilient, self-organizing, and
extensible distributed infrastructure. The literature on DHTs is
large and rapidly growing, so we don’t review the technical details
here. However, we note the following challenges, and possible
remediations, that come from our use of DHTs (or of any other
flat-namespace resolution method).

DHTs arose in the context of peer-to-peer (P2P) systems,
but an unmanaged and untrusted P2P system would be unsuitable
for a crucial piece of the Internet infrastructure. Instead, we
envision a well-managed, distributed collection of machines
providing the name resolution service using a DHT or other flat
namespace resolution algorithm.

DNS’s hierarchical delegation naturally ensures each name is
unique and controlled by the relevant authority; flat names make
these goals harder, but not impossible, to achieve. Several mecha-
nisms exist for global uniqueness (see [29, 43] for example). Data
integrity (i.e., ensuring that no one else can change the resolu-
tion of an entity’s name) is also challenging but possible (see,
e.g. [37,58,59]).

DHTs’ typical resolution time—O(log n) for an n node
system—would be unacceptable for most name resolutions, par-
ticularly in comparison to DNS, since DNS often returns results
from a local name server. This latency issue can be addressed on

two levels. First, many DHT-style routing algorithms, either by
design or through caching, have far better thanO(log n) perfor-
mance; see, for example, [21, 22, 39]. Second, a DHT-based reso-
lution infrastructure can be designed using local proxies [59], lo-
cal replication [24] or two-layered resolvers [29] that enable hosts
within a local network to find local instances of entries written from
within the network; these schemes also provide fate-sharing in that
if an organization is disconnected from the rest of the Internet, its
hosts can still gain access to entries written locally. See [29,59] for
a detailed explanation of these issues.

One advantage of the DNS infrastructure is that it has a built-
in economic and trust model: domains provide their own name
servers. The central facilities required (the root servers) are mini-
mal and inexpensive. In contrast, our resolution infrastructure does
not have the “pay-for-your-own” model, as names are stored at es-
sentially random nodes. Our model raises the questions of who
will pay and why users should trust the infrastructure. It would
be foolhardy to predict the eventual economic model of such an
infrastructure, but one could easily envision a future in which reso-
lution service providers (RSPs) form a competitive yet cooperating
commercial market much like current ISPs. Customers could pay
for lookups and for storing, likely a flat fee for a reasonable num-
ber of accesses. The various RSPs would have mutual “peering”
relationships to exchange updates, much as the tier-1 ISPs all in-
terconnect today. Since each RSP would be judged by how well
it served its customers, the RSPs would have incentives to process
requests honestly.

4.2 Living in an Opaque World
More troubling than the performance and economic issues is the

lack of semantics in the names themselves. A flat namespace is
highly versatile but provides no user-readable hints. Although this
fact poses little challenge for EIDs, which are replacing almost
equally opaque IP addresses, difficulty arises when dealing with
data and services for which the human-readability of URLs has
been crucial. This issue is addressed at length (in somewhat dif-
ferent ways) in the various proposals mentioned above, so here we
make only two comments. The first relates to how users obtain an
SID. Users often find URLs through search engines rather than di-
rectly typing them into a browser; search engines could continue
to perform the same function were services and data identified by
SIDs. Moreover, third-parties could offer directory services map-
ping human-readablecanonical names to SIDs. The advantage of
these canonical names is that they are not part of the infrastructure
and thus can be offered by multiple competing entities.

Our second comment is that users need some assurance that the
SID they have in hand points to the intended target. A URL like
http://www.nytimes.com provides hints (sometimes false) about
its target but an opaque bit string gives no such assurance. Here,
bit strings could be accompanied by meta-data that includes cryp-
tographic statements like “AuthorityA says that this SID points to
the newspaper New York Times.” Again, authorities like Authority
A would not be part of the resolution infrastructure but instead part
of a competitive market of SID authenticators.

In addition, embedding cryptographic meaning in the
identifiers—e.g., by deriving an identifier from a collision-
resistant hash of a public key [28]—allows users to verify that the
output of the resolution step is the “correct” result for the given
identifier.

5. RELATED WORK
Our work, as noted in Section 1, borrows heavily from three

projects—HIP, SFR, and i3—and can be seen as synthesizing these
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works, each of which has a narrower goal, into a larger whole.
However, many other works describe related ideas—so many that
here we can only present a superficial overview.

Saltzer [44] was one among many [8,9,17,26,27,46] to make fine
distinctions among network elements; the most common, and least
practiced, of these distinctions is between a host’s identifier and
its address (see [26] for a comprehensive discussion of this topic).
This distinction is embedded in two recent proposals: Peernet [13]
and UIP [14] (from which we also borrow the EID mechanism).
Both use overlays with DHT-inspired routing algorithms: Peernet
serves mobile networks, and UIP seeks to interconnect heteroge-
neous networks, using all nodes in the network as routers. Our ap-
proach differs from UIP’s in that while we look for mechanisms to
accommodate middleboxes, UIP’s overlay of peers makes certain
classes of middleboxes, like NATs, transparent.

The Internet Indirection Infrastructure (i3) [53] uses flat iden-
tifiers and supports intermediaries and service composition. The
chief difference between i3 and what we describe here is when the
binding between identifier (SID or EID) and IP address is done. i3
uses late binding, having each packet (in the general case) sent to
the resolution infrastructure, whereas the approach here uses early
binding with the lookup occurring before packets are transmitted.
However, the distinction between these approaches is blurred when
i3 uses extensive caching or when our approach re-resolves on ev-
ery packet.

Creating location-independent and persistent names for objects,
and an accompanying infrastructure for resolution, has long been
the goal of the URN literature [23, 50, 51]. In addition, the Open
Network Handles work [36, 37] argues for flat, unfriendly domain
names for Websites. The Globe project [4, 58] envisions a single
infrastructure for mapping from (possibly human-unfriendly) per-
sistent object identifiers to current locations.

There are an increasing number of proposals that range from
architectural enhancements to radical refactorings. These include
earlier proposals like PIP [16], IPv6 [12], Dynamic Networks [38],
Active Networks [55], Nimrod [7], and more recent proposals like
Smart Packets [45], Network Pointers [56], Predicate Routing [41],
Role-Based Network Architecture [5], and Ephemeral State Pro-
cessing [6]. While each of these proposals shares at least some of
our goals, they all differ in two respects: first, they would (in their
full glory) require significant modifications to all network elements,
not just hosts and middleboxes. Second, while some of these pro-
posals are intended to obsolete middleboxes, none is intended to
accommodate them.

Five other proposals deserve special mention. The authors of
TRIAD [20] share nearly all of our motivations. They observe that
data should be first-class objects in the modern Internet, capable
of being addressed, and they, like many others, create location-
independent end-host identifiers. The technical details of TRIAD’s
solution and our own are quite different: in TRIAD, the resolu-
tion step and the routing step are conflated, thereby improving la-
tency, and at the shim layer between IP and transport, they use
forward and reverse tokens that record the path taken, instead of
stacks. However, the main difference between our proposals is that
identifiers in TRIAD, both of hosts and data, are derived from do-
main names, and indeed, the TRIAD approach relies on the seman-
tics and hierarchy of domain names to aggregate routes to content
names. As we hold the conviction that persistent names ought to
be flat, and as we have two layers of such names, our technical
problems differ from those of TRIAD (and vice-versa).

IPNL [18] also shares many of our motivations. It creates sepa-
rate end-host identifiers and leaves the core IPv4 routing infrastruc-
ture untouched. Under IPNL, the end-host identifiers are domain

names, though the authors acknowledge that a flat, cryptograph-
ically strong identifier, as in HIP, may be preferable for security
reasons.

FARA [8] is a meta-architecture that actual network architectures
could “instantiate.” In FARA, the basic unit of communication is
theentity (analogous to our service), and packets are logically de-
livered from one entity to another, with no explicit invocation of
the hosts underneath the entities or between them. The details of
the exact mapping of our concepts to FARA’s are beyond this pa-
per’s scope, but this mapping reveals that while our proposal could
be viewed as an instantiation of, or consistent with, FARA, two as-
pects contradict FARA’s spirit: first, FARA avoids notions of host
identity. Second, FARA’s AId (which identifies a connection be-
tween two entities) is supposed to have only local scope, whereas
our analogous construct (the SID) is a global identifier.

P6P [57, 62] proposes a DHT-based infrastructure as a way to
deploy IPv6: sites send IPv6 packets to their gateway DHT node,
which treats the IPv6 destination address as a flat identifier, uses
this identifier to look up the IPv4 address of a counterpart DHT
gateway, and then sends the packet over traditional IPv4 to this
counterpart, where the encapsulation is inverted and the packet is
delivered to its destination. P6P shares many of our motivations but
does not give hosts persistent names (if a site changes ISPs, all of
the identifiers at the site change).

Mobile IP [34] creates host identifiers out of IP addresses,
thereby separating location and identity, in some measure. Mo-
bile IP also uses a form of delegation, but a limited one: when a
given host is not in its home network, then an intermediary (called
the home agent) must receive all packets logically destined for the
host in question, and the intermediary is required to be in the host’s
home network.

6. DISCUSSION
This paper proclaims four design principles and derives from

them a layered naming architecture that alleviates some of the In-
ternet’s current problems. Services and data could be named per-
sistently yet flexibly, elevating them to first-class network elements.
Middleboxes, long the bane of network architects, would be virtu-
ously reincarnated as either application- or network-level interme-
diaries. Mobility would be seamless, and there would be modest,
but by no means complete, protection against denial-of-service at-
tacks.

While we believe in our proposal, the details are less important
than three deeper messages we now emphasize. The first is that
DHTs allow us, for the first time, to contemplate using flat names-
paces in an architecture. While the transition to such namespaces
is hardly painless, the payoff is profound. Once a flat namespace
is established, it can be used to name anything. No longer will our
old namespaces, DNS names and IP addresses, encumber network
elements with their underlying structure. New applications will no
longer face a Devil’s choice between accepting the strictures of an
existing but inappropriate namespace or bearing the overhead of
creating a new one; instead, with a flat namespace, all new network
elements can be effortlessly incorporated.

The second message is that the extra naming layers will shield
applications from the underlying routers. One of the great frustra-
tions of network architects is how quickly the Internet went from a
flexible academic playground to an ossified commercial infrastruc-
ture. It feels, to many, as if a work-in-progress has been prema-
turely but permanently frozen in time. Perhaps one day significant
changes will come to this infrastructure, or a general-purpose over-
lay will render it irrelevant. In the meantime, however, it seems cru-
cial to insulate applications and protocols from this underlying in-
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frastructure. Our layered naming architecture binds to IP addresses
only at the lowest logical layer, thereby minimizing the extent to
which the routing infrastructure constrains the protocols and appli-
cations above.

For a variety of reasons, including address exhaustion, attacks,
and efficient delivery of content, there is a seemingly irreversible
trend toward the interposition of functionality between communi-
cating Internet endpoints. Currently, such functionality is imple-
mented via middleboxes which are rightly criticized for violating
the architecture and for reducing the Internet’s flexibility. Our third
message is that these adverse effects need not be the case. The con-
cept ofdelegation, in which such functionality is explicitly invoked
by the endpoints, allows interposition without violating the spirit of
the end-to-end principle or the semantics of IP. Thus, we believe in-
termediaries retain the desired architectural purity and application
flexibility, while achieving the aims of middleboxes.

Of course, our proposal faces serious hurdles. Incorporating the
new naming layers requires significant changes to host software,
both applications and protocols. Resolving these flat names re-
quires a new resolution infrastructure. We do not underestimate the
difficulty of making these changes; they are indeed massive chal-
lenges. However, both changes can occur incrementally. DHTs can
be incrementally scaled, so in the beginning, when clients are few,
the resolution infrastructure can be small; as demand grows, so can
the size of the DHT. The host software can also be incrementally
deployed; early adopters get a significant benefit, but they can re-
main (at least for a very long time) backward compatible with the
old architecture. However, we don’t mean to imply that deployment
will be easy, only that it won’t be impossible. This, unfortunately,
is all one can hope for.
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