
Distributed DNS Troubleshooting ∗

Vasileios Pappas
UCLA Computer Science

vpappas@cs.ucla.edu

Patrik Fältström
Cisco Systems
paf@cisco.com

Daniel Massey
Colorado State University

massey@colostate.edu

Lixia Zhang
UCLA Computer Science

lixia@cs.ucla.edu

ABSTRACT
In this paper we present a troubleshooting tool designed to iden-
tify a number of DNS configuration errors. These errors range
from commonly seen misconfigurations that are well known among
DNS operators, such as lame delegations, to less known ones, such
as cyclic zone dependencies. Left unnoticed, these misconfigura-
tions can seriously affect the availability of the DNS infrastructure.
Instead of explicitly enumerating all possible configuration errors,
we first identify two essential properties that characterize a cor-
rect DNS configuration, and detect misconfigurations as violations
of these properties. We also utilize multiple monitoring points to
identify configuration errors that are difficult or impossible to pin
down with a single vantage point. Furthermore, equipped with a
comprehensive graphical user interface, our tool provides network
operators with a tangible view of their DNS zones’ configuration
and the errors that may affect their availability.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network monitoring

General Terms
Design, Reliability

Keywords
DNS, Misconfigurations, Troubleshooting

1. INTRODUCTION
The Domain Name System (DNS) is one of the largest distributed

systems deployed on the Internet, upon which a great number of ap-
plications rely. At the same time, it is well known, at least among

∗This work is partially supported by the National Science Foundation un-
der Contract No SCI-0353259. Any opinions, findings and conclusions or
recommendations expressed in this paper are those of the authors and do
not necessarily reflect the views of NSF.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04 Workshops, Aug. 30+Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-942-X/04/0008 ...$5.00.

the DNS community, that a number of common DNS configuration
errors exist [14]. Various DNS related operational problems stem
from these errors, and usually they degrade the system’s availabil-
ity and performance. As our recent measurements [25] show, the
impact of DNS configuration errors may range from insignificant
to severe, and many of these errors considerably reduce the service
availability of DNS zones and degrade the system performance by
orders of magnitude.

So far the main effort in addressing the problem has focused on
informing the operators about the existence of DNS configuration
errors, either by Internet RFCs [14, 20] or with directives set by
specific organizations [21]. There have also been a few efforts that
try to detect specific DNS configuration errors appearing in the In-
ternet [18, 22, 17], and a few DNS diagnosis tools [11, 3, 5, 4, 2]
that can help detect known configuration errors for a given zone.
Despite all the existing efforts, DNS configuration errors are still
widespread today. We believe that one of the main reasons is the
lack of adequate tools to help DNS operators monitor and identify
configuration errors in their own domains.

This paper presents a DNS troubleshooting tool, currently un-
der development, that aims at detecting DNS configuration errors
which may affect the availability of the DNS infrastructure. Our
tool differs from all the existing efforts in the following ways:

• It detects configuration errors by identifying violations of a
correct configuration, rather than only checking some known
errors.

• It leverages multiple monitoring points to identify errors that
are difficult or impossible to detect from a single vantage
point.

• It provides a comprehensive user interface, which allows op-
erators to get a tangible view of their DNS zones and the
errors that may affect system availability.

The rest of the paper is structured as follows. In section 2 we
identify two properties that characterize a correct DNS configura-
tion, and we show by example how a number of DNS configuration
errors can be detected as violations of those properties. In section
3 we give a high level description of our troubleshooting tool sys-
tem architecture and in section 4 we describe the specific diagnostic
tests currently implemented by the tool. Section 5 provides a few
further details about the system implementation and usage. Section
6 compares our effort with a number of related works, followed by
the conclusion in section 7.

2. DNS CONFIGURATION ERRORS
Developed in the 1980s, the primary goal of the Domain Name

System (DNS) [23, 24] is to provide a robust and scalable name-to-

265

address mapping service. DNS data is stored using a simple data
structure called a Resource Record (RR). A RR can be viewed as a
tuple < name, TTL, class, type, data >, where name is a fully
qualified domain name (FQDN) such as www.google.com, TTL is
the time-to-live value in seconds, class is typically Internet (IN),
type identifies the resource record format, and data contains the
format-specific data. Examples of common RR types include A
RRs that store IP addresses, MX RRs that identify mail servers,
PTR RRs that map IP addresses to DNS names, and NS RRs that
store name server information. DNS makes no distinctions between
different types of data records, such as MX RRs used by end-user
applications, and infrastructure RRs, such as NS RRs, used only to
establish and navigate the DNS hierarchy.

In this work, we focus on identifying errors that can affect the
DNS system availability, rather than examining all types of errors
that may exist in the global DNS database. For example we do
not check whether an MX RR is correctly configured to point to
a valid SMTP server, or whether an A RR has a companion PTR
RR, because such errors, if they exist, do not affect the availabil-
ity of the DNS system, although they may affect specific applica-
tions. Instead we only pay attention to errors associated with the
DNS infrastructure RRs, such as NS and glue A RRs; an improp-
erly configured NS or glue A RR can affect DNS service availabil-
ity. As DNSSEC [12] is expected to be deployed in near future,
it will introduce some additional types of infrastructure RRs, such
as DNSKEY and DS RRs, that can be subject to similar types of
configuration errors.

While infrastructure RRs are essential for building and navigat-
ing the DNS, they are not the only elements that comprise the DNS
system. Equally important elements are the nameservers, which
store the actual DNS records and serve the DNS clients. To better
analyze the DNS availability, we may divide the DNS infrastruc-
ture elements in two classes: physical level elements, such a name-
servers, and logical level elements, such as infrastructure RRs. We
define a DNS entity as a collection of DNS infrastructure elements,
which plays a particular role in the DNS system. For example an
authoritative nameserver is a DNS entity, which is defined both in
the logical level, as an NS record, and in the physical level, as a
nameserver. A delegation point again is a DNS entity, and it is de-
fined as a collection of glue RRs, i.e. the NS RR set, stored at both
the parent and the child zone, and the companion glue A RRs.

We further identify two properties of the DNS configuration that
need to hold, both at the logical and at the physical level, in order
for a configuration to be correct.

• Coherency: If a DNS entity is declared in multiple places, ei-
ther at the logical or physical level, then all the declarations
must be consistent. For example, every delegation point is
a NS RR set, declared in two different places at the DNS
logical level: both at the parent and at the child zone. The
coherency property requires the two NS RR sets to be con-
sistent, i.e. they must point to the same set of servers.

• Independence: If two DNS entities, declared at either the
logical or physical level, are distinct, then they must be mu-
tually independent. For example, two distinct nameservers,
which are authoritative for the same or even different zones,
are DNS entities declared both at the physical and at the log-
ical level. The independence property requires them to be
mutually independent, i.e. the failure of one servers does not
make the other unavailable.

Violations of any of these two properties can reduce the avail-
ability of the DNS system. Coherency violations reduce the number

of redundant servers unconditionally, meaning that the number of
available servers is lower than the expected, as long as the violation
holds. Independence violations, on the other hand, reduce the num-
ber of redundant servers conditionally, meaning that the number of
available servers is lower than the expected only when a certain
condition is true, such as when a specific server is unavailable.

In the rest of this section we provide examples of configuration
errors that can be detected as violations of the coherency or the
independence property.

2.1 Delegation Inconsistency
Delegation inconsistency errors happen when there is an incon-

sistency between the delegation RRs declared at the parent and at
the child zone. The delegation records defined at the parent are the
NS records of the child zone and any glue A records associated with
the NS records. The child zone is always the authoritative zone for
the delegation NS records, whereas that is not always the case for
the glue A records. The inconsistency can happen either because
the NS RR set declared at the parent is not the same as the one de-
clared at the child zone, or because the glue A record does not point
to the same IP address as the corresponding authoritative A record,
or even because the records’ TTL values are not consistent.

Delegation inconsistency is the results of coherency violation:
it is caused by an inconsistency in the declaration of delegation
points. For example the delegation NS RR sets, which is declared
both a the parent and at the child zone, do not match, or the glue A
RR and the corresponding A RR of the authoritative zone are not
the same.

Delegation inconsistency errors reduce the number of all possi-
ble available authoritative servers for a zone, given that the par-
ent and the child zone define only a subset of them, and each re-
solver accepts only one subset and never merges them 1. Moreover,
this kind of configuration errors can create subtle problems that
are quite tricky to debug. For example inconsistencies between the
glue A records at a parent and the A records defined in the child
zone can create “unintentional” cache poisoning problems, mean-
ing that DNS resolvers may cache information that are incorrect.
There was a case where the delegation inconsistency led to a name
server being associated with at least 13 different IP addresses [1].
Moreover the TTL inconsistencies may considerably increase the
number of queries in the parent zone.

2.2 Lame Delegation
Lame delegation errors happen when a nameserver that is reg-

istered in the DNS system as authoritative for a zone, does not
provide authoritative answers for the zone. It can be because no
DNS server runs on the registered machine, or a server runs on
the named machine but it does not have the authoritative data, or
it replies with an error indication (Servfail or Refused error code).
In all these cases we define the server as being lame and the zone
as being lame delegated. In most times lame delegation is the re-
sult of a delegation inconsistency, where the parent zone does not
correctly reflect the configuration of the child zone; in rare cases a
nameserver can be lame even when the parent and the child zones
have consistent delegation records but both point to a wrong server.

Lame delegation is the result of coherency violation: it is caused
by an inconsistency in the declaration of authoritative nameservers.
Declarations at the logical level, such as NS or A RRs, do not match
with declarations at the physical level, because a nameserver is
not running on the corresponding machine, or because there is a
wrongly typed IP address, etc.

1RFC2181 [19] states that caches should never merge RR sets.

266

Lame delegation errors cause two major problems. First the
number of actually available servers for a zone can be much lower
than the one indicated by the configuration, which gives a false per-
ception on the zone’s server redundancy level. Measurements show
that the majority of lame delegated zones lose as much as 50% of
their servers [25]. Second, lame servers increase the response time
for queries for the RRs defined in the lame zone or any other zone
below. The same study shows that the response time for queries
that encounter at least one lame server is one order of magnitude
longer in most cases.

2.3 Zone Cyclic Dependency
Zone cyclic dependency errors happen when, in order to resolve

a zone Z1, the resolver needs to query zone Z2, which in order to
be resolved requires zone Z1 to be resolved first. In other words,
zones Z1 and Z2 depend on each other in a mutual way. Given that
most zones have multiple DNS servers, a client, in order to resolve
a name, can follow multiple paths, starting from the root and going
to the destination zone. Zone cyclic dependency errors occurs if
there is at least one path that creates the mutual dependency. Zone
cyclic dependencies errors may also involve more than two zones.

Zone cyclic dependency is the result of independence violation:
it is caused by creating dependencies while declaring one or more
delegation points in the logical level. For example it is likely that
the availability of one server may depend on the availability of an-
other server, under a specific configuration of NS and glue A RRs,
that may involve either one or multiple zones.

Zone cyclic dependency errors can reduce a zone’s reliability
subsequently. Based on [25], more than 25% of the zone’s servers
are involved in a dependency, if the zone’s configuration causes a
cyclic dependency. Identifying the problem in these zones is tricky,
because individual configuration files do not exhibit any apparent
errors, and under normal conditions when all the servers are avail-
able, the servers that form the dependency appear to be available.
Only when a combination of failures happens these problems exac-
erbate and these servers become unreachable, even when they are
available and can provide authoritative answers for the zone.

2.4 Diminished Server Redundancy
Diminished server redundancy configuration errors happen when

two or more servers, that are authoritative for the same zone, are
placed in this way that a failure of a single component can cause
the failure of these servers. For example placing the authoritative
servers behind the same router can make them unavailable if the
router fails2, or placing them in the same network prefix, as being
advertised by BGP, can again make them unavailable in the case of
a routing problem, such as a BGP misconfiguration or route hijack-
ing.

Diminished server redundancy is the result of independence vio-
lation: it is caused by creating dependencies while defining two or
more authoritative nameservers in the physical level. For example
it is possible that a zone’s authoritative nameservers are placed in
such a way that inability to reach one server may imply inability to
reach the other servers with hight probability, given that all of them
are prone to the same set of external failures.

Diminished server redundancy problems can considerably de-
crease the zone’s availability. According to [25], zones that have all
their nameservers placed behind the same /24 prefix cannot achieve
even three nines of availability, while zones with nameservers placed
in different networks and diverse geographic locations have at least
three nines of availability. Moreover these kind of configuration er-

2Assuming that the router is not in a redundant configuration with another
router

NameServer 3

NameServer 2NameServer 1

Coordinator

Probe 1

Probe 3

Probe 2

Figure 1: An example configuration of the system: One coordinator
and three probes are used in order to monitor a DNS zone with three
name servers

rors are in general difficult to detect. The Microsoft infamous DNS
problem [15] indicates that these problems can get unnoticeable for
a considerable long period of time.

3. SYSTEM ARCHITECTURE
In this section we give a high-level description of the system ar-

chitecture of our DNS troubleshooting tool. The design takes a dis-
tributed approach, due to the need of accurately identifying faults at
the DNS physical level. One may be able to conduct measurements
following the logical structure of the DNS hierarchy from a sin-
gle vantage point. However such single point examination cannot
always expose configuration errors at the DNS physical level.

For example, resolving the NS records of a zone and identifying
all the zones and nameservers that can potentially be used during
the resolution phase is a process that returns the same results inde-
pendently of the vantage point location 3. On the other hand, trying
to identify how a single network failure may affect the reachability
to the nameservers of a particular zone is a process that depends on
the relative locations of the nameservers and the monitoring points.
Our troubleshooting tool is designed to run at multiple vantage
points located in diverse sites, and thus it is capable of exposing
configuration errors at the DNS physical level.

The design defines two main components: a single coordinator
and multiple probes. The coordinator has three main functional-
ities: a) performs a set of advanced diagnostic tests itself; b) in-
structs the probes to perform a set of simple diagnostic tests and
collects the results, and c) implements the graphical user interface.
The probes are DNS clients that perform simple DNS diagnostic
tests, as described in section 4. The rationale behind the separation
of tasks between the coordinator and the probes is the following:
All the diagnostic tests related with the DNS logical level entities
can be performed by a single node, and the coordinator implements
this task alone to avoid unnecessary coordinations with the probes.
For diagnostic tests that are related with DNS physical level enti-
ties and that require multiple vantage points, the probes implement
only simple diagnostic tests and the coordinator controls the tests
and process the results.

As an example, Figure 1 shows a specific configuration of a sys-

3There exist a few exceptions where different clients may get different an-
swers, such as in the case of CDNs.

267

tem with three probes that monitor a zone which has three authori-
tative servers. The coordinator and the probes are installed on dif-
ferent machines, and the probes are distributed in diverse sites. Our
design does not require the probes to be collocated with the zone’s
authoritative nameservers, though such collocations can be a valid
deployment strategy, as we explain in section 5.

Although both the coordinator and the probes are fully capable
DNS resolvers, their implementation differs from a standard DNS
resolver in two fundamental ways. First, the coordinator performs
a number of complex DNS querying tasks, as the one described
in section 4.2.1, which are not supported by a standard resolver
implementation. Second, by default the standard resolvers cache
all the received RRs, a feature that needs to be disabled, because
cached RR entries can conceal many DNS configuration errors.

The system queries the monitored zones periodically to identify
potential configuration errors. The frequency of these queries is a
trade off between promptness in detection and overhead. Ideally
the frequency should be at least 2 times higher than the expected
frequency of the events that we want to monitor; we believe simple
empirically chosen values can provide adequate enough results for
most cases. In section 4 we suggest some typical values for these
frequencies.

During each poll period the following steps are performed. First,
the coordinator iteratively queries the DNS system, starting from
the root servers, in order to resolve the NS and glue A records of
the monitored zone. This step can identify configuration errors due
to the violation of the coherency or independence property at the
DNS logical level only. The coordinator then instructs the probes
to perform the additional diagnostic tests needed to reveal errors
appearing at the DNS physical level. The results from these addi-
tional tests are sent back to the coordinator, which processes them
and updates the graphical interface accordingly.

4. DIAGNOSTIC TESTS
In the following sections we describe how the diagnostic tests,

that can identify violations of the coherency or independence prop-
erty, are implemented.

4.1 Coherency Violation Tests
Coherency violations can happen while declaring entities either

at the DNS logical or at the DNS physical level. We consider two
entities: the authoritative nameserver, declared both at the logical
and physical level, and the delegation point, declared only at the
logical level.

4.1.1 Delegation Point Test
This coherency violation diagnostic test identifies delegation in-

consistency errors, and it is performed only by the coordinator. The
probes are not involved in this test because, generally speaking,
DNS gives the same reply to the same query, independent from
where the query comes from. This is especially true for the NS
and glue A records but is not always true for some other resource
records, given that wide area load balancers may provide different
answers to different clients [16].

The delegation inconsistency test is quite simple: the coordinator
asks for the NS RR set from the zone under investigation, as well
as from its parent zone. All the authoritative servers of the parent
and the monitored zone are queried. In addition, for any glue A RR
record defined at the parent zone, it queries the authoritative zone
for that record. After collecting all the NS and glue A RR, both
from the parent and the authoritative zones, the coordinator checks
whether the are any inconsistencies, either at the values of these
RRs or at their TTLs.

The poll period of this test is, by default, set to the minimum
TTL value of all NS and glue A records of the monitored zone.
The rationale behind this choice is that changes on these records
are expected to happen in the frequency of their TTLs.

4.1.2 Authoritative Nameserver Test
This coherency violation diagnostic test identifies lame delega-

tion errors, and it is implemented both by the coordinator and the
probes. The reason is that the same server may be reachable from
some clients and unreachable from others. This can be due to tran-
sient network failures that affect only a part of the Internet, or even
due to various long lived routing problems or wrong firewall con-
figurations. It is also possible that the same server may give dif-
ferent replies to different clients, due to a wrongly configured DNS
access list or an incorrectly defined view. The above cases indi-
cate that lame delegation incidents can be identified better, with the
coordination of many DNS clients.

The lame delegation diagnostic test for a zone is performed in
the following way: each probe, as well as the coordinator, sends
to each nameserver, registered as authoritative for the zone under
investigation, a query for an existing resource record belonging to
the zone. Then, based on the reply, it verifies if the server is in-
deed authoritative for the zone. The server is authoritative only if it
replies with an answer that has the AA (Authoritative Answer) bit
of the DNS header set. In all other cases, either there is no answer,
or there is an answer with an error indication or the AA bit is not
set.

There are two subtle points that we need to clarify. First this
method requires a prior knowledge of a valid RR for the zone. This
requirement is fulfilled with the use of the zone’s SOA (Start of
Authority) RR, which is the only record that is always defined if the
zone exists 4. Secondly there is a thin line in the definition of a lame
server and a server that is temporary unavailable, due to transient
routing problems. Thus, in the case that a server is not responding,
we consider it as being lame if that happens continuously for a long
period of time 5. The poll period of the lame delegation diagnostic
test is configurable, and its default value is set to the TTL value of
the NS RR.

4.2 Independence Violation Tests
As in the case of coherency violations, independence violations

can happen while defining entities either at the DNS logical or at
the DNS physical level. Again, we consider the same two entities:
the authoritative nameserver and the delegation point.

4.2.1 Delegation Point Test
This independence violation diagnostic test identifies cyclic de-

pendency errors, and it is performed only by the coordinator. Again,
because all the potential DNS logical paths, that a client may fol-
low in order to resolve one zone, are independent from its location,
this test is performed by the coordinator only.

The coordinator first identifies all the potential paths, by itera-
tively querying the DNS system and by visiting all the identified
servers. The algorithm follows a breadth first approach, meaning
that the coordinator visits all the servers that are defined in each
NS RRs and then proceeds to the next level of the DNS hierarchy.
For NS records that their IP address needs to be resolved, i.e. when
there is no glue A record, the resolver starts a new instantiation
of the algorithm, and temporarily holds the previous instance in a

4Note that NS records are also required for a correctly defined zone.
5RFC2308 defines a nameserver as dead if it doesn’t respond within 2 min-
utes.

268

pending stage. A cyclic dependency is detected if during this pro-
cedure a pending instance needs to be prematurely resumed. When
this happens, all the zones whose instances are in a pending stage
are involved in the cyclic dependency, as well as all the servers that
form the loop.

The poll period for this type of tests is set to the minimum TTL
value of the NS records of all involved zones, again for the same
reason as previously described.

4.2.2 Authoritative Nameserver Test
This independence violation diagnostic test identifies diminished

server redundancy errors, and it is performed by both the coordina-
tor and the probes. The reason is that different kinds of component
failures can affect different parts of the network. Therefore, ob-
servations from multiple points can increase the confidence of the
reported results.

More specifically, the diminished server redundancy test is per-
formed as follow: each probe, as well as the coordinator, sends an
SOA query to all the authoritative servers of the zone and waits for
a response. In the case it does not receive a response, after trying
a number of times, it performs a traceroute like probe in order to
identify the last router that is capable of forwarding the query. The
coordinator receives these unreachability information, and based
on the reports coming from multiple probes, can estimate how se-
vere is a failure and also the type of the failure. Routing failures
appear to have very diverse last forwarding routers, whereas single
box failures give the same last forwarding router, in most cases.

The polling period of this test highly depends on the time du-
ration of the transient network failures; it can range from multiple
minutes to several hours. Zone operators may specify a proper fre-
quency for their zones.

5. SYSTEM DETAILS
In this section we present some more detailed aspects of the sys-

tem. We briefly explain how it is implemented and how it can be
configured. Finally, we demonstrate the main features of the user
interface.

5.1 Implementation
Both the coordinator and the probes are implemented in the Perl

scripting language. This decision allowed us to use a great number
of libraries. For example we make use of the NetDNS [9] mod-
ule in order to construct the DNS packets. In addition we use the
GraphViz [6] and RRDTool [10] modules in order to create the user
interface graphs.

5.2 Configuration
In order to make the configuration of the whole system as simple

as possible, operators are required to configure only the following
parameters: the domain names of the monitored zones, and the IP
addresses of the probes. Optionally, other parameters, such as fre-
quency of the diagnostic tests or the output type of the results, can
be configured.

While the coordinator is usually installed on a machine which
is under the administration of the zone’s operator, the probes can
be installed on machines that may be under different administra-
tion. It is worthwhile to discuss the possible options that an oper-
ator may have in order to select the monitoring machines. In the
simplest case the probes can be collocated with the zone’s name-
servers. Another option is that the probes are selected from a big
pool of machines that publicly allow simple DNS queries, similar
to the case of public available traceroute servers or looking glasses.

Finally, servers that allow arbitrary types of network measurements
[26] can be a third option.

5.3 User Interface
Our DNS troubleshooting tool also implements a comprehensive

user interface. The interface is web-based: the coordinator creates
a number of HTML pages and graphs that are served by a standard
web server and can be viewed through a web browser. The user
interface provides two types of graphs: a configuration graph that
shows DNS entities of the logical and physical level. It includes
only the entities that belong to the zones that may potentially be
used in order to resolve the monitored zone. A second type of graph
is the statistics graph that shows the history of events, captured
during the last day, week or month.

Figure 2 shows the combined logical and physical level graph
for a zone. It actually shows that the unisourse.it zone is in a
cyclic dependency with the ita.tip.net zone. The configuration of
two authoritative servers, the ns.unisourse.it and the ns2.ita.tip.net,
creates the problem. Note that zones are presented with rectan-
gles and servers are presented with oval shapes. Zones that expe-
rience at least one configuration error are marked with red color,
whereas servers that appear to have at least one configuration er-
ror are marked with yellow color. Additional information, such the
type of the configuration error, is displayed above the misconfig-
ured servers or zones.

6. RELATED WORK
There are a few tools that can identifying DNS misconfigurations

[11, 3, 5, 4, 2]. Most of them can detect only a subset of the DNS
infrastructure related configuration errors. On the other hand, they
implement diagnostic tests that can identify errors related with ap-
plication specific RRs, such as MX RR or PTR RR. And, to the
best of our knowledge, they are limited to one monitoring machine,
and thus they may not be able to detect a number of configuration
errors that require distributed diagnosis.

There exist an SNMP MIB defined for the DNS operations [13],
but it is mostly oriented for accounting purposes, and thus it is rela-
tive hard to make use of this MIB in order to identify configuration
problems. Moreover, complex network management tools, such
as HP’s OpenView [7] and IBM’s Tivoli [8], can be configured or
programmed in order to diagnose network related problems. On
the other hand, these tools heavily rely on SNMP MIBs and thus
they are not adequate to address most of the problems described in
this paper.

Duane [27] classifies different types of bogus DNS queries, that
are commonly seen by the DNS root servers, and he describes
methods of identifying misbehaving DNS resolvers and ways of
fixing these errors. Finally, in a related work [25] we present and
classify the DNS configurations errors described in this paper, and
measure their pervasiveness and impact on the global DNS system.

7. SUMMARY
DNS is a manually configured distributed database which crosses

multiple administrative domains. It is a well known fact that con-
figuration errors not only exist but are also widespread. To facilitate
operators with DNS misconfiguration detection we have developed
a troubleshooting tool which identifies configuration errors that can
affect the DNS infrastructure. Our design takes the approach of first
identifying basic properties of a correct configuration and then de-
tecting violations of those properties. We also utilize multiple mon-
itoring points to diagnose misconfigurations that cannot be easily
detected from a single point.

269

Figure 2: A snapshot of the user interface: a cyclic dependency error affecting the unisourse.it zone

As a future work, we plan to extent our tool to detect configura-
tion errors associated with the DNSSEC deployment. At the same
time we seek to sharpen our understanding of the basic properties
of correctly configured systems, in order to detect both known and
unknown configuration errors.

8. REFERENCES
[1] Private communication with Mark Andrews, Nov. 2003.
[2] CheckDNS. http://www.checkdns.net/quickcheck.aspx.
[3] DNSCheck. http://dnscheck.se/.
[4] DNSChecker. http://www.squish.net/dnscheck/.
[5] DNSReport. http://www.dnsreport.com/.
[6] GraphViz. http://www.research.att.com/sw/tools/graphviz/.
[7] HP OpenView. http://www.openview.hp.com/.
[8] IBM Tivoli. http://www.ibm.com/software/tivoli/.
[9] Net::DNS. http://www.net-dns.org/.

[10] RRDTool. http://people.ee.ethz.ch/ oetiker/webtools/rrdtool/.
[11] ZoneCheck. http://www.zonecheck.fr/.
[12] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.

DNS Security Introduction and Requirements. Work in
progress: draft-ietf-dnsext-dnssec-intro-08, December 2003.

[13] R. Austein and J. Saperia. DNS Server MIB Extensions.
RFC 1611, 1994.

[14] D. Barr. Common DNS Operational and Configuration
Errors. RFC 1912, 1996.

[15] N. Brownlee, k claffy, and E. Nemeth. DNS Measurements
at a Root Server. In Proceedings of the IEEE Globecom’ 01,
pages 1672–1676, 2001.

[16] Cisco Systems. Distributed Director. http://www.cisco.com/.
[17] Credentia. http://www.credentia.cc/research/cctlds/, 2004.
[18] Team Cymru. http://www.cymru.com/DNS/lame.html, 2004.
[19] R. Elz and R. Bush. Clarifications to the DNS Specification.

RFC 2181, 1997.
[20] R. Elz, R. Bush, S. Bradner, and M. Patton. RFC 2182 -

selection and operation of secondary dns servers. Rfc, 1997.
[21] Ed Lewis. Implementation of ARIN’s Lame DNS Delegation

Policy. http://www.nanog.org/mtg-0306/lewis.html, 2003.
[22] Men & Mice. http://www.menandmice.com/, 2004.
[23] P. Mockapetris. Domain Names–Concepts and Facilities.

RFC 1034, 1987.
[24] P. Mockapetris. Domain Names–Implementation and

Specification. RFC 1035, 1987.
[25] V. Pappas, Z. Xu, S. Lu, D. Massey, A. Terzis, and L. Zhang.

Impact of Configuration Errors on DNS Robustness. In
Proceedings of the ACM SIGCOMM’04, 2004.

[26] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A
Public Internet Measurement Facility. In Proceedings of the
Usenix Symposium on Internet Technologies and Systems,
2003.

[27] D. Wessels. Is Your Caching Resolver Polluting the Internet.
In Proceedings of the ACM SIGCOMM workshop on
Network Troubleshooting, 2004.

270

