
Overlook: Scalable Name Service on an Overlay Network

Marvin Theimer and Michael B. Jones

Microsoft Research, Microsoft Corporation
One Microsoft Way

Redmond, WA 98052, USA

{theimer, mbj}@microsoft.com
http://research.microsoft.com/~theimer/, http://research.microsoft.com/~mbj/

Keywords: Name Service, Scalability, Overlay Network, Adaptive System, Peer-to-Peer, Wide-Area Distributed System

Abstract
This paper indicates that a scalable fault-tolerant name ser-

vice can be provided utilizing an overlay network and that
such a name service can scale along a number of dimensions:
it can be sized to support a large number of clients, it can al-
low large numbers of concurrent lookups on the same name or
sets of names, and it can provide name lookup latencies meas-
ured in seconds. Furthermore, it can enable updates to be
made pervasively visible in times typically measured in sec-
onds for update rates of up to hundreds per second. We ex-
plain how many of these scaling properties for the name ser-
vice are obtained by reusing some of the same mechanisms
that allowed the underlying overlay network to scale. Finally,
we observe that the overlay network is sensitive to bandwidth
and CPU limitations.

1. Introduction
Name services [1, 13, 12] are widely recognized as being

one of the key building blocks for distributed applications. In
their most general form, they allow clients to present a name
and obtain a set of data associated with that name.

Our interest in scalable name services stems from the Her-
ald project’s effort to build an Internet-scale event notification
service [3]. Such an event notification service requires an
Internet-scale name service to manage the name space for its
event topics. The Overlook name service is designed to fill
this role.

Furthermore, such a name service requires two features not
found in traditional large-scale name services. One require-
ment is that updates to the name space must become globally
visible relatively quickly (in seconds rather than hours or
days). We want to enable applications to dynamically gener-
ate or change event topic names’ contents on the fly and then
use them almost immediately thereafter.

Another requirement is that the name service be able to
handle high variations in the popularity of various parts of the
name space and high variations in the lookup request rates
made to various parts of the name space. In other words, the
name service must support “flash crowds” that suddenly focus
on one or a few names—perhaps only briefly—that were never
before of interest.
Although these requirements stem from our focus on Internet-
scale event notification, we believe that they represent capa-
bilities that would be generally useful. Hence we present
Overlook as a general name service design rather than one that
is specific to just event notification services.

1.1 Use of Overlay Networks
Existing scalable name services, such as DNS, tend to rely

on fairly static sets of data replicas to handle queries that can-
not be serviced out of caches on or near a client. Unfortu-
nately, static designs don’t handle flash crowd workloads very
well. We want a design that enables dynamic addition and
deletion of data replicas in response to changing request loads.
Furthermore, in order to scale, we need a means by which the
changing set of data replicas can be discovered without requir-
ing global changes in system routing knowledge.

Peer-to-peer overlay routing networks such as Tapestry
[24], Chord [22], Pastry [18], and CAN [15] provide an inter-
esting means of achieving the desired design. Such networks
organize a collection of cooperating hosts so that they can
route messages among themselves in the face of node and
network link failures while maintaining only relatively small
overlay routing tables and scaling to large numbers of partici-
pant nodes.

More interestingly for our work, these networks can be em-
ployed to implement the equivalent of a distributed hash table.
Furthermore, replicas of hash table entries can be created
along the queries’ routing paths such that they can be found
without requiring global state changes. Thus, query loads can
be diffused both by distributing table entries among multiple
nodes and by replicating popular entries along the routing
paths that are followed to find the “master” copy of a table
entry.

1.2 Peer-to-Peer or Not?
The use of overlay networks has become closely associated

with the idea of peer-to-peer computing. Such systems take
advantage of the ability to place content anywhere among co-
operating nodes. However, as [20] makes clear, not all peers
are equal. In that study, among other results, we see that the
median peer connection time was only about an hour, that
downstream bandwidths tend to be in the range of 56Kbits/s to
10Mbits/s, and that the upstream bandwidths are often a factor
of 5-10 times worse than that.

As we discuss in our experimental results section, we found
that the scalability of our peer-to-peer server system is sensi-
tive to both the network bandwidth provided among the par-
ticipating server nodes and the CPU processing rate of those
nodes. Because of this, Overlook’s design targets a setting of
managed server machines connected by high-speed network
links rather than one of arbitrary client machines. An example
of such a setting is the Akamai “edge computing” model, in

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

which server machines are spread among ISP data centers
throughout the world.

Overlook runs peer-to-peer routing algorithms among name
server nodes, but assumes that each name service client will
separately connect to some server node and use it as a proxy
for its requests. Thus, clients do not participate in the peer-to-
peer system themselves and our design can be viewed as being
peer-to-peer among the server nodes but not end-to-end to the
client nodes.

In the remainder of this paper we present design require-
ments in Section 2, describe the design of the Overlook scal-
able name service in Section 3, and present and discuss ex-
perimental results obtained for Overlook via simulations in
Section 4. Section 5 reviews related work, while Section 6
discusses future work and Section 7 presents a summary of our
work and draws several conclusions.

2. Design Requirements
2.1 Desired Functionality

Overlook’s goal is to provide an Internet-scale hierarchical
name space with the following functionality:
• Directories can contain both (name, value) pairs and names

of subdirectories.
• Clients can look up a value stored in the name service by

presenting the fully-qualified directory name and a name
within that directory whose value is to be retrieved.

• Directories can be updated by modifying or deleting an
existing (name, value) pair, adding a new (name, value)
pair, adding a new subdirectory, or deleting an existing
subdirectory.

• Clients can enumerate a directory’s contents. An enumera-
tion returns an unordered list of directory-relative names,
one per directory element.

2.2 Scalability, Performance, and Availability
The applications we intend to use Overlook for require the

following performance and availability characteristics from it:
• The service should scale to allow many millions of clients

to query and update the namespace during the course of
each day. Scalability should be achievable by simply add-
ing more servers.

• Queries against a given (name, value) pair should complete
within less than a second, even when unavailable in a cli-
ent’s local cache. The popularity of any given (name,
value) pair or directory should not affect the time required
for queries against that (name, value) pair or directory, ex-
cept during brief transient periods when their popularity is
drastically changing.

• Directory updates should typically be visible to all clients
within a short period of time, such as a few seconds.

• The service should be able to execute hundreds of thou-
sands of queries per second against a single directory or
(name, value) pair. (100,000 lookups/second corresponds
roughly to having everyone on the planet query a particular
directory or (name, value) pair once during a single day.)

• The service should be able to execute hundreds of updates
per second against a single directory or (name, value) pair.
(100 updates/second corresponds to having a directory of

all machines in a company the size of Microsoft—about
100,000 machines—and having each machine update its
entry once every 15 minutes.)

• The service should be able to survive the failure of any f
machine nodes with no loss of data, where f is a pre-
specified value.

3. Scalable Name Service Design
In this section we present the design of Overlook, a scal-

able distributed name service built on top of a peer-to-peer
overlay routing network, such as Pastry. We first give a brief
overview of salient aspects of Pastry and describe how we
exploit its various characteristics to obtain both generalized
load diffusion as well as flash crowd support. We then de-
scribe how to deal with network congestion, how to effect
updates that will become globally visible quickly, and how to
obtain fault tolerance against server node failures.

3.1 Brief Introduction to Pastry
The properties of peer-to-peer overlay networks, such as

Pastry, that make them attractive for building a scalable name
service are:
• They provide a scalable general-purpose routing mecha-

nism that can route messages between participants in the
system.

• They provide a fault-tolerant routing.
• They enable placement of application-level services at

overlay routing nodes.
Paraphrasing from the published literature: Pastry forms a

secure, robust, self-organizing overlay network on top of an
underlying network such as the Internet, an organization’s
Intranet, or a data center’s local network fabric. Each Pastry
node has a unique, 128-bit nodeId and the set of existing
nodeIds is uniformly distributed. Nodes can select suitable
nodeIds by, for instance, taking a secure hash of their public
key or IP address.

Destinations in Pastry are designated by means of 128-bit
keys. Given a message and a key Pastry reliably routes a mes-
sage to the Pastry node with the nodeId that is numerically
closest to the key, among all live Pastry nodes. Thus, to im-
plement a distributed hash table on top of Pastry involves stor-
ing each table entry on the Pastry node that is numerically
closest to the hash key associated with the entry. Table entries
are found by routing request messages via the hash key of each
desired entry.

Pastry overlay networks are designed to be scalable. Rout-
ing is implemented by sending a message to another Pastry
node that is numerically closer to the destination than the cur-
rent one. Each node maintains a routing table whose entries
are selected so that the expected number of routing hops to
reach a final destination is O(log N) in a network consisting of
N nodes. By selecting routing table entries in a manner that
also reflects network topology considerations, Pastry is able to
route messages in a manner that mostly avoids sending mes-
sages through far-away nodes of the network. Furthermore,
the routing tables required in each Pastry node are small, hav-
ing O(log N) entries, where each entry maps a nodeId to the
associated nodeId’s IP address.

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

Pastry routing is also robust in the face of node failures.
With concurrent node failures, eventual delivery is guaranteed
unless l/2 nodes with adjacent nodeIds fail simultaneously (l is
a configuration parameter with typical value 16).

Finally, an important feature of Pastry that we take advan-
tage of is that each node along a message’s route passes the
message up to a registered application. The application can
perform application-specific computations related to the mes-
sage and then inform the underlying Pastry layer whether or
not to continue routing the message onward to its intended
final destination.

3.2 Basic Design
At its most fundamental level, Overlook employs a distrib-

uted hash table to diffuse load across a set of server machines
that are interconnected by a Pastry overlay network. Table
entries are the directories of the hierarchical name space. The
hash key for a directory is obtained by applying a secure hash
to its full pathname to obtain a 128-bit hash key.

Name lookup, directory enumeration, and name update re-
quests get routed via Pastry to the server node where the rele-
vant directory resides. Directory creation and deletion re-
quests require that messages get routed to two different nodes:
the node hosting the parent directory and the node that will (or
is) hosting the directory to be created or deleted.

As mentioned in the Introduction, we avoid the issues of
dealing with the client machines that may be connected via
high-latency, low bandwidth network links or that may be
unreliable or corrupt by only maintaining a Pastry overlay
network among a set of managed server machines. We envi-
sion that these might be distributed among ISP data centers
around the “edge” of the Internet or aggregated within one or a
few “mega-service” data centers.

All Overlook server machines register themselves with
DNS. Clients interact with Overlook by finding an Overlook
server machine via DNS and then sending requests to the se-
lected server. Servers thus contacted act as proxies for client
requests, forwarding them into the Pastry overlay network and
subsequently relaying response messages back to the clients.

Clients can either randomly select an Overlook server from
those registered in DNS or they can attempt to select one that
is “nearby” if they have a means of gauging network distances,
for example as Akamai’s software does. If a client happens to
pick a server that has crashed since it registered itself with
DNS, then the client simply picks another one.

Overlook assumes the existence of client-side caches but
permits name entries to be cached for only short durations so
that updates can become visible quickly. In particular, unless
a name’s creator specifies a longer caching timeout value, it
will be cached for only one second before being discarded.

3.3 Handling Popular Directories
A distributed hash table can diffuse the load of managing

multiple directories across multiple server machines. How-
ever, it cannot diffuse the load directed at individually popular
directories. For this we need replication.

Caching popular directories and/or their entries can provide
the desired load diffusion if updates are not required to be
quickly visible. However, if they are, then caches will have to
timeout their contents quickly. This is all right if the average

period between updates is comparable to the cache timeout
interval. However, if updates occur significantly less fre-
quently than cache invalidations then it is better to “push”
updates rather than “pull” them. Hence Overlook employs a
replication scheme in which replicas are kept up-to-date by
means of update notifications.

Directory replicas are placed along the most congested Pas-
try routing paths leading to the “root” node for a directory so
they will be encountered automatically by name lookup and
directory enumeration requests. To do this, each server keeps
track of the request rate for each directory of which it hosts a
copy—either as a root instance or as a replica. The request
rate is furthermore tracked according to which nodes the re-
quests came from on their most recent routing hop. The nature
of the Pastry routing scheme is such that requests only arrive
from about log N different forwarding nodes, hence the storage
costs of tracking this information are minor.

When a server node detects that the total request rate for a
directory it is hosting exceeds a particular threshold, it initiates
the creation of a new replica of the directory. Overlook does
this by selecting the incoming forwarding node that has the
highest recorded request rate associated with it and sending
that node a create-replica request message. Once the request
has been accepted, the server node records the fact that it has
created a new child.1 This information will be used to imple-
ment the update propagation scheme described in Section 3.5.

One could imagine selecting a replica candidate node based
on both the above-described request rate criteria as well as its
current CPU load. We have not explored this alternative yet,
in part because it requires maintaining distributed state infor-
mation in an up-to-date manner, whereas the request rate in-
formation can be maintained locally.

As mentioned, directory replicas are encountered automati-
cally by name lookup and directory enumeration requests.
This is because the Pastry routing layer passes each message
up to the application layer on each node that a message gets
routed through. When a request message is received by a node
that hosts an instance of the directory to which the message is
directed, the node processes the request and informs the rout-
ing layer not to forward the message any further.

Under sustained high load conditions, a node eventually
creates a directory replica along all the incoming forwarding
paths to it (for a given directory). At that point, it services
only requests that it receives directly from clients. For an ex-
tremely popular directory, eventually every server node in the
system contains a replica of it and services requests to it only
from directly connected clients.

Server nodes discard local directory replicas when the re-
quest rate to them goes below a lower-bound threshold. To
discard a given directory replica, a server node must inform
both the “parent” server node that requested the creation of the
replica and the “child” server nodes on which the server has
created additional replicas. The child nodes must be informed
that their new parent is the parent of the departing replica; the
parent node must be told to add all the departing replica’s
children to its own child replicas list for the given directory.

1 If the selected node has failed then the next most-trafficked forwarding
node is selected and so-on.

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

3.4 Dealing with Network Congestion
The replication scheme described in Section 3.3 works well

if server load is the limiting resource in a system. Network
congestion is a second limitation on overall system capacity.
Congestion can occur in two places: on the network links in-
terconnecting server nodes and on the links between clients
and servers. The latter form of congestion is something that we
cannot do much about. However, the former form of network
congestion can be alleviated by suitable replication of direc-
tory instances.

To activate replication of a directory due to network con-
gestion, we require a means of detecting network congestion.
Because server nodes act as proxies for client requests, they
can measure the round-trip times for requests that they forward
into the overlay network. When round-trip times for requests
to a given directory are observed to be larger than a given
threshold, a server (in its capacity as client proxy) sends a
request-replica message to the server node that replied to the
request. That server responds with a create-replica message
back to the requesting node. In this manner, replicas can be
“pulled” to other nodes across congested network links, in
addition to being “pushed” to other nodes from overloaded
nodes.

If server nodes were to request replicas immediately in re-
sponse to high observed round-trip times, many less-popular
directories might end up getting replicated as well as the popu-
lar ones creating the network congestion. This is because net-
work congestion affects all request traffic that is being routed
through congested links. To avoid this unnecessary replica-
tion, servers only initiate replica requests for directories for
which they themselves observe high client request rates.

3.5 Propagating Updates among Replicas
Replicated directory management implies that updates must

be propagated to all replicas. Ideally, updates would be ap-
plied in a strongly-consistent manner, so that all clients would
see identical views of the name space at any given time.
However, the cost of maintaining strong-consistency seman-
tics across multiple replicas would be prohibitive for the num-
ber of replicas that can occur in Overlook for popular directo-
ries. To support scalability, Overlook applies client update
requests by default in a weakly-consistent manner.

Clients wishing strongly-consistent update semantics can
request them when a directory is created, but doing so will
disable replication for that directory. This is fine for directo-
ries whose creators know that they will only be accessed by
limited numbers of clients. The scalability limit for such di-
rectories will be determined by the ability of a single server
node to process requests. Modern machines are typically able
to process a few thousand network requests per second. Rec-
ognizing that hosts must process both lookup and forwarding
traffic, it should still be possible to achieve our goal of hun-
dreds of updates per second. Thus, in practice, all but the most
popular directories could probably be declared to be strongly-
consistent without affecting actual client request latencies in
any noticeable manner. Such directories would, however,
have to forego the opportunity of ever becoming popular.

For weakly-consistent directories, all update requests get
routed to the root node for a directory. The root node forwards

each update to all its child replicas. These, in turn, forward
each update to their child replicas, until eventually every up-
date propagates down the entire replica tree.

Update messages are sent using a reliable request-response
messaging protocol. As a consequence, when replica nodes
reply to update messages the sending node will know when an
update has been successfully received, in the absence of fail-
ures. Replicas reply to an update message after they have
forwarded the update message to their own child replicas and
have either heard back from those replicas or those replies
have timed out. Thus, after the root node for a directory hears
a reply from each of its child replicas or has timed out, it
knows that the update has been successfully propagated to all
reachable replicas of the directory in the system. If we assume
that replicas can infer when they are unreachable and take
themselves out of commission, the root node can at that point
reply to an update request with an indication that the update
has successfully propagated to all visible replicas of the direc-
tory.

In order for the replica nodes for a given directory to detect
that they are unreachable, they keep track of the last time they
have heard from the directory’s parent node. If a node hasn’t
heard from its parent within a specified time interval, it as-
sumes the parent is unreachable and stops answering lookup
requests, effectively taking its replica off-line. When contact
with the parent is reestablished, the node requests that the par-
ent send it all updates it has missed. If too many updates have
been missed then the parent simply sends down a copy of the
entire directory. For this process to work correctly, at least
once each time interval the root node for a directory must ei-
ther forward an update or send out a “heartbeat” message.

The timeout value that a server node should use while wait-
ing for replies from updates forwarded to child replicas must
be a function of how deep the tree of replicas currently is be-
low that node. The appropriate value can be determined by
monitoring the round trip times required for successful propa-
gation of updates. Thus, server nodes keep track of how long
it takes for update—as well as heartbeat—replies to return
from their children. These times are used to dynamically ad-
just the timeout value used for waiting for future replies.

If one—or worse yet, several—extremely popular directo-
ries must also be updated on a frequent basis, then the update
and heartbeat message traffic in the system may become sub-
stantial. Two things can be done to reduce the traffic should
such a situation occur: updates can be batched together and the
frequency of heartbeat messages emitted can be reduced.

For a directory’s root node to be able to decide whether up-
date and heartbeat traffic should be throttled it needs to know
how many replicas exist in the system for its directory. This
can be achieved by using update and heartbeat reply messages
to roll up a summary of how many replicas exist for a direc-
tory.

To reduce the frequency with which heartbeat messages are
sent out requires that replica nodes be informed that they must
increase their heartbeat timeout interval. This can be done by
including a timeout interval in heartbeat messages that tells
replicas the length of the next timeout interval they should use.
The penalty for this increase in heartbeat timeout interval is
longer timeouts waiting for replies to update messages. That,

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

in turn, will result in clients having to wait longer to hear that
an update has successfully propagated to all visible directory
replicas within the system.

3.6 Fault Tolerance
If we wish to tolerate f server node failures then we must

immediately make at least f replicas of a directory in addition
to its root node instance. Since the Pastry overlay network
routes a message to the live Pastry node whose nodeId is nu-
merically closest to the key value that a message is being
routed to, the best place to put the f+1 replicas for a directory
is on the server nodes whose Pastry nodeIds are closest to the
key value corresponding to the directory. With this placement,
“fail-over” from a failed root node for a directory to the next
closest directory replica (in Pastry nodeId space) is automatic.
Hence routing a request message towards the root node for a
directory is guaranteed to find the same root replica among the
f+1 replicas regardless of which f of those replicas might fail.

To ensure that updates are not lost as a result of root node
fail-over, the order in which update messages are propagated
to replicas must be the order in which fail-over would choose a
new root node. Also, fail-over candidate nodes must be cogni-
zant of the child replicas that the original root node has created
so that they can reestablish contact with them after a fail-over
has occurred. Fail-over is detectable on a new root node by
keeping track of relevant activity in the node’s local overlay
routing table.

4. Experimental Results
In this section we present results obtained from running

simulations of the Overlook design. We start with an over-
view of the kinds of experiments we used to evaluate our de-
sign. We then present basic scalability results, flash crowd
results, and results quantifying the impact of updates.

4.1 Experimental Overview
4.1.1 Experimental Setup

Our experiments used an enhanced version of the packet-
level discrete event simulator described in [4]. As well as
modelling propagation delay on physical links, we added
modelling of link bandwidths as well as both network queuing
delays and delays caused by server CPU time consumption. A
simplifying assumption we retained was that link congestion
always causes packets to be queued rather than dropped.

The simulations ran on network topologies generated using
the Georgia Tech random graph generator [23]. We used a
transit-stub model to generate the core of the network and
attached a LAN with a star topology to each node in the core.
There were an average of 100 nodes in each LAN and each
node in a LAN was directly attached by a stub link to the core
node (as was done in [4]). Name server nodes were assigned
randomly to LAN nodes with uniform probability and Pastry
was configured with a leaf set size of l=16, a neighborhood set
size of 32, and b = 4.

Our experiments were conducted on a topology with 600
nodes in the core and 60,000 LAN nodes. Links were simu-
lated with these bandwidths: Transit-Transit links were set to
2Gbits/s and LAN links to 100Mbits/s. Transit-Stub links
were simulated with three different settings: 45Mbits/s,
100Mbits/s, and 1Gbits/s. Stub-Stub links (those correspond-

ing to links within ISPs) were simulated with bandwidths of
1.5Mbits/s, 45Mbits/s, 100Mbits/s, and 1Gbits/s. In the rest of
the paper we shall use the following acronyms: T1 =
1.5Mbits/s, T3 = 45Mbits/s, LAN = 100Mbits/s, and GIGA =
1Gbits/s.

We modeled the service load of processing an application-
level message as taking either 0.5 or 1 millisecond of CPU
time each.

4.1.2 Experiment Design
We conducted a series of experiments designed to deter-

mine the performance and scalability limits of our name ser-
vice implementation. In these experiments, we simulated cli-
ents sending requests to servers, with the requests arriving at
randomly chosen times according to an exponential distribu-
tion with a specified mean. We measured request service
times from the point at which a server, acting as a proxy for a
client, forwarded a request into the server overlay network
until the point at which that server received a corresponding
reply message from the server overlay network. Thus, our
request service times are representative of the latencies that
clients will experience when their lookup requests miss in their
local client-side cache. Note, however, that our latencies do
not include the message times required from a client to its
proxy server and back again. In the case where a request
could be serviced directly on the originating server node, we
accounted the service time to be the time required to process a
request at the server, without any additional network message
transmission time.

To determine the capacity of the system, we ran simula-
tions with increasing request rates until the measured response
times started rising noticeably. We applied a threshold to the
observed service times, calling runs with average service la-
tencies of under 800ms “good” and those with average service
latencies of over 800ms “bad”. The value 800ms was chosen
as the breakpoint because we observed that for experiments
not experiencing significant network congestion or server
queuing delays, round trips would typically average less than
700ms. For experiments experiencing significant network
congestion and/or server queuing delays the observed service
times would quickly cross this threshold.

We ran successive experiments, varying the average re-
quest arrival rate for each configuration until we determined
the boundary between “good” and “bad” runs to within a 10%
ratio. The resulting lower and upper bounds on request rates
are what is shown in all the graphed figures of this paper.
Parameter Meaning
Stub-BW Bandwidth of Stub-Stub links
S Server CPU time per message
N Number of overlay network nodes
D Number of name service directories
R Total number of requests per second
CPU-Rep True if CPU load-based replication on
Latency-Rep True if latency-based replication on
Updates True if name update traffic present

Table 1: Experiment Parameters

The parameters to our experiments are shown in Table 1.
Note that N, the number of overlay network nodes, represents

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

the number of machines that are members of the overlay net-
work eligible for containing directory information. For small
values of D, though, not all of these nodes may actually con-
tain directory entries. However, if replication is enabled (ei-
ther with CPU-Rep or Latency-Rep or both), even though a
particular server may not host the primary copy of a directory
it may contain a replica of it.

If the Updates parameter is true, then for every 100 name
lookup requests, a single update request will be made to
change the value of a name, causing update traffic to all server
nodes holding replicas of that name.

Finally, note that a parameter one might expect—the num-
ber of clients—is absent. Our model has clients making re-
quests to servers that are members of the overlay network, but
the clients themselves are not members of the overlay. In our
experiments, we assume that client requests are uniformly
distributed among the servers. Therefore, for simulation pur-
poses, we have each request originate directly from the server
where the client would have made the request. Increasing the
number of clients can then instead be modelled by making a
corresponding increase to the total request rate R.

4.1.3 Experiment Details
Experiments are run in two phases. The first, the warmup

phase, lasts for five simulated seconds and linearly ramps up
the request rate over this period from zero to the desired value
of R by the end of the warmup period. This phase is intended
to inject enough work into the system to bring it closer to a
steady state than it would be in if we started taking measure-
ments with no pending traffic.

During the second, the data collection phase, we begin re-
cording data and run the actual experiment to determine the
lookup request latency for the specified set of parameters. The
second phase runs for at least 30 seconds of simulated time.
After this, several heuristic termination criteria are applied
with the goal of running the experiment long enough to deter-
mine its steady-state behavior.

We used the following termination criteria, which were de-
termined experimentally from numerous simulation trial runs:
If the average lookup latency is above one second and rising,
then the run is declared “bad”. If the average latency is below
800ms and falling, then it is declared “good”. If the averages
over a simulated ten second period have remained within 10%
of one another, we assume the run has reached a steady state
and the run is declared “good” or “bad” by comparing its aver-
age to the 800ms threshold. Finally, if the overall average
drops below 50ms, the run is declared “good”. If none of
these criteria apply, the run is continued by simulating another
50,000 requests and then reevaluating the termination criteria.

4.1.4 Example Experiment
This section explains an example experiment to give the

reader a feel for the kinds of data to be presented in the re-
mainder of the section.

Consider an experiment with values Stub-BW=T1, D=1,
N=100, S=1ms, CPU-Rep=False, Latency-Rep=False, Up-
dates=False. This models traffic going to a single name ser-

vice directory that is hosted on a single node among the 100
nodes in the overlay network, at a rate R, which we will vary.
Replicas of the directory will not be made on other nodes be-
cause neither kind of replication is enabled. Traffic consists
solely of lookup requests—no updates are being sent. Finally,
the network being simulated uses T1 lines for Stub-Stub (ISP
network) connections.

We simulated these conditions for varying values of R,
looking for the point at which too large a value of R causes the
average request latency to cross the threshold of 800ms. Table
2 shows results for a series of experiments with these parame-
ters.
R (Re-
quests/s)

Re-
quests
Simu-
lated

Max
Latency
(ms)

Avg.
Latency
(ms)

Latency
Std. Dev.
(ms)

Status

500 15,995 1,072 646 234 Good
1,000 19,140 13,988 7,164 3,842 Bad

667 28,538 6,106 3,184 1,537 Bad
571 31,932 1,167 668 236 Good
615 30,876 2,753 1,514 561 Bad

Table 2: Results for Stub-BW=T1, D=1, N=100, CPU-
Rep=False, Latency-Rep=False, Updates=False

In this series, when the system is not overloaded (the
R=500 and 571 “Good” runs), the average request latency is
under 700ms and the maximum latency is a bit over one sec-
ond. These times are due to the costs of transmitting requests
and replies through the overlay network, the physical network
underlying it, and invoking the name service application code
on each overlay network forwarding hop node. Conversely,
when the network becomes overloaded (the “Bad” runs) the
average and maximum latency values shoot up due to network
congestion.

In this case, the inflection point between “good“ and “bad”
runs, representing roughly the maximum effective request rate
that can be supported by the system, lies between 571 and 615
total requests per second. Such sets of bounds on the maxi-
mum supportable request rate are the subject of all the graphed
data in subsequent sections.

0

200

400

600

800

1,000

1,200

1 10 100 1,000 10,000

N (Overlay Netw ork Nodes)

R
 (

R
eq

u
es

ts
/s

)

T3 R U pper Bound T3 R Lower Bound

T1 R U pper Bound T1 R Lower Bound

Figure 1: Performance of a Single Directory.
D=1, S=1ms, no replication or updates, Stub-BW={T1,T3}.

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

4.2 Single Directory Calibration
Figure 1 shows the results of experiments to find the load at

which a single unreplicated directory saturates. We placed a
directory on a randomly chosen LAN node and accessed it
from varying numbers of servers, searching for the request rate
at which the lookup latency crossed the 800ms threshold. The
results were different for T1 and T3 stub-stub links.

For T3 links, the directory could handle almost 1000 re-
quests per second. At this point the server becomes CPU-
limited, as each request takes 1ms of CPU time.

The T1 case is more interesting. For large numbers of
servers network effects limit the directory to handling about
600 requests per second. The 30 server point, where the direc-
tory could handle nearly 1000 requests per second, demon-
strates that the T1 link connecting the server to the WAN is
not necessarily the limiting factor, since at least for this par-
ticular placement of servers, it had sufficient bandwidth to
allow the computation to become CPU-limited. But what the
oscillations for small numbers of servers do illustrate is that
for small systems, unfortunate placements of links or band-
width settings will be visible, as each link will represent a
significant part of the total overlay network. For large net-
works, we expect to see smoother data since the law of large
numbers will come into play.

4.3 Scalability Calibration
To examine basic scalability, we ran tests in which N direc-

tories were placed randomly among the N servers of the sys-
tem. Clients’ requests were directed randomly among the
directories, resulting in a uniform load against all directories,
coming from all server machines in their capacity as proxies
for client requests. Directories were not replicated. These
results are illustrated in Figure 2 and summarized below:2
• For T1 stub network links the aggregate network capacity

is a noticeable limiting factor. Adding additional servers to
the system does not appreciably increase capacity beyond
about 20,000 requests per second.

• Employing T3 stub network links increases system capacity
significantly. In this case, aggregate network capacity lim-
its system performance to a maximum of about 300,000 re-
quests per second.

• Employing 100Mbits/s speeds for both Transit-Stub and
Stub-Stub links increases system capacity even more. The
upper bound seems to be around 600,000 requests per sec-
ond. Increasing link speeds to 1Gbits/s causes network ca-
pacity to no longer be the primary bottleneck, at least for
system sizes of 10,000 or less.

• Halving the CPU service time yields about twice the per-
formance in all cases except when the aggregate network
capacity is reached. Individual server capacity is extra im-
portant because completing a single lookup request in-
volves application-level messages being queued up and
then processed at multiple servers. Thus, the aggregate
number of lookups that can be handled is only a fraction of
the number one might expect from multiplying the number
of machines by their raw service request capacity.

2 10,000 servers was the maximum sized system we could simulate due to
computer memory limitations.

• Employing at least 100Mbits/s links everywhere and a CPU
service time of 0.5 milliseconds resulted in a system that
could process about 130,000 requests per second using
1000 servers and about 560,000 requests per second using
10,000 servers. Increasing the links speeds to 1Gbits/s
does not significantly improve the performance for a sys-
tem of 1000 servers, but it does improve the capacity of a
10,000 server system to about 690,000 requests per second.

4.4 Flash Crowd Tests
To test how our CPU-load-based replication scheme re-

sponds to flash crowds, we ran experiments in which all client
traffic was directed at a single directory. When either CPU-
load-based or latency-based replication is enabled, or both, the
system is able to dynamically respond to hotspot overloads by
creating additional replicas. If demand continues to increase,
then eventually every server machine in the system will obtain
a local replica of the hotspot directories. In the limit (assum-
ing no updates to the hotspot directories), the aggregate hot-
spot load capacity of the system will equal the sum of the CPU
load capacities of all the server machines—assuming that the
Internet capacity is sufficient to allow clients to still reach the
server machines to make requests of them.

Indeed, in the experiments with replication enabled but no
update traffic present, the lookup latencies eventually dropped
to just over 1ms—the local limit imposed by the CPU. This is
unsurprising because without updates, no network traffic is
needed to maintain the effectively read-only state.

4.5 Update Propagation Results
Finally, we ran experiments to determine the scalability of

Overlook when the workload includes update traffic—
meaning that the replicas are no longer read-only. These were
like the flash crowd tests above, except that 1% of the requests
update the value associated with a name instead of reading it.

Figure 3 shows the results of these tests for T1 stub links,
combined with the T1 scaling data with no replication, as
taken from Figure 1 for comparison purposes. The system
capacity scales nearly linearly until 1000 servers are reached,
at which point the system can service a load of between a half

100

1,000

10,000

100,000

1,000 ,000

1 10 100 1,000 10,000

N (Overlay Netw ork Nodes)

R
 (

R
eq

u
es

ts
/s

)

GIG A, S=0.5m s LAN, S=0.5ms
LAN, S=1ms T3, S=0.5m s
T3, S=1m s T1, S=1ms

Figure 2: Scale Out Without Replication.
D=N, no replication or updates. Only lower bound curves
are shown; upper bound curves are the same at this scale.
Stub-BW = {T1, T3, LAN, GIGA}. S = {0.5ms, 1ms}.

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

million and a million total requests per second. For larger
numbers of servers, the serviceable load begins to drop.

This behavior can be explained as follows: Under sus-
tained high load each server eventually hosts a replica of the
directory being queried and updated. Consequently, each up-
date will need to be propagated to every server node in the
system, implying a quadratic dependency on system size for
update costs. For system sizes up to about 1000 nodes the
overhead of updates is overshadowed by the fact that all
lookup requests are effectively handled locally. Beyond repli-
cation factors of about 1000 the overhead of updates begins to
noticeably dominate the overall responsiveness of the system.
Thus, an important control that must be exerted by directory
root nodes is to monitor the number of replicas existing for a
directory and manage the rate of batched updates and heartbeat
messages sent out accordingly.

Whereas the overhead incurred for updates has a quadratic
dependency on the number of replicas for a directory, the la-
tencies experienced by updating clients has a mostly logarith-
mic dependency. Under non-overload conditions, the time
required to propagate an update to all the replicas of a direc-
tory is determined by the time required to send update mes-
sages down and back up the directory’s replica tree.

For a system with 10,000 server nodes, the depth of the tree
will be at most 4, given the uniform manner in which Pastry
routing paths are defined. Thus, update latencies for even the
most popular directories are observed to be a few seconds once
replication has removed most lookup traffic and assuming that
the update (and heartbeat) rate is throttled to avoid overloading
the network with update traffic.

However, under circumstances when the entire system is at
or near its capacity—for example, in our experiments where
we try to find the maximum effective system request rates—
the latencies experienced by update clients can be substantially
higher. We conclude that directory root nodes must monitor
the update latencies they observe and be aggressive about
throttling update and heartbeat rates whenever observed laten-
cies exceed their normal-case values.

5. Related Work
5.1 Traditional Name Services

Name services are widely recognized as being one of the
key building blocks for distributed applications. They have a
substantial history of use in real distributed systems. The
Grapevine system [1] was the first replicated distributed name
service in regular use over a geographically distributed inter-
net. It was designed to scale to a size of about 30 name server
machines.

The Internet Domain Name System (DNS) was introduced
in November 1983 [13, 14] to replace host tables and is the
primary scalable name service in actual use today. Lampson
[12] also proposed a design for a general-purpose global-scale
hierarchical name service.

An important factor common to both DNS and Lampson’s
design is that they both rely on a set of root name servers that
must be traversed to lookup hierarchical names. These designs
try to mitigate the load on the root servers through caching.
[10] quantifies the effectiveness of this caching for today’s
Internet. In contrast, Overlook explicitly avoids having to
traverse root servers and servers for intermediate directory
path components when using a name.

Like DNS and Topaz, our design replicates directories onto
multiple servers both for availability and load spreading.
However, while in these systems the amount of replication
needed is determined by a system administrator and changes in
the degree of replication are a relatively rare event, in Over-
look dynamic replication in response to offered load and/or
network congestion is a principal feature.

5.2 Overlay Networks and Applications
There are several active research projects exploring scal-

able routing via general-purpose overlay networks. These
projects include Tapestry [24], Chord [22], Pastry [18], and
CAN [15]. While the results presented in this paper were pro-
duced using Pastry for routing, we believe that the same tech-
niques should be usable on any of the above overlay routing
schemes with similar effectiveness.

Several applications have been proposed on top of general-
purpose scalable overlay routing networks. These include the
OceanStore storage system [11] on Tapestry, the CFS file sys-
tem [7] on Chord, the PAST file system [17] on Pastry, and
the Scribe event notification system [4, 19] on Pastry. In addi-
tion, Freenet [6] is an existing peer-to-peer system that pro-
vides file storage functionality similar to that of PAST and
Chord, albeit with inexact semantics: file retrieval requests are
not guaranteed to find the files they refer to. All of these sys-
tems utilize the technique of hashing a content identifier to
determine which overlay node should hold the primary copy of
the content, just as we do for name service directories. The
storage systems also cache content at intermediate forwarding
nodes to alleviate hotspots. However, these storage systems
are primarily intended to provide archival storage for immuta-
ble data; updates to existing data objects is not their primary
focus.

Overlook’s design differs from these overlay storage appli-
cations by supporting directory enumeration and by employing
replication instead of caching so that quickly visible updates to
stored objects can be achieved. Our work is also the first to

100

1,000

10,000

100,000

1,000,000

1 10 100 1 ,000 10 ,000

N (O verlay N etw o rk N od es)

R
 (

R
eq

u
es

ts
/s

)

R ep+U pdates U pper B ound
R ep+U pdates Lower B ound

N o R ep o r U pdates U pper B ound
N o R ep o r U pdates Lower B ound

Figure 3: Non-replicated versus replicated scaling limits
with 1% update traffic. D=1, S=1ms, Stub-BW = T1, with
and without replication.

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

address the question of what effect replication has upon the
time it takes to make updates globally visible.

5.3 Overlay Multicast
One sub-problem faced by Overlook was the need to

propagate name updates to directory replicas. This can be
viewed as an instance of the reliable multicast problem applied
to directory replicas.

There are several proposals for doing multicast using gen-
eral-purpose overlay networks. Among them are the CAN
multicast design [16] and Bayeux [25]. Other systems provid-
ing overlay multicast include Overcast [9], Inktomi [8], End
System Multicast [5], and the MBONE [21].

6. Future Work
Much remains to be done to fully understand how a large

peer-to-peer system such as Overlook will behave in real life.
We list a few of the most important topics needing additional
exploration below.

Given the sensitivity that our simulations exhibited to net-
work aspects such as bandwidth, the most important future
work to do is to explore how a system such as Overlook be-
haves under a variety of different network topologies. Part of
this should be an exploration of the potential benefits to be
gained from modifying a given network topology so that it is
more suitable for a system such as Overlook. For example,
consider a “mega-service”-style name service, implemented by
means of several thousand server machines residing in a single
(or a few) data center(s), interconnected primarily by means of
high-speed LAN or Gigabit connections. The uniformity and
high capacity of the network in such a setting might provide
substantially different performance results than the Internet
topology that we have so far been exploring.

Another important area to explore is how systems such as
Overlook behave under various failure scenarios, as well as
under a variety of more heterogeneous workloads than have so
far been simulated.

We are also in the process of implementing Overlook on a
testbed of several hundred machines in order to understand
more detailed aspects of a real system. This will give us the
ability to carefully validate various aspects of our simulations.

7. Summary and Conclusions
We have presented the design of Overlook, a scalable name

service that supports flash crowds and quickly visible updates.
The motivation for this work was management of the event
topic name space for an Internet-scale event notification ser-
vice, but we believe the design to be generally useful.

Our simulation experiments lead us to believe that Over-
look can be scaled to support large loads. For example, when
run on a network topology that provided at least LAN-level
bandwidths on all network links and message processing ser-
vice times of 0.5 milliseconds, a system of about 10,000 server
nodes seems able to handle request loads on the order of
560,000 requests per second. However, the aggregate CPU
overhead of processing multiple application-level forwarding
hops per lookup request does mean that the incremental con-
tribution of each new server is much less than one might ex-
pect.

Our dynamic replication scheme seems able to divert as
many servers to the job of fielding requests for a popular di-
rectory as is necessary, up to the limit of all servers in the sys-
tem. Despite this ability to handle flash crowds via dynamic
replication, Overlook’s design is able to support the updating
of directory entries in a manner that makes updates globally
visible within seconds in most cases.

Overlook’s design is based on a scalable overlay routing
network and exploits several interesting features of such a
network to achieve its goals. Key among those were the natu-
ral support for distributed hash tables, the ability to dynami-
cally, and more importantly, transparently replicate directories
without having to effect global state updates, and the auto-
matic “fail-over” behavior of the routing substrate in response
to failed nodes.

While the results presented in this paper were produced us-
ing the Pastry overlay design, we believe that the same tech-
niques should be usable on other similar overlay routing
schemes with similar effectiveness.

Other projects have proposed a variety of different applica-
tions that exploit the same features of an overlay network as
we have to achieve different, but still similar goals. One way
to view our design work is as an extension of prior work that
further illustrates the versatility of overlay networks such as
Pastry. These networks seem to offer a very versatile “toolkit”
of capabilities for building a number of different behaviors
into large distributed systems. In our case, we explored how to
handle flash crowds while still quickly propagating updates to
all replicas of a data object.

Another significant contribution of our work is a first, pre-
liminary exploration of the effects of network bandwidth and
CPU load on peer-to-peer systems under high load conditions.
Our experimental results imply that peer-to-peer systems may
be quite sensitive to both the detailed aspects of the intercon-
nection networks they employ as well as the CPU power of the
machines used. In particular, we observed that insufficiently
provisioned network bandwidths or CPU resources can cause a
system to fail to live up to its scaling potential. Even within a
purely server-to-server setting, Overlook was able to scale to
truly large sizes only when all network links among our serv-
ers were at least LAN-speed links.

In consequence, we chose to avoid a pure peer-to-peer de-
sign for our system because of a concern about how low
bandwidth network links and intermittently connected, weak
client nodes might impede the scalability of our design. We
speculate that highly scalable peer-to-peer systems may only
be feasible in server-to-server settings, such as “edge of the
Internet” data centers, rather than in settings that include client
machines sitting behind DSL, or worse yet, 28K modem lines.

This sensitivity to network congestion also forced us to de-
sign a replication scheme that would “pull” replicas across
congested links as well as the more traditional method of
“pushing” new replicas out from overloaded server nodes.

In conclusion, we believe that peer-to-peer overlay net-
works offer a very promising way of building scalable distrib-
uted systems, such as the Overlook name service, that offer a
variety of interesting capabilities such as efficient support for
flash crowds and quickly visible updates. However, we also
speculate that these peer-to-peer systems will end up being

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

successful primarily when deployed as server-to-server sys-
tems rather than client-to-client systems because of their sensi-
tivity to the characteristics of the underlying transport net-
works and host machines on which they rely.

Acknowledgments
The authors wish to thank Antony Rowstron, Miguel Cas-

tro, and Anne-Marie Kermarrec for allowing us to use their
network simulator and for their ongoing discussions on how to
best model the behaviors we report in this paper. We also
wish to thank Patricia Jones for her expert editing.

References
[1] Michael D. Schroeder, Andrew D. Birrell, and Roger M.

Needham,: Experience with Grapevine: The Growth of a
Distributed System. ACM Transactions on Computer Sys-
tems, vol. 2, no. 1, pp. 3-23, February 1984.

[3] Luis Felipe Cabrera, Michael B. Jones, and Marvin Theimer.
Herald: Achieving a Global Event Notification Service. In
Proceedings of the Eighth Workshop on Hot Topics in Oper-
ating Systems (HotOS-VIII), Elmau, Germany. IEEE Com-
puter Society, May 2001.

[4] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and
Antony Rowstron. SCRIBE: A large-scale and decentralized
publish-subscribe infrastructure. Submitted for publication,
September 2001. http://research.microsoft.com/~antr/scribe/.

[5] Yang-hua Chu, Sanjay G. Rao and Hui Zhang. A Case for
End System Multicast. In Proceedings of ACM SIGMET-
RICS, Santa Clara, CA, pp. 1-12, June 2000.

[6] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong. Freenet: A
Distributed Anonymous Information Storage and Retrieval
System. In Designing Privacy Enhancing Technologies: In-
ternational Workshop on Design Issues in Anonymity and
Unobservability, LNCS 2009, e. by H. Federrath. Spring:
New York (2001).

[7] Frank Dabek, M. Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica, Wide-area cooperative storage with
CFS. In Proceedings of 18th ACM Symposium on Operating
Systems Principles, Lake Louise, AB, October 2001.

[8] The Inktomi Overlay Solution for Streaming Media Broad-
casts. Technical Report, Inktomi, 2000.
http://www.inktomi.com/products/media/docs/whtpapr.pdf.

[9] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans
Kaashoek, and James W. O’Toole, Jr. Overcast: Reliable
Multicasting with an Overlay Network. In Proceedings of the
Fourth Symposium on Operating Systems Design and Im-
plementation, San Diego, CA, pp. 197-212. USENIX Asso-
ciation, October 2000.

[10] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, Robert Morris.
DNS Performance and the Effectiveness of Caching. In Pro-
ceedings of ACM SIGCOMM Internet Measurement Work-
shop, San Francisco, CA, November 2001.

[11] John Kubiatowicz, David Bindel, Yan Chen, Steven Czer-
winski, Patrick Eaton, Dennis Geels, Ramakrishna Gum-
madi, Sean Rhea, Hakim Weatherspoon, Westley Weimer,
Chris Wells, and Ben Zhao. OceanStore: An Architecture for
Global-Scale Persistent Storage. In Proceedings of the Ninth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Cambridge,
MA, November 2000.

[12] Butler Lampson. Designing a Global Name Service. In Pro-
ceedings of Fourth ACM Symposium on Principles of Dis-
tributed Computing, Minaki, ON, pp. 1-10, 1986.

[13] P. Mockapetris. Domain Names - Concepts and Facilities.
RFC 882, November 1983. http://www.ietf.org/rfc/rfc882.txt.

[14] P. Mockapetris. Domain Names - Implementation and Speci-
fication. RFC 883, November 1983.
http://www.ietf.org/rfc/rfc883.txt.

[15] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, and Scott Shenker. A Scalable Content-Addressable
Network. In Proceedings of ACM SIGCOMM, San Diego,
CA, pp. 161-172. August 2001.

[16] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott
Shenker. Application-level Multicast using Content-
Addressable Networks. In Proceedings of Third Interna-
tional Workshop on Networked Group Communication,
UCL, London, UK, November 2001.

[17] Antony Rowstron and Peter Druschel. Storage management
and caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In Proceedings of 18th ACM Symposium on
Operating Systems Principles, Lake Louise, AB, October
2001.

[18] Antony Rowstron and Peter Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-to-
peer systems. In Proceedings of IFIP/ACM Middleware
2001, Heidelberg, Germany, November 2001.

[19] Antony Rowstron, Anne-Marie Kermarrec, Miguel Castro,
and Peter Druschel. SCRIBE: The design of a large-scale event
notification infrastructure. In Proceedings of Third Interna-
tional Workshop on Networked Group Communication,
UCL, London, UK, November 2001.

[20] Stefan Saroiu, P. Krishna Gummadi, Steven D. Gribble. A
Measurement Study of Peer-to-Peer File Sharing Systems. In
Proceedings of Multimedia Computing and Networking
2002, San Jose, CA, USA, January 2002.

[21] Kevin Savetz, Neil Randall, and Yves Lepage. MBONE:
Multicasting Tomorrow’s Internet. IDG, 1996.
http://www.savetz.com/mbone/.

[22] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek,
and Hari Balakrishnan. Chord: A Scalable Peer-To-Peer
Lookup Service for Internet Applications. In Proceedings of
ACM SIGCOMM, San Diego, CA, pp. 149-160. August
2001.

[23] Ellen W. Zegura, Kenneth L. Calvert, and Samrat Bhat-
tacharjee. How to Model an Internetwork. In Proceedings of
IEEE Infocom ’96, San Francisco, CA, April 1996.

[24] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph.
Tapestry: An Infrastructure for Fault-tolerant Wide-area Lo-
cation and Routing. U. C. Berkeley Technical Report
UCB/CSD-01-1141, April, 2001.

[25] Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy
Katz, and John Kubiatowicz. Bayeux: An Architecture for
Scalable and Fault-tolerant Wide-area Data Dissemination.
In Proceedings of Eleventh International Workshop on Net-
work and Operating Systems Support for Digital Audio and
Video (NOSSDAV 2001), Port Jefferson, NY, June 2001.

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

