
Finding Disjoint Paths in Networks*

Deepinder Sidhuand Raj Nairand Shukri Abdallah

Department of Computer Science

University of Maryland — BC

Baltimore, MD 21228

and

Institute for Advanced Computer Studies

University

college

Abstract

Routing is an important function implemented

of Maryland — CP
Park, MD 20742

1 Introduction

in

computer communication net works. There has

been extensive research interest in distributed algo-

rithms for single path routing. In many instances,

it is desirable to have multiple disjoint paths be-

tween pairs of nodes in a network. Multiple disjoint

paths can increase the effective bandwidth between

pairs of nodes, reduce congestion in a network and

reduce the probability of dropped packets. This

paper presents a distributed distance-vector algo-

rithm that finds multiple disjoint paths to a desti-

nation. The algorithm includes the shortest path

as one of the disjoint paths. We describe the algo-

rithm, evaluate its performance using simulation

and compare it with another disjoint-path rout-

ing algorithm. We conclude that our algorithm

requires 3 to 4 times fewer messages to discover

paths of comparable quality.

*This research was supported in part by the Department

of Defense at the University of Maryland Baltimore County.

The views and conclusions contained in this document are

those of the authors and should not be interpreted as rep-

resenting the official policies, either expressed or implied, of

the Department of Defense or the U.S. Government.

Permission to copy without fee sII or part of this material is
granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinary. To copy otharwise, or to republish, requires a fee

and/or specific permission.
@ 1991 ACM O-8979 J.444.919J /Q()()810043...$ 1.50

Considerable effort has been devoted to the design

of distributed algorithms for finding multiple dis-

joint paths from every node to a destination node

in a network. One solution [1] requires every node

to have complete knowledge of the network topol-

ogy. Another scheme [2] finds multiple paths that

are initial-link-disjoint (disjoint in the first link).

The method of link-disjoint augmentation [3, 4] was

used in [5] to construct a pair of disjoint paths of

minimum total cost from every node to a desti-

nation. A later paper [6] extended the work in

[5] to find 1< disjoint paths of minimum total cost

from every node to a destination. Alternate path

distance-vector routing algorithms [7, 8] find alter-

nate disjoint and non-disjoint paths.

In this paper, we present the design of a dis-

tributed algorithm which constructs a set, S’r, of

minimum cost node-disjoint paths from every node

z to a destination node. Unlike other methods, this

algorithm does not require any graph transforma-

tion and retains the shortest path in the set SZ.

The rest of the paper is organized as follows. In

Section 2, we present the design of the algorithm.

In Section 3, we compare the simulation results of

this algorithm and the algorithm described in [5].

In Section 4, we present the conclusions.

43

2 Constructing Multiple Paths

In this section, we propose an approach for con-

strutting a set of minimum cost disjoint paths from

every node to a destination node in a network.

2.1 Notations and Concepts

A network is modeled as an undirected graph,

G = (V, E), with a vertex set, V, and a link set, E.

A link in E connects a pair of nodes, z and y, in V
and is denoted by (z, y). The cost associated with

this link is represented by C(Z, y). We assume that

(1) the cost C(Z, y) is a positive number which is the

same in both directions; (2) there is an arbitrary

and distinguished node, z, in V called the destina-

tion node; (3) an operational link provides error-

free FIFO communication and its propagation de-

lay is arbitrary, but finite; (4) each node sends, if

required, a message to its neighbor(s) within finite

time after receiving a message; and (5) no topolog-

ical changes occur during the construction of the

alternate paths.

A shortest-path tree, 2’, rooted at destination z

cent ains minimum cost paths from each node, z, to

destination z in graph G. A link pointing towards

the destination is pointing down-tree whereas a link

pointing towards the leaf nodes is pointing up-tree.

T divides the links of E into tree links and non-tree

links, where a tree link lies on the shortest path

from a node to destination z. For a down-tree link

(z, y), node x (y) is an up-tree (down-tree) neigh-

bor of node y (cc). Node y is called the prejerred

neighbor of node z as it provides the shortest path

from node z to destination z. A non-tree link is

called a horizontal WC. Two nodes connected by a

horizontal link are called horizontal neighbors.

Every path Q(z, z) = (z,..., y, z) is assigned a

pdh identifier which is the identifier of node y. Ev-

ery node x has a path identifier which is the iden-

tifier of its shortest path, The shortest path from

node z to destination z and its cost are denoted

by T(x, z) and c(T’(z, z)) respectively. The cost of

any path Q is denoted by c(Q).

A jerk is a node with two or more up-tree neigh-

bors. An f-segment is a fork-free tree path seg-

ment that connects either a pair of forks or a fork

and a leaf node. A branch link, (u, f), between

Figure 1: Example of an f-segment, branch-link

and branch identification list

a fork, j, and its up-tree neighbor, u, identifies

the f-segment containing (u, j). A branch identifi-

cation list, a minimum-length sequence of branch

links, of a node x(+ z) identifies the f-segments

which together provide maximum overlap with the

shortest path T(z, z). In Figure 1, T(2, z) =

($, U1, jl, u2, ~2, Z) where jI and ~Z are the only
forks in 7’(z, z). The branch identification list of z

is ((u2, ~2)(u1, ~l)). The branch links (U2, ~2) and

(us, j2) uniquely identify the f-segments (~2, U2, ~1)

and (~2, U3, 1) respectively. The branch link (U2, ~2)

identifies a tree segment between the forks ~2 and

~1, and the branch link (u3, j2) identifies the tree

segment between the fork f2 and the leaf node 1.

A horizontal neighbor, h, of node x can be up-

tree, down-tree or neither with respect to node z. If

the branch identification list of node h is a proper

prefix of the branch identification list of node x,

node h is down-tree from node r. If the branch

identification lists of nodes z and h are identi-

cal and c(l”(h, z)) is greater (less) than c(T(z, z)),
node h is up-tree (down-tree) of node z. If the lists

are different and neither list is a proper prefix of

the other, node h is neither up-tree nor down-tree

from node z .

44

2.2 Problem Statement

The goal of this paper is to find for every node z #

z a set S$ of disjoint paths from x to a destination

node z in a graph G with the following properties:

PI

P2

P3

P4

The set S$ contains the shortest path T’(z, z)

from node x to the destination z.

Any two paths Q, Q’ in SC are node-disjoint.

A path Q in the set S. – {?’(z, z)} contains no

more than k horizontal links.

For each path (z, y)Q(y, z) in the set S$ –

{2’(x, z)} and any path (~, y) Q’(y, z) which is

node-disjoint from every path in SC – {P [

c(P) ~ c((z, y)Q(y, z))}, C(Q)) z c(Q) or

(z, Y)Q’(y, Z) contains more than k horizontal

links.

In the next section, we propose an algorithm that

constructs the set SZ of paths with properties P 1 –

P4 from every node z to the destination z.

2.3 Distributed Algorithm

The solution to the multiple disjoint paths problem

assumes that each node knows its preferred and up-

tree neighbors. Disjoint paths with properties Pl-

P4 are constructed by the exchange of two types

of messages, PID and ALT, over the links of the

graph G.

Messages

PID messages propagate information about short-

est path costs, path identifiers and branch identifi-

cation lists to all nodes. The general form of this

message is PID(nid, cst, pid, bil) where:

nid :

Cst :

pid :

identifier of the node sending the

message,

cost of the shortest path from the

sending node to the destination,

path identifier of the sending node

and

bil : branch identification list of the

sending node with the form

((nl,n~)(n2jn~)...(nm,~~))

where (ni, n~), 1 < i < m are the

only branch-links on the shortest

path of the node sending the mes-

sage.

ALT messages propagate information about the

alternate paths through up-tree, down-tree or hor-

izontal neighbors. The general form of such a mes-

sage is ALT(nid, cst, pid, his, nhl) where:

nid :

Cst :

pid :

bis :

nhl :

identifier of the node sending the

message,

cost of the possible alternate path

from the sending node to the des-

tination,

path identifier of the possible al-

ternate path,

set of branch links in the possible

alternate path and

number of horizontal links in the

possible alternate path.

Labeling Scheme

An important aspect of our distributed algorithm

is a labeling scheme that labels each node with an

identifier called the path identifier, Path identifiers

are used to determine the disjointedness of paths

and to uniquely identify a path in a set of disjoint

paths. This scheme uses PID messages to inform a

node about its path identifier and the path identi-

fiers of its horizontal neighbors.

The destination node z starts a distributed com-

putation by sending PID(z, O,–, ()) messages to

each neighbor z. The PID messages are propagated

by the up-tree neighbors of the destination node z

after receiving PID messages from z. The PID mes-

sages move up-tree towards the leaf nodes. Every

node sends a PID message on each of its up-tree

and horizontal links after receiving a PID message

from down-tree. Each tree link carries one PID
message in the up-tree direction, and each horizon-

tal link camies two PID messages sent by the end

45

nodes. No PID message is sent over a down-tree

link.

An up-tree neighbor, z, of the destination, on

receiving a PID message over the tree link (x, z),

sends a PID(z, C(Z, z), z, bilZ) message to each up-

tree neighbor, u. If x is a fork, bil$ is equal to

((u, x)); otherwise bilr is (). Node r also sends

a PID(x, C(X,z), z, ()) message to each horizontal

neighbor. The destination node z ignores any PID
message it receives over a horizontal link (z, z).

On receiving a PID(y, c(T(g, .z)), pidv, bilv) mes-

sage from its down-t ree neighbor y, an int ermedi-

ate node z learns about its path identifier @ZV,

cost of its shortest path (c(T(y, .z)) + c(y, x)), and

its branch identification list bdv. It propagates this

information in the PID messages to each of its hor-

izontal and up-tree neighbors. If node x is a fork, it

appends the branch link, (u, z), to its branch iden-

tification list in the bd field of the outgoing PID
message to each up-tree neighbor u.

The PID message propagation terminates at the

leaf nodes of the shortest-path tree after the leaf

nodes have sent and received PID messages on their

horizontal links.

Disjoint Pat hs

A node uses PID messages to inform its neighbors

about alternate disjoint paths with one horizontal

link. The ALT messages are used to inform the

neighbors about paths with more than one hori-

zont al link.

A horizontal neighbor, z, of the destination, on

receiving a PID message over its horizontal link

(z, z), determines that it has a disjoint path, (z, z),

whose cost and path identifier are C(X, z) and x

respectively.

An intermediate node, z, on receiving a

PID(h, c(l’(h, z)), pid~, bil~) message from a hor-

izontal neighbor h, learns about a path, Q =

(x, h)T(h, z) and checks if Q can be included in

the set SC. Node x does not propagate the PID
message it received over its horizontal link (a, h)

any further.

Every node z saves the PID messages it re-

ceives from its down-tree and horizontal neighbors

and the last ALT message it receives through each

neighbor. When node x receives a PID or an ALT

Node z, on receiving an ALT(g, c’, p’, b’, n’) message

from neighbor y describing the minimum cost alternate

disjoint path, sends an ALT(z, c’+c(z, y), p’, b., no) mes-

sage to every eligible neighbor o. In this figure, bisz is the

branch identification set of the shortest path of node z.

The branch identification set bv is constructed as follows:

1.0 if v is the preferred neighbor of node z then

~v + b’

2.o if u is a horizontal neighbor of node x then

2.1 if y is up-tree of z and x is a fork then

b“ t b’ U {(y, z)} Ubism

else

b“ * b’ U bisz

3.o if v is an up-tree neighbor of x then

3.1 if y is up-tree of x and z is a fork then

3.1.1 if bisz # 0 then

b. t b’ U bisz U {(y, z), (v, z)}

else

for each up-tree neighbor u of z do

b. + L U {(u, ~)}

bu+-bvUb’

3.2 if v is preferred or horizontal neighbor

and z is a fork then

3.2.1 if bisz # 0 then

b. t b’ U bisZ U {(v, z)}

else

for each up-tree neighbor

b. + h LJ {(U,Z)}

bv+--bv Ub’

3.3 else

bv + b’

uofzdo

Figure 2: Rules for constructing the branch identi-

fication set for an alternate path

message from a neighboring node y describing an

alternate path Q, node z includes the path Q in

the set S. if Q is disjoint from any other path in

Sz of lower cost and cheaper than any other path

offered by node y. If x includes Q in Sm, it ex-

cludes from S. every path which intersects Q and

has a cost greater than c(Q). For every neighbor

y of node x, if node x does not have a path in S’z

through y, x reconsiders including in S. the path

offered by neighbor y. This is achieved by using

the saved information received in the PID or last

ALT messages from y.

Any two alternate paths are disjoint if their path

identifiers are different and there is no common

46

branch link in their branch identification sets. The

absence of a common branch link in the two sets

indicates that the two alternate paths do not inter-

sect a common f-segment, The disjointness of an

alternate path and the shortest path for a node is

checked by constructing a branch identification set

for the shortest path and comparing this set with

the branch identification set of the alternate path.

The branch identification set of the shortest path

Z’(Z, Z) is the set of branch links in the branch iden-

tification list of node z. Figure 2 cent ains the rules

for constructing the branch identification set of an

alternate path.

Each node z keeps track of the cost of its cheap-

est alternate disjoint path and its eligible neigh-

bors to whom it sent ALT messages informing them

about such a path. Neighbor eligibility is deter-

mined using the rules outlined in Figure 3. When

node z gets an ALT(y, c’, p’, b’, n’) message from

node y describing an alternate disjoint path P with

cost c’ + C(Z, y) which is less than its cheapest

alternate disjoint path, node z informs its eligi-

ble neighbors about the new path P using two

sets of ALT messages. In the first set, node z

sends an ALT message with a cost of – 1 to ev-

ery eligible neighbor w to cancel the previously of-

fered path. In the second set, node z sends an

.4LZ’(Z, c’ + C(C,y), p’, b., n.) message to every eli-

gible neighbor v. If v is a horizontal neighbor, nV

is equal to n’ + 1; otherwise, nV is equal to n’. The

branch identification set b. is determined as shown

in Figure 2. The neighbor receiving the cancel-

lation message may not receive the ALT message

describing the new path P.

Figure 4 shows the application of rules for con-

structing the branch identification sets of alternate

paths, where the function “fbi~(m)” projects the

branch identification set of an ALT message m.

A node, x, does not send ALT messages before

it receives a PID message from its preferred neigh-

bor. In addition, a leaf node z does not inform

its eligible neighbors about any path P it received

in a PID message before it receives PID messages

from all its neighbors. This helps reduce the num-

ber of ALT messages containing sub-optimal paths

sent by a leaf node. Any ALT message sent to an

up-tree neighbor z of the destination z is not prop-

agated any further. Destination z does not send

Node x does not send an ALT message to a neighbor v

informing it of a new minimum cost alternate disjoint

path P if:

RI F’ath P was oflered to z by v. This prevents forma-

tion of a loop. In this case, node x sends the second

cheapest alternate disjoint path to v.

RZ The number of horizontal links in the path P exceeds

k. If node v is a horizontal neighbor, node x will

not send it an ALT message because the number of

horizontal links in path P exceeds the constraint in

the problem statement.

R3 Node v has a diflerent path identifier than node x.

Node z does not inform node v about the path P

because the cheapest alternate path that node v will’

have through node z is ((v, z)Z’(Z, z)) which node v

will know about from a PID message received from

z.
I

R4 Node v is a horizontal neighbor that is either up-tree

or down-tree ji-om node z. If node v is up-tree of

z, then the path P is not disjoint from the shortest

path of v. If v is down-tree of z, v will learn about I

the path P because node cc propagates information

about the path P along the tree path from x to v.

R5 Node v is not an up-tree neighbor of x, and path P is,
non- disjoint from the shortest path of node v. If the

alternate path P is not disjoint from the shortest

path of v, then node v will disregard this message.

k’igure 3: Rules for determining eligibility of neigh-

bors to receive ALT messages

any ALT messages. Any node whose branch iden-

tification set is empty may not propagate any ALT
message it receives. This modification to ALZ’ mes-

sage propagation will simplify the rules in Figure 2.

The “else” partof the “if” statements in 3.1.1 and

3.2.1 will not be needed. It should be noted that,

in some special cases which depend on the network

topology and link cost assignments, the rules in

Figure 2 may cause a node z to exclude some al-

ternate disjoint path from its set Sz. For further

details and solutions, see [9].

Termination

The distributed computation of this algorithm ter-

minates when no node in the network can send an

ALT message to any of its neighbors. At this time,

each node has found a set of disjoint paths. The

complete algorithm and proof of its correctness is

given in [9].

47

fbk(ma) = fbk(ml) u {(y,x),(x,d)]

fbls(mz) = fbi~(ml) u {(x,d),(y,x),(v,x)}

Figure 4: Examples of changes to branch identifi-

cation sets

Example

Figure 5, shows an example of a network graph G

with a shortest-path tree, T, superimposed on it.

The integer associated with a link is its cost. The

tree shows the shortest paths from every node to

the destination node Z. The tree links are indicated

by solid directed arrows and the non-tree links by

dotted lines. A connected sequence of directed ar-

Figure 5: Shortest path tree for an example net-

work

rows from a node to the destination z defines th~

shortest path from that node to z. This tree i:

rooted at z and has leaf nodes e, g, ~ and c.

Figures 6 and 7 illustrate the exchange of PIZ

and ALT messages respectively. To trace the prop

agation of ALT messages triggered by PID or othe

ALT messages, ends of arrows are tagged. A ta~

of an ALT message is formed by concatenating thl

tag of the message which triggered this ALT mes

sage and the identifier of the receiving node. W

point out some special situations in this example.

The destination node z starts the distribute

computation by sending F’lD messages to each c

its neighbors.

The leaf node c sends ALT messages, tagge

“lb” and “lb” about the path Q = (c, z), to it

neighbors b and h when it receives PID messag~

48

9m...Kkm7&+.

Y’!’KE4
-’e”)y:~.y

-....! .- -z

“---’’-”’-~..=L&’’=,-,

Figure 6: PID message exchanges

from its neighbors z, b and h.

Node c considers node h as an eligible horizontal

neighbor because (1) the path Q = (c, z) is disjoint

from the shortest path of node h, (2) the path iden-

tifiers of both the nodes are the same and (3) node

his neither up-tree nor down-tree from node c since

their branch identification lists,((c, b)) and ((h, b))
respectively, are neither identical nor proper pre-

fixes of each other.

The F’lD messages which travel over the

horizontal links (~, b) and (h, c) do not initiate ALT
messages because the nodes b, j, h, and c have

identical path identifiers. The same is true for the

PID messages which travel over the horizontal link

(a, e).

The leaf node ~ sends its down-tree neighbor, h,
the ALT message tagged “2h” to inform it of an

alternate path Q = (~, d, a, z) with one horizontal

Figure 7: ALT message exchanges

link. The node f does not send ALT messages to

nodes e and d because the path identifier of node

f is different from that of nodes e and d. The node

f cloes not send an ALT message to its horizontal

neighbor b because b is down-tree from f. The

leaf node g does not send an ALT message to its

down-tree neighbor because it does not have any

alternate path to offer.

The node h sends node c the ALT message

tagged “2hc” informing it about its second short-

est disjoint path Q = (h, f, d, a, z) because node c

is providing node h with the minimum alternate

disjoint path .P = (h, C,z).

3 Simulation Results

In this section, we present simulation results based

on our algorithm and the Ogier-Shacham algo-

49

Network
(N, D,d)

(20,3,6)
(20,7,3)
(20,10,3)
(20,2,12)
(20,5,3)
(20,12,3)
(20,9,2)
(20,5,3)

@&L.

Total No.
Me:
Sf

3008
1267
1775
5610
1495
882
1241
1470
1746

ges
Ss

6005
5646
6234
8455
5096
2671
4534
4525
3897

‘Total No.

Sf

1344
705
651
2026
747
457
587
850
858

‘aths

760 (:.71)
760 (8.95)
760 (10.79)
760 (o)
760 (3.29)
448 (0)
620 (6.13)
760 (o)

~

Stret~h
Fat

Sf

m
2.27
1.52
1.32
1.68
1.39
1.62
1.30
1.26

or
Ss

-iEi-
2.20
1.37
1.19
1.53
1.33
1.54
1.21
1.12

Messages/ I
P

Sf
2.24
1.’78
2.73
2.77
2.00
1.93
2.11
1.73
2.03 7

th
Ss

7.90
7.43
8.20
11.13
6.71
5.96
7.31
5.95
6.30

Table 1: Simulation Results

bitrarily chosen networks whose parameters are

shown in column 1 of Table 1. The notation

(IV, D, d) represents a network of lV nodes with di-

ameter D and average node degree d. All networks

are assigned arbitrary link costs except for the

last two networks [10] which have unit link costs.

The notation “sf” and “ss” refers to the Shortest-

First (ours) and Shortest-Sum (Ogier-Shacham) al-

gorithms respectively. To compare the quality of

paths found by the two algorithms, we use the

stretch factor for a path P(z, z) which is defined

as c(P(z, z))/c(T(z, z)). Table 1 summarizes the

results of the simulations.

The second column shows the total number of

messages generated by each algorithm to find mul-

tiple disjoint paths from every node to every other

node. These results show that the Ogier-Shacham

algorithm requires from one and a half to four and

a half times more messages than our a~gorithm.

The third column shows the total number of dis-

joint paths found for every node in the network.

The number in parentheses is the percentage of

nodes whose shortest path is disturbed, that is the

shortest path is not one of the two paths found by

the Ogier- Shacham algorithm. The Ogier-Shacham

algorithm had the shortest path as one of the paths

over 9070 of the time. In general, the number of

paths found by each node is dependent on the net-

work topology and the link cost assignments.

The fourth column shows the average stretch fac-

tor of the two shortest paths found for each node

using our algorithm and the average stretch factor

of the two paths found using the Ogier-Shacham

rithm. The simulation was performed on 9 ar- algorithm. From the results, we conclude that for

finding paths of comparable quality, our algorithm

uses fewer messages than the Ogier-Shacham aigo-

rithm.

Our algorithm finds more paths than the Ogier-

Shacham algorithm. It is important to compare the

performance of our algorithm with that of Ogier-

Shacham using the number of messages per path

found. This is shown in the fifth column. In gen-

eral, our algorithm requires 3 to 4 times fewer mes-

sages per path.

4 Summary and Conclusions

In this paper, we describe a distributed distance-

vector algorithm for finding multiple node-disjoint

paths in a computer communication network. This

algorithm includes the shortest path as one of the

disjoint paths. Multiple disjoint paths can be used

to increase the effective bandwidth between pairs of

nodes, reduce congestion in a network, and reduce

the probability of dropped packets.

Using simulation, we compare our algorithm

with an alternative approach that does not nec-

essarily include the shortest path as one of its dis-

joint paths. This alternative approach finds a pair

of disjoint paths such that the sum of the costs is

minimized over all possible pairs of disjoint paths.

We compare the two algorithms using simulation.

Our algorithm requires 3 to 4 times fewer messages

to discover paths of comparable quality. For a com-

plete discussion of our algorithm to construct mul-

tiple disjoint paths, see [9].

50

Acknowledgement

The authors would like to thank Mr. P. Tsuchiya

for helpful discussions.

References

[1] A. Itah and M. Rodeh. The multi-tree ap-

proach to reliability in distributed networks.

In Proc. 25th Symposium on FOCS, 1984.

[2] D. M. Topkis. A K shortest path algorithm for

adaptive routing in communications networks.

IEEE Transactions on Communications, 36,

1988.

[3] J. W. Surballe. Disjoint paths in a network.

Networks, 4, 1974.

[4] J. W. Surballe and R. E. Tarjan. A quick

method of finding shortest pairs of disjoint

paths. Networks, 14, 1984.

[5] R. Ogier and N. Shacham. A distributed al-

gorithm for finding shortest pairs of disjoint

paths. In Pm. IEEE INFOCOM ’89.

[6] C. Cheng, S. P. R. Kumar, and J. J. Garcia-

Luna-Aceves. A distributed algorithm for

finding K disjoint paths of minimum total

length. In Proc. 28th Annual Allerton Confer-

ence on Communication, Control, and Com-

puting, Urbana, Illinois, October 1990.

[7] P. F. Tsuchiya. The landmark hierarchy: De-

scription and analysis. Technical Report MTR

W87-87WOO152, MITRE, June 1987.

[8] D. P. Sidhu, S. AbdaUah, and R. Nair. A dis-

tance vector algorithm for alternate path rout-

ing. Submitted for publication, 1990.

[9] D. P. Sidhu, R. Nair, and S. Abdallah. A dis-

tributed algorithm for finding multiple disjoint

paths. Submitted for publication, 1990.

[10] M. Garner, V. Haimo, I. Loobeek, D.Davis,

and M. Frishkopf. Type-of-service routing:

Modeling and simulation. Technical Re-

port 6364, BBN Communications Corpora-

tion, January 1987.

51

