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Abstract— Popular documents are frequently mirrored
on multiple sites in an effort to share the load and reduce
clients’ retrieval latencies. However, choosing the best mir-
ror site is a non-trivial task and a bad choice may give an
poor performance. We propose a scheme in which clients
access multiple mirror sites in parallel to speedup document
downloads while eliminating the problem of server selection.
In our scheme, clients connect to mirror sites using unicast
TCP and dynamically request different pieces of a docu-
ment from different sites, thus, adapting to changing net-
work/server conditions. A dynamic parallel-access can be
easily implemented in the current Internet, and does not re-
quire any modifications at the mirror sites. Using dynamic
parallel-access all clients experience dramatic speedups in
downloading documents, and the load is shared among
servers without the need for a server selection mechanism.
Even in a situation where clients are connected through mo-
dem lines, dynamic parallel-access offers transmission rates
at least as high as the fastest server.

I. INTRODUCTION

The exponential growth of the Internet is overloading
popular servers, increasing the demand for bandwidth, and
increasing the clients’ retrieval times. In order to alleviate
these problems, multiple copies of popular documents are
often stored in several locations. With network caching,
the origin server stores a master copy of the document
and all the geographically dispersed caches store and pull
copies of this document. With mirror site replication, doc-
uments are replicated into secondary sites in an effort to
both distribute the load of requests across servers and to
decrease clients’ retrieval latencies.

When a copy of the same document is placed at multiple
sites, choosing the best site is not trivial and the obtained
performance can dramatically vary depending on the se-
lected site [1] [2] [3]. The fact that there are several copies
of the same document in geographically dispersed servers
allows clients to access several servers in parallel and ob-
tain from every server a different portion of the document.
Using a parallel-access eliminates the need for a complex

selection process and performs load balancing among the
different servers. Additionally, a parallel access can sig-
nificantly speedup the transfer of a document. Clients ex-
perience a transfer rate equal to the sum of the individual
transfer rates of the servers contacted.

In this paper we develop a parallel-access scheme which
uses application-level negotiations to schedule the trans-
mission of different document parts among mirror servers.
We consider two different parallel-access schemes, (i)
history-based TCP parallel-access , and (ii) dynamic
TCP parallel-access . With a history-based parallel-access
, clients specify a-priori which part of a document must be
delivered from each mirror server, e.g., server one sends
the first half of the document, server two sends the second
half, etc. The size of the part delivered by one server is
proportional to its rate, thus, a slow server will deliver a
small part of the document while a fast server will deliver
a big part of the document. To achieve the maximum pos-
sible speedup, all servers must finish transmitting their part
at the same time, i.e., all servers must be delivering useful
data to the client until the document is fully received. To
calculate the size of every part, a history based parallel-
access uses a database of previous server rates, which is
refreshed periodically, e.g. every ��� minutes. We find that
a history-based parallel-access scheme can speedup the
transmission of a document when the network/server con-
ditions do not change, since it is easy to predict the rates
from the client to every server based on previous measured
rates. However, in the case where the network/server con-
ditions rapidly change, special during day time, a history-
based parallel-access scheme has a poor performance since
it is not able to correctly predict the rate of the different
servers during the transmission of the document.

A dynamic parallel-access works as follows. A client
partitions a document into small blocks and first requests
one different block from each server. When a server fin-
ishes the transmission of one block, the client requests
from this server another block that has not yet been re-
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quested from any other server. When the client receives all
blocks it resembles them and reconstructs the whole docu-
ment. Negotiations between the client and the servers indi-
cating which block to get, are performed at the application-
level using the HTTP1.1 byte-range header [4]. Multiple
application-level negotiations for the same document and
the same server server, use the same TCP persistent con-
nection to avoid multiple slow-start phases [5]. For ev-
ery negotiation between the client and each server, there
is a round-trip-time (RTT), during which no data is trans-
mitted (see Figure 1). To avoid idle times, requests for
several blocks to the same server can be pipelined. Thus,
before one server ends the transmission of one block, the
client requests another block from the same server. The
scheme implicitly adapts to changing network and server
load. When the number of blocks is large, the degree of
granularity is high and it is easy for all servers to deliver
useful information until the complete reception of the doc-
ument.
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Fig. 1. Dynamic parallel-access : Block request.

We implemented a prototype of a dynamic parallel-
access scheme as a JAVA client that receives the URL
of the mirror servers as input parameters. We evaluated
the dynamic parallel-access scheme for a different num-
ber of mirror sites, different document sizes and vari-
ous network/server conditions. Extensive experiments us-
ing the JAVA client implementation showed that dynamic
parallel-access offers dramatic speedups in downloading
a document, even when network/server conditions change
rapidly. Very high speedups are obtained when all the
servers contacted have similar performance. In the case
when one of the servers is much faster than the others, the
resulting speedup is not as significant when compared to
the fastest server’s performance. Even in this latter case,

however, the parallel-access scheme offers response times
that are at least as low as the ones provided by the fastest
server contacted, while avoiding the complicated task of
making a server selection.

A parallel-access scheme works efficiently in the case
when there is no common bottleneck in the path from the
client to the origin server. However, in the case when
clients access information through a slow link, e.g. a mo-
dem link, connecting to several servers in parallel may
not result in an additional speedup. For clients connecting
through a modem link, a dynamic parallel-access provides
transfer times that are as good as the ones offered by the
fastest server. In the case when the mirror servers are very
slow, the modem link is not a bottleneck and a dynamic
parallel-access reduces the transfer time even more than
the transfer time offered by the fastest server.

A dynamic parallel-access to multiple sites provides
better speedups than a multiple parallel-connection to a
single server, since parallel connections to a single server
compete for the same server/network resources. Using a
dynamic parallel-access to different mirror servers, paral-
lel connections do not compete among them and the re-
sulting speedup is very high. In addition, with a parallel-
access to multiple servers, the number of TCP connections
per server is kept low and every TCP connection lasts for
a shorter period of time. The load is shared among the
servers, and therefore, a higher number of receivers can
experience high speedups.

A. Related Work

Choosing the best mirror site has been subject of much
investigation for the last years. Several techniques have
been proposed including multicast communication to poll
all the mirror sites [6], dynamically probing [2], com-
bining server push with client probes[1], and statistical
record-keeping [7]. The work in [7], and the work of oth-
ers, indicates that the choice of the best server is not always
obvious and that the obtained performance can dramati-
cally vary depending on the server selected.

One of the most relevant related work in parallel ac-
cess is Maxemchuk’s work on dispersity routing [8] and
Rabin’s work on information dispersal [9], where a docu-
ment is divided into several pieces and each piece also in-
cludes some redundant information. The receiver obtains
different pieces of the document along different network
paths and when the receiver has enough pieces the doc-
ument is reconstructed. Currently there are several soft-
ware packages that allow clients to dynamically pause, re-
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sume, and jump from one mirror site to another during a
document transmission if the current mirror site is very
slow [10] [11] [12]. Other software packages allow to open
multiple parallel connections to a certain site to speed the
download of a certain document [13]. The document is di-
vided into several pieces and different pieces are delivered
in different connections.

In [14], Byers et al. proposed to access multiple servers
in parallel using erasure codes [15] [16]. They proposed a
parallel access scheme for open-loop multicast/broadcast
distributions. Using erasure codes, servers take the orig-
inal document, consisting on

�
packets, and generate �

parity packets with the property that a parity packet can re-
construct any other original packet. Servers generate dif-
ferent sets of parity packets and cyclically transmit pari-
ties and originals. Clients can recover the whole document
as soon as they receive enough packets, regardless of the
which server the packets came from [14]. To efficiently
encode large documents with small encoding/decoding de-
lays, special erasure codes, such as Tornado Codes[16],
must be used. Using Tornado codes, an open-loop parallel-
access scheme can be scaled to a large number of clients
and servers. However, this approach requires servers to en-
code all their documents and clients must install decoders
to reconstruct the encoded documents. In addition some
problems still remain unresolved, e.g., how to stop the
servers, or congestion control.

In the current Internet, most of the communications are
performed via unicast between the clients and the servers.
In addition clients and servers have close-loop commu-
nications, exchanging feedback messages at the network-
level to implement reliability and congestion control, i.e.
TCP. Thus, we propose to implement a parallel access
scheme in an scenario where clients and servers connect
via unicast using TCP. A dynamic parallel-access uses
application-level negotiations to dynamically request dif-
ferent document pieces among the mirror servers. Using
the standard TCP and HTTP protocols, a dynamic parallel-
access achieves very good speedups, without requiring to
re-encode all documents in a server or to use proprietary
erasure codes. Our dynamic parallel-access implementa-
tion can be easily included in Web browsers without any
modification of the mirror servers. It can also be included
in cache sharing protocols [17] [18] to speedup the down-
load of popular documents and balance the load among
neighbor caches with a document copy.

B. Assumptions

We consider popular documents that are bit-by-bit repli-
cated on several mirror servers. We consider large docu-
ments, e.g., several hundreds of KBytes. For small docu-
ments, several documents should be grouped into a bigger
document, and then, apply a parallel-access to the bigger
document (i.e. group all images and text from a Web page
into a single document).

We assume that the path from the client to the mirror
servers is bottleneck-disjoint, that is, packets from one mir-
ror server are not slowed or dropped by packets from other
mirror server. We consider that servers and clients imple-
ment the HTTP 1.1 protocol[4] to allow for persistent con-
nections, and application-level negotiations.

The rest of the paper is organized as follows. Section II
presents and analyzes a history based parallel-access un-
der different network/server conditions. In Section III we
present the dynamic parallel-access and demonstrate that
it offers dramatic speedups for different document sizes,
number of servers, and network conditions. Section IV
considers a dynamic parallel-access where a client is con-
nected through a modem link. Section V compares a
dynamic parallel-access with a scheme where the client
opens multiple parallel connections to the same server and
simulates a dynamic parallel-access with pipelining. Sec-
tion VI concludes the paper and discusses some future
work.

C. Mirror Site Discovery

Concerning the discovery of mirror sites, the most fre-
quent approach is to publish a list of mirror sites in the
master Web site. Clients, manually select the server that
they believe will offer the lowest retrieval latency. Some
search engines provide a full list of mirror sites and rate
them in terms of loss rate and round-trip-time [10]. Sev-
eral organizations running mirror sites are modifying DNS
servers to return to the client the IP address of the adminis-
tratively closest mirror site [19]. Other recent studies sug-
gest to extend DNS servers [20] or a central directory [21]
to return a full list of all servers containing a copy of a cer-
tain document. Current cache-sharing protocols [18] [17]
keep local information about the location of duplicated
document copies in neighbor caches. When a client re-
quests a certain document and the document is not found
in the local cache, the local cache will re-direct the request
to the best neighbor cache with a document copy.
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II. HISTORY BASED PARALLEL-ACCESS

A history-based parallel-access uses information about
the previous rates between the client and every mirror
server to decide a-priori which document part should be
delivered by each server. The client divides the document
into

�
different blocks, one block for every mirror server.

Let ��� be the rate for server � , ������� �
. Let 	 be the

document size. Let 
���	 be the size of the block delivered
by server � and let ���� ��� ������ � be the transmission time
of this block. To achieve a maximum speedup, all servers
must finish transmitting their block at the same time, thus,
���� �������� � for all ���! #"%$ �&�('�'�� �*)

. When all servers trans-
mit their block at the same time, there are no servers that
stop transmitting before the document is fully received. To
achieve a maximum speedup the size of the block sent
by server � , 
+��	 , must be equal to 
+��	,� � �-/.0�132 � 0 	 .

Fast servers send a big portion of the document, while
slow servers send smaller portions. The parallel rate ��4
achieved when all servers keep sending useful data until
the document is fully received, is equal to the sum of the
individual rates to every server ��45� -%6��798 ��� .

A history-based parallel-access needs to use a database
with information about the previous rates from the receiver
to the different servers to estimate the rate to every server,
��� . Instead of having one database per-client, a single
database could be shared by a group of receivers connected
through a proxy-cache. The database is actualized every
time that a client connects to a server or can be actualized
periodically with an automated probing from the proxy.

A. Experimental Setup

To evaluate a history-based parallel-access we have im-
plemented a parallel-access JAVA client program that takes
as input parameters the URLs and uses a database of pre-
vious rates from the client to every mirror server. The
JAVA client performs a history-based parallel-access for
the requested document, saves the document locally, and
records the time it took to download the document. To
calculate the size of every block, clients need to know the
total document size 	 . To obtain the document size, the
parallel-access JAVA client polls the servers using a HTTP
request at the beginning of the TCP connection. The doc-
ument size could also be pre-recorded in a proxy cache or
given to the client through a DNS server, thus, avoiding
additional RTTs to poll the servers.

To analyze the performance of a history-based parallel-
access scheme, we performed several experiments us-
ing mirror servers in the Internet. In particular we con-

sidered several mirror servers of the Squid Web Page
(http://squid.nlanr.net/) [22]. Figure 2 shows a network
map with the considered mirror servers and the bandwidth
of the slowest link in every path as given by pathchar [23].
The Java client is always located at EURECOM, France.
Since the servers are situated in different countries and
given that the connection from our institution (EURE-
COM) into the Internet has a high access rate, a parallel-
access connection from a EURECOM client to the mirror
sites is likely to be bottleneck-disjoint.
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Fig. 2. Mirror sites for the Squid home page. Client is located
at EURECOM, France.

We evaluated a history-based parallel-access scheme ev-
ery �;: minutes, making sure that different experiments do
not overlap. We run the experiments <>= hours a day during
a ��� -day period and averaged over the ��� -day period.

B. Analysis of the Results

Next, we present the performance of a history-based
parallel-access where a client at EURECOM requests a?&@&A

KByte document from two servers (Austria and UK),
which have average rates between B �DC � � � Kbps. The
actual document is the beta version of the SQUID 1.2 soft-
ware [22], which is gzipped. The database with the previ-
ous rates from the client to every server is updated when
the JAVA client performs a request for the document, that
is every �;: minutes. The client assumes that the average
rate offered by every server ��� , will be equal to the rate
obtained �;: minutes before.

In Figure 3 we show the transfer time offered by a
history-based parallel-access , and the transmission time
offered by an individual connection to every server. In
addition, we also show the optimum transmission time.
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Fig. 3. History Based parallel-access .

The optimum transmission time is the transmission time
achieved by a parallel-access scheme where all servers
send useful information until the document is fully re-
ceived and there are no idle times and. To calculate the op-
timum transmission time, the average rates obtained from
every server after the reception of a document are used. We
see that during the nights, when network conditions do not
vary much, a history-based parallel-access can efficiently
estimate the average rate offered by every server and sig-
nificantly decreases the transmission time compared to the
situation where the client accesses a single server. How-

ever, during day-time, network conditions rapidly change
and estimating the rate to every server based on the pre-
vious rates results in bad estimations. Thus, the obtained
transmission times with a history-based parallel-access are
frequently higher than the transmission times when clients
access every server individually. When the rate to every
server is wrongly estimated, some servers stop transmit-
ting before the document is fully received, thus, obtaining
a smaller speedup.

When we compare the transmission time of a history
based parallel-access to the optimum transmission time,
we see that the performance of a history based parallel-
access gets close to the optimum during night-times. How-
ever, during day-times the transmission time of a history-
based parallel-access scheme greatly differs from the op-
timum. Similar performance of a history-based parallel-
access are also obtained for a different set of mirror servers
(Figure 3(b)). During day times the database could be re-
freshed more frequently and other more sophisticated es-
timating algorithms could be used. However, finding the
right refresh period and a good algorithm to estimate the
rates is not an easy task. In next section, we present an-
other parallel-access that does not use any database and
does not need to estimate the rates to the servers. Instead,
this parallel-access uses dynamic negotiations between the
clients and the servers to better adapt to changing network
conditions.

III. DYNAMIC PARALLEL-ACCESS

Next, we consider a parallel-access scheme which uses
dynamic negotiations between the clients and the servers
as the transmission of the document progresses. With a dy-
namic parallel-access the document is divided by the client
into � blocks of equal size. To request a certain block from
a server, the HTTP byte-range header is used. Clients first
request one block from every server. Every time that the
client has completely received one block from a server, the
client requests from this server another block that has not
yet been requested from another server. When the client
receives all blocks it resembles them and reconstructs the
whole document. The following points need to be consid-
ered when determining the size of the blocks requested:
� The number of blocks � should be larger than the num-
ber of mirror sites that are accessed in parallel

�
, ��� � .

� Each block should be small enough to provide fine gran-
ularity of striping and ensure that the transfer of the last
block requested from each server terminates at about the
same time, thus, fully utilizing the server and network re-
sources.
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� Each block should also be sufficient large as to keep the
idle times between block requests small compared to the
transmission time of a block (see Figure 1).
To reconcile the last two points, the document requested
via parallel-access should be sufficiently large, i.e. in the
order of several hundreds of KBytes.

Since clients need to perform several block negotiations
with the same server during the transmission of a doc-
ument, TCP-persistent connections are used between the
client and every server to avoid several slow start phases.
When there are less than

�
blocks missing, idle servers

are allowed to start transmitting in parallel a block that has
already been requested from another server but that has
not yet been fully received. With this approach, clients
experience a transmission rate which is at least equal to
the transmission rate of the fastest server. The maximum
number of servers that can be transmitting the same block
in parallel is limited to two, to avoid a possible bandwidth
waste. The bandwidth wasted in the worst case situation,
is be equal to

� � C ��� �� , where �� is the block size. How-
ever, the bandwidth wasted on average is much smaller
since slow servers that did not complete the transmission
of a block, are stopped after the document is fully received,
and only those block-bytes already transmitted by the slow
servers are wasted. Decreasing the block size �� , the per-
centage of a document that may be received duplicated can
be very small. In addition, to avoid any bandwidth waste,
clients could easily determine the fastest server during the
transmission of the first blocks. Only this server would
transmit the missing bytes of the last block and the other
servers would be stopped. Thus, slight modifications of
a dynamic parallel-access can avoid most if not all the
duplicated packets while hardly influencing the obtained
speedup.

A. Analysis of the results

To evaluate the performance of a dynamic parallel-
access we implemented a JAVA client program. The JAVA
program takes as input parameters the URLs of the mir-
ror servers, performs a dynamic parallel-access , saves the
document locally, and records the obtained transmission
rate. We evaluated the JAVA dynamic parallel-access us-
ing the experimental setup described in Section II-A. We
first consider a dynamic parallel-access to download a

?&@&A
KByte document, which is replicated in

� � = mirror
sites (Figure 4). The actual servers are located in Aus-
tralia, Japan, Slovakia, and Portugal, to ensure disjoint
paths. The average rate to these servers ranges from : to �;:
KBytes/sec, however, the instantaneous rates greatly fluc-

tuate along the times of the day. We have chosen � � A �
blocks. Our current implementation of a dynamic parallel-
access does not consider pipelining to reduce the idle times
(see Section IV-A for a pipelining simulation).
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Fig. 4. Dynamic parallel-access . ������	�
 Kbytes, ���
�� ,� ��� .

We compare the transfer time a dynamic parallel-access
with the transfer time of an individual access to every
server and the optimum transfer time that can be achieved
if all servers keep transmitting useful data until the docu-
ment is fully received and there are no idle times. From
Figure 4 we can see that a dynamic parallel-access of-
fers very high speedups compared to an individual doc-
ument transfer from every server. The transfer time is re-
duced by a dynamic parallel-access from : � - �;: � seconds
to < � seconds during all the periods of the day. Even
during highly congested times, where the network con-
ditions rapidly fluctuate, a dynamic parallel-access offers
very small transfer times. We observe that the transfer time
of a dynamic parallel-access is very close to the optimum
transfer time which is an upper bound on the performance
of a parallel-access scheme. A dynamic parallel-access is
only a couple of seconds slower than the optimum since
there are � � A � idle times, which can be avoided using
pipelining.

Next, we consider the situation where there are two
fast servers (

? � KBytes/sec) and two slow ones ( � �
KBytes/sec). The fast servers are located in Greece and
Spain, and the slow ones in Australia and Israel (Figure 5).
The document size is smaller than in the previous exper-
iment, 	 � <�: @ KBytes, and therefore we have also re-
duced the number of blocks � � < � to avoid that idle
times account for a high percentage of the total transfer
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time (the document is the FAQ from SQUID in postscript
format [22]).

0 2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

time of day

T
im

e 
to

 d
ow

nl
oa

d 
(s

ec
)

Australia
Israel
Greece
Spain
Parallel
Optimum

Fig. 5. Dynamic parallel-access . ��� ��� 	 Kbytes, �� � � ,� ��� .

We can see that a dynamic parallel-access achieves a
transfer time, which is almost half the transfer time of the
fast servers (slow servers only contribute with few blocks
to decrease the transfer time of the document). The latency
benefits may not seem so important if they are compared
to the case where a client connects to a fast server (from
= - : seconds to < seconds). However, if the client chooses
the wrong server and connects to a slow server, if will end
up experiencing transfer times up to half a minute.

In the next experiment we consider only two mirror
servers (Austria and UK), and perform a dynamic parallel-
access for a large document of : MBytes (Figure 6). Since
both servers have a similar rate, a parallel-access will re-
duce the transfer time by half. The time to download a :
MBytes document from a single server can be up to B � sec-
onds, however, using a dynamic parallel-access the trans-
fer rate is lower than

A � seconds. Due to the high number
of blocks used, � � @ � , there are again some seconds
of difference between the dynamic parallel-access scheme
and the optimum parallel-access , which can be avoided
pipelining requests for several blocks (see Section IV-A).

B. Parallel Access for Small Documents

Even though, a parallel-access scheme is not intended
to be used with small documents, in this section we study
the performance of a dynamic parallel-access with small
documents, i.e. several KBytes.

In Figure 7 we see the performance of a dynamic
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Fig. 6. Dynamic parallel-access . ��� � Mbytes, � � � � ,� � � .

parallel-access scheme for a ��� KB document. We con-
sidered two mirror servers (Spain and Greece) and a num-
ber of blocks � �,= . We see that a dynamic parallel-
access has a transmission time close to the transmission
time of the fastest server, event hough sometimes is higher.
Compared to the optimum transmission time, a dynamic
parallel-access has a much higher transmission time since
the idle times account for a high percentage of the total
transmission time. To avoid idle times pipelining can be
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Fig. 7. Dynamic parallel-access . � ��� ��� � , � ��� , � � � .

used. However, pipelining requires a minimum block size,
and therefore, a maximum number of blocks. The block
size should such that �� ���  
	 � . If the RTT between the
client and most distant server is equal to RTT= ��� � msec
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and the server has a transmission rate �%� ��� KBytes/sec,
the block size must be �� � � � � . Thus, if the docu-
ment size is 	�� ��� KB, and we choose a block size of
< KBytes, the maximum number of blocks is equal to : .
When the number of blocks is small, the degree of gran-
ularity is decreased and it is difficult that all servers keep
sending useful information until the full reception of the
document without wasting a lot of bandwidth. Thus, for
small documents the need for pipelining imposes a max-
imum number of blocks � , that is not sufficient to effi-
ciently implement a dynamic parallel-access .

In addition, with small documents the connection time
may account for a high percentage of the total transmission
time. A parallel-access scheme speeds up the transmission
time of the document but can not do anything about the
connection time. If the time to connect to the server is
very high, even when a parallel-access can greatly reduce
the transmission time, the client will not experience an no-
ticeable difference. To obtain better performances with a
parallel-access , several small documents could be grouped
together, i.e. all documents in a Web page, and perform a
dynamic parallel-access to the bigger document.

IV. DYNAMIC PARALLEL-ACCESS IN A

BANDWIDTH-LIMITED ENVIRONMENT

In this section we study the performance of a dynamic
parallel-access where a client is connected through a low
speed access link, i.e., a modem link. In this case the path
from the client to the servers is not bottleneck-disjoint. A
single server may consume all the bandwidth of the mo-
dem link, therefore, when a client joins another server in
parallel there is no residual network bandwidth and pack-
ets from different servers interfere and compete.

In Figure 8 we consider dynamic parallel-access for a
client connected through a modem line at : @ Kbps. We
show the transmission time achieved when connecting to
every server individually and when connecting in paral-
lel to all servers using a dynamic parallel-access . In Fig-
ure 8(a) we considered two slow servers (Japan 1 and Aus-
tralia) and a fast server (Japan 2). For an individual access
to the fast server, the modem bandwidth is fully utilized
and the transmission time is almost constant for all the pe-
riods of the day and equals the transmission time through
the modem link. For an individual access to the other two
slow servers, the rates obtained are lower than the modem
link rate, namely about <>= Kbps. Here, the modem link
is fully utilized and the transmission time fluctuates de-
pending on the different levels of congestion in the net-

0 2 4 6 8 10 12 14 16 18 20 22
40

50

60

70

80

90

100

110

120

130

time of day

T
im

e 
to

 d
ow

nl
oa

d 
(s

ec
)

Japan 1
Australia
Japan 2
Parallel

(a)
� ��
�� �

KBytes, � ��
�� , 	 � �
.

0 2 4 6 8 10 12 14 16 18 20 22
120

140

160

180

200

220

240

260

280

300

time of day

T
im

e 
to

 d
ow

nl
oa

d 
(s

ec
)

Austria
Slovekia
Parallel

(b)
� ������

KBytes, � ����� , 	 ��

.

Fig. 8. Retrieval latency for a parallel-access scheme and for
an individual-access scheme to every server using a modem
link.

work/servers along the day. A similar effect can be seen
in Figure 8(b), where there are only two mirror-servers, a
fast one and a slow one.

For the dynamic parallel-access , we see that the ob-
tained transmission rate is close to the transmission rate of
the fastest server, which is equal to the transmission rate of
the modem link. However, with a dynamic parallel-access
the transmission rate obtained is always slightly higher
than the transmission rate offered by the fastest server.
This is due to the idle times between block requests. The
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Fig. 9. Retrieval latency for a dynamic parallel-access scheme
and for an individual-access scheme to every server through
a modem link. Pipelining simulation.

RTTs between the client and the servers may be high since
the client is connected through a modem link. Next, we
study the performance of a dynamic parallel-access which
uses pipelining to avoid idle times.

A. Pipelining Simulation

In this section we repeat the previous experiments (Fig-
ure 8(a) and 8(b)) simulating a dynamic parallel-access
with pipelining. To estimate the transmission time with
pipelining, we measured the RTT to every server and

then recalculate the transmission time assuming that the
RTT=0. This simulation gives an upper bound on the per-
formance of pipelining since it assumes that all RTTs can
be fully suppressed. In Figure 9(a) and 9(b) we see that
the rate achieved by a parallel-access with pipelining is
the same as the rate achieved by a single connection to the
fastest server through the modem link.

It is interesting to note the results obtained in Fig-
ure 9(a). In this situation the transmission rate to every
server is even slower than the modem link rate, and there-
fore, there is residual link bandwidth available. Therefore,
using a parallel-access with pipelining, the obtained trans-
mission time is even smaller than the one obtained when
the client directly connects to the fastest server. It is also
important to notice, that the transfer time achieved with a
dynamic parallel-access with pipelining is almost equal to
the optimum transmission time. Thus, the additional de-
lay that the JAVA client may introduce is very small. The
results achieved with pipelining in Figure 9(a) can also be
applied to the other dynamic parallel-access experiments
presented Section III.

As a result, implementing a dynamic parallel-access
with pipelining through a modem link offers a transmis-
sion time which is equal or even smaller than the transmis-
sion time offered by the fastest server without any server
selection.

V. DYNAMIC PARALLEL-ACCESS VS PARALLEL

ACCESS TO A SINGLE SERVER

In this section we compare a dynamic parallel-access to
multiple mirror-servers with a parallel-access to a single
server. To have a fair comparison, we consider the sit-
uation where a single client opens

�
TCP-parallel con-

nections to the same server and compare it to a dynamic
parallel-access to

�
servers. Let � � be the rate to the slow-

est server, and ��� be the rate to the fastest server. If the
residual bandwidth in the path from the client to the server
is large enough, a

�
-parallel connection to a single server

with rate ��� , will have a transmission rate equal to
� 	 ��� .

A dynamic parallel-access to
�

servers has a transmis-
sion rate � 4 � - 6� 7+8 � � which is higher than the transmis-
sion rate of a

�
-parallel-access to the slowest server, but

smaller than the transmission rate of a
�

-parallel-access
to the fastest server,

� 	 � � � � 4�� � 	 ��� .
Next, we consider the situation where there are two mir-

ror servers, a slow one in Greece and a fast one in Spain,
and perform the following experiments:(i) clients retrieve
a document with an individual connection to both servers,
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(ii) clients retrieve a document using a dynamic parallel-
access to both servers, (iii) clients retrieve a document us-
ing a dynamic parallel-access with two connections to the
same server.

Figure 10 shows the transmission time obtained for the
different schemes and several document sizes. For the fast
server in Spain, the available resources from the client to
the server are abundant, and therefore a double parallel-
access connection to this server results in a reduction of the
transmission time compared to a single connection to the
same server. However, when two connections are opened
to the slow server in Greece, the resulting transmission
time is frequently higher than the transmission time ob-
tained if the client would open only one connection to this
server. This is due to the fact that both TCP connections
compete for the same resources (network bandwidth and
server capacity), and packets from one connection may
slow or drop packets from the other connection. For a
parallel-access to both servers, connections use disjoint
paths and do not compete for the same resources. Thus,
the transmission time of a dynamic parallel-access connec-
tion to both servers has a transmission time that is much
smaller than the transmission time of a double connection
to the slowest server and which is very close to the trans-
mission time of a double connection to the fastest server.

In Figure 11 we have considered the situation where
clients open four parallel connections to a single server and
compare it with a dynamic parallel-access to both servers.
This is not a fair comparison for the dynamic parallel-
access to both servers since it only receives data in par-
allel from two connections and not four. We see that in the
case that the client opens four parallel connection to the
fast server in Spain, the transmission time is smaller than
a dynamic parallel-access to both servers. However, in the
case that the client in France opens four connections with
the server in Greece, the transmission time is equal or even
higher than a dynamic parallel-access to both servers.

Therefore, even though a parallel connection to the same
server may result in small transmission times if the fastest
server is selected, it may also result in no speedup if a
slow server is selected, even for a high number of parallel
connections to that server. On the other hand, a dynamic
parallel-access to both servers automatically achieves very
good speedups without any server selection. With a par-
allel connection to the same server, if many clients open
use this scheme, the links close to the server or the actual
server may become congested, and clients will not experi-
ence any speedup. With a dynamic parallel-access to dif-
ferent servers, the load is shared among the servers and
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Fig. 10. Retrieval latency for a dynamic parallel-access scheme
to
� � � servers compared to a double parallel connection

to the same server.

there is a higher number of receivers that can experience
high speedups.

VI. CONCLUSIONS AND FUTURE WORK

Given that popular documents are often replicated in
multiple servers in the network, we enable clients to con-
nect in parallel to several mirror sites for retrieving a doc-
ument. We presented a dynamic parallel-access that uses
application-level negotiations to speedup document down-
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Fig. 11. Retrieval latency for a dynamic parallel-access scheme
to
� � � servers compared to a four parallel connection to
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loads, balance the load among servers, and avoid complex
server selections. We evaluated the performance of a dy-
namic parallel-access for different number of servers, doc-
ument sizes, and network conditions. Dynamic parallel-
access achieves dramatically speedups and has a perfor-
mance that comes very close to the optimum performance
of a parallel-access. Even when clients are connected
through modem lines, a dynamic parallel-access offers a
transmission time that is at least equal to the transmission
time of the fastest server without any server selection. A
dynamic parallel-access can be easily implemented in the
current Internet and does not require modifications of con-
tent in the mirror sites, in contrast with the digital fountain
approach [14].

Future versions of our parallel-access will include
pipelining of several blocks to avoid idle round-trip-times.
However, the expected improvement will not very high
since a dynamic parallel-access without pipelining already
gives transmission times which are very close to the opti-
mum ones. To reduce the number of negotiations between
the client and the servers, clients could keep track of the
fastest server during the transmission of the first blocks
and instead of using a fixed block size, dynamically in-
crease the block size for the fast servers. This approach
would require some more complexity at the client to track
the fastest servers, but seems a natural extension to our
work.
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