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ABSTRACT

Variability and diverseness among incoming requests to a
service hosted on a finite capacity resource necessitates so-
phisticated request admission control techniques for pro-
viding guaranteed quality of service (QoS). We propose in
this paper a service time based online admission control
methodology for maximizing profits of a service provider.
The proposed methodology chooses a subset of incoming
requests such that the revenue of the provider is maxi-
mized. Admission control decision in our proposed sys-
tem is based upon an estimate of the service time of the
request, QoS bounds, prediction of arrivals and service
times of requests to come in the short-term future, and
rewards associated with servicing a request within its QoS
bounds. Effectiveness of the proposed admission control
methodology is demonstrated using experiments with a
content-based messaging middleware service.
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and serviceability
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1. INTRODUCTION

Online businesses are struggling to cope with the ever-
increasing maintenance and ownership costs of their com-
puting resources. Outsourcing models (e.g., Application
Service Providers (ASP), Web Services) use economies of
scale and shared computing to reduce these costs. Owner-
ship costs are also reduced because of the fact that if the
peak load of all its customers do not coincide in time, then
the aggregated peak-to-average ratio of shared resource
utilization is significantly reduced. Hence, providers could
only provision resources for a fraction of the combined
peaks and service the customers for most of the time. In
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such a finite server capacity scenario, service-level agree-
ments (SLAs) specifying certain quality of service (QoS)
guarantees (e.g., average latency < 7msec) need to be in
place between a service provider and her clients. We en-
vision that in emerging SLA-driven ASP model, requests
would come with associated rewards and penalties. Penal-
ties are incurred when the request is either not serviced at
all or serviced outside the QoS bounds. Rewards, on the
other hand, are obtained for servicing a request within
QoS bounds. Realistically, as the resources of the service
provider are less than the peak requirement, it becomes
necessary to employ appropriate admission control mea-
sures to reject right subset of incoming requests so that
the remaining requests can be serviced within their QoS
bound.

Current web services' suffer from unpredictability of
response time that is caused by the first-come-first-serve
(FCFS) scheduling model and the “bursty” workload be-
havior. Thus, under heavy load scenario if a request
with small resource requirement arrives at a web service
later than requests with large resource requirements, it
suffers from a long delay before being serviced, causing
the de facto “denial-of-service” effect. Anecdotal evidence
suggests that service time requirements of CGI-based re-
quests or dynamic objects are one or more than one order
of magnitude greater than that for static objects [1] in a
conventional web hosting scenario. The same is true for
bandwidth required to deliver multimedia (text, image,
audio, video) objects to a remote client from a multime-
dia content delivery service. Recent studies show that
though the CoV (coefficient of variation) of requests is as
low as 1 to 2 for each type of object, the CoV of the ag-
gregated web object type can be of the order of 10 [2], i.e.,
even though the web objects of one type may be similar,
the aggregation of many types of web content makes the
aggregated web object highly diverse. Hence, service time
requirements for various incoming requests is expected to
be highly diverse. Thus, service time requirements of an
incoming request must be taken into account while taking
the Admission Control (AC) decision for the request.

‘We propose in this paper a short-term prediction based
online admission control methodology to maximize the
profit of the provider. To effectively handle the vari-
ability and diverseness of incoming service requests via
the web, the service time of a request is utilized as the

'Note that in this paper web service and networked ser-
vice are used synonymously. Strictly speaking, a web ser-
vice interface describes a collection of operations that are
network accessible through standardized XML messaging.



most important criterion for making AC decisions. We
prove that shortest remaining job first (SRJF) based re-
quest admission policy minimizes the penalty in an offline
setting. The corresponding online version of the policy
is derived using short-term prediction of arrivals of fu-
ture requests, their service time distribution, and capac-
ity availability, after accounting for the capacity usage of
already admitted requests. Our proposed method, in this
manner, derives its effectiveness by combining the compli-
mentary strengths of off-line and online approaches. No
assumption is, however, made regarding the nature of dis-
tributions of arrival rates and service times of incoming
requests. Finally we present a modification of SRJF that
attempts to maximize the profit of the provider taking
into account rewards and penalties associated with the
requests. Experimental results are presented to demon-
strate the effectiveness of the proposed AC techniques for
“bursty” workload conditions.

1.1 RelatedWork

Congestion control and QoS support in network trans-
mission has been reported extensively. However, network-
level QoS support is not sufficient in providing user per-
ceivable performance without QoS support in web host-
ing servers, which can become heavily loaded and hence
a bottleneck.

Conventional admission control schemes use a tail-
dropping strategy to admit incoming requests. Under
steady workload condition with similar service time re-
quirements, queues of appropriate length along with care-
ful capacity planning can be designed based on queueing
theory models so that requests are admitted unless the
queue is full. Chen and Li [3] use an essentially similar
idea for AC in multimedia servers with mixed workloads.
This method employs queues of different lengths for dif-
ferent object types, and a look-up table for online resource
allocation (reservation) to adapt to workload changes.
Fundamentally, variability and diversity among incoming
requests tend to make queue size ineffective for making
admission control decisions [2]. In PACERS (Periodical
Admission Control based on Estimation of Request Rate
and Service Time) algorithm [2], service time estimation
is used to estimate the future capacity commitment for
the already admitted (queued) requests. A new request
is rejected if spare resource capacity (taking into consid-
eration the resource requirement of queued requests) is
not sufficient to service it. Thus, requests are rejected
in a FIFO manner not taking into account the revenues
(or service time) associated with those. Since even the
requests belonging to the same class may be diverse in
terms of their service time, it is necessary to choose be-
tween requests of the same class as well for maximizing
the profit of the provider.

The profit maximization of service providers has been
addressed by several researchers in context of self-similar,
moderate workload condition (analogously, servers with
sufficient capacity). Most of these address allocation of
resources for various request classes with QoS guarantees
so that resources are optimally utilized, thereby maxi-
mizing the profit of the providers. Among these, Liu et
al. [4] proposed a multi-class queueing network model for
the resource allocation problem in the offline setting, and
solved it using a fixed-point iteration technique with the
assumption that the average resource requirement for all
the classes combined is less than the total available re-
source. The allocation of servers as discrete resources in
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a server farm has also been studied by Jayram et al. [5],
keeping in mind the practical constraint that these need
a finite time to be reallocated. A short-term prediction is
used to make online allocation decisions, thus combining
the principles of offline algorithms in an online setting.
Work of similar nature has been carried in online call ad-
mission and bandwidth allocation which have been framed
as cost minimization problem instead of revenue or ben-
efit maximization [6, 7, 8, 9]. Chang et al. [10] adopted
Irani’s algorithm [11]. and addressed bandwidth alloca-
tion problem for web hosting based on resource availabil-
ity and assigned revenue. However, Irani’s algorithm has
a competitive ratio of O(log R) (where R is the reward
obtained by an optimal policy). Moreover, this method
too does not present any intelligent method to choose be-
tween requests of the same class.

The key idea, used in our admission control approach, is
our algorithm is not blind, as most online algorithms are,
but uses an expected distributions of arrivals, and service
times for future requests. This allows us to effectively
handle admission control problem for request arrivals of
“bursty” nature with widely varying service time require-
ments (exponential or even heavy tailed). Another impor-
tant distinction in our approach is the use of service time
to choose between different requests for admission (inter-
estingly, a study conducted by Joshi [12] about resource
management on the downlink of CDMA Packet data net-
works shows that algorithms which exploit request sizes
seem to outperform those that do not).

1.2 Organization

We formulate the setting and explain our system de-
sign next. In Section 3.1, we explain our approach to the
problem by relaxing some constraints and presenting an
offline algorithm that maximizes the number of requests
serviced. We then present an online version of the algo-
rithm that maximizes the expected number of requests
serviced within their QoS bounds by using the estimated
distributions. In Section 3.2 we enhance the method to
maximize the difference between the sum of expected re-
wards and the penalties. We present performance results
of our algorithms for a publish-subscribe messaging ser-
vice [17] in Section 4 and conclude with our observations
in Section 5.

2. PROPOSEDAC SYSTEM MODEL

The AC System controls the usage of some finite ca-
pacity resource (CPU, bandwidth etc.) that is used by
the hosted service. It admits a subset of requests such
that a pre-defined objective function is maximized. The
concept of capacity of a resource is obvious in case of
bandwidth [10], e.g., 128kbps. However, even for a com-
puting service with resource like CPU, capacity can be
naturally defined. For example, in a multi-threaded web-
service, the maximum number of threads spawned for ser-
vicing the requests is bounded for issues of scale and per-
formance. Hence, the number of concurrent threads or
analogously the number of concurrent requests denotes
the capacity.

2.1 Problem Formulation

We now give a concrete formulation of the profit maxi-
mization problem that our AC System solves. Assume an
input set of n requests, where each request 7 can be repre-
sented as R{arrivalTime(a;), service Time(s;), reward(R;),



penalty(P;), responseTimeBound(b;), capacity(c;), service-
Class (Cl;)}. Define C as the total capacity of the re-
source available and Ti,: as the total time under consid-
eration. The problem then is to find a schedule (z;,;) of
requests such that the overall revenues are maximized.
Formally, we have

maz Y [Ri 30 @i — Pi(1— 30 @)
(1)
st > epir <C V time t;
E:{f{ zit <1 V request i;
1 if request % is scheduled at time ¢
Tit = and (t + s; — ai) < b;
0 otherwise
1 Vt:(te(r,7+si—1)
Pit = and z;r = 1)
0 otherwise
Tiot

= x;p = 0 implies that the request is rejected. We
note that this problem can be modeled as bandwidth al-
location problem which is known to be NP-Hard even in
a generalized off-line setting [14]. Moreover, the problem
needs to be solved in an online setting where the decision
of rejecting a request is made without knowledge of the
requests which are scheduled to arrive later.

2.2 Reward and Penalty Model

A general reward and penalty model gives us the flex-
ibility to optimize a variety of objective functions. A
provider-centric model would have rewards proportional
to service time. Also, in the case of differentiated services
provided by the service provider, the rewards associated
with a request would have the SLA class as one of the in-
put parameter. If the SLAs have dynamic rewards, then
the number of requests serviced would also be a parame-
ter. An example for dynamic SLAs could be the following,.
If the provider services 90% of the requests then the re-
ward and penalty per request is Rgo, Poo. However, if the
total number of requests serviced is greater than 90%, the
penalty Psgo may be less than Pyo. Hence, reward (and
penalty) can be expressed as a function f(s;i, Cs, State;)
where

Ci
State;

the class of the request %
the state of the requests of the customer 3.

A user-centric service provider may have a reward model
that tries to enhance user experience. For example, the
reward model could try to minimize the average waiting
time of a user’s request. The algorithm should not be
dependent on the pecularities of the model and the ad-
mission controller should easily adapt to a new reward
model. The reward function can be formulated in terms
of any set of parameters and hence we may solve the cost
minimization or QoS improvement problems by solving
the appropriate profit maximization problem.

In practice, one may find that reward is only related
to the SLA class. Moreover, if reward is found to be
dependent on service time, the dependency is linear i.e.,
R; o s; or sub-linear, since a request with longer service
time consumes more resource and thus should be charged
more. The scenario where reward is super-linear in service
time, i.e., R; o (s;)°; ¢ > 1, would be rare, as it would
contradict the Law of Diminishing Marginal Utility [18].
Hence, an AC algorithm should be able to work well with
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sub-linear and linear reward models. As one may observe
later, our algorithms are designed to work well with sub-
linear reward models. Also, we report experiments which
show that they also work well with linear reward models.

Since, by servicing a request, we are on an average ex-
pected to fetch reward proportional to the average service
time of all requests, the penalty should also be related to
this metric, at least in an expected sense. Also, for a re-
quest which has not been accepted, the actual service time
can not be measured and the only metric available is the
average. Thus, a realistic penalty model is one where the
penalty for rejecting a request is proportional to average
service time.

2.3 Systemissuesand Our Design

The problem of admission control of a web-based ser-
vice with the objective of profit maximization poses chal-
lenges on both the system design front as well as algorith-
mic front. We follow a system design methodology that
allows any algorithm to be plugged into the system. Sim-
ilarly, the algorithm we design would be applicable to all
admission control settings that can be formulated as the
general maximization problem described earlier.

‘We will now look at a typical web-service to understand
the system requirements. A typical web-service has mul-
tiple service instances running on different servers. Access
to these instances is via a gateway that also implements
the admission control functionality. The links between the
gateway and the service instances may also have signifi-
cant communication cost. Moreover, each service instance
maintains a waiting queue for requests.

Service Instance 1

Client 1 Service Queue 1

[;xylﬁ . .

Gateway

Request
Dispatcher

b

Service Queue m

- Service Instance m
Clientn

Figure 1: Admission Controller System Model

Hence, a possible AC strategy is to apply the tail-
dropping strategy at each of the service instances. To
elaborate further, the admission control policy would then
be based on the queue length of the service instance I and
implemented by the service instance instead of the gate-
way. This is a natural extension to the tail-dropping strat-
egy that is employed in the existing web-servers. A more
refined strategy could be based on Chen et al.’s work [2] by
using the estimated system capacity needed by the queued
requests. This important work presents a method to esti-
mate the system capacity needed for the queued requests
and shows that using system capacity instead of queue
length leads to significant performance improvements.

However, delegating the admission control responsibil-
ity to the service instances has some significant draw-
backs. Firstly, the different service instances may expe-
rience very different workloads and hence a local policy
may not be globally optimal. Also, in case a request is



rejected, the client receives the information much later,
i.e., after it has incurred the communication cost from
the gateway to the service instance and back. This cost
may be insignificant in a LAN but if the instances are
geographically distributed this cost would be of concern.
Moreover, if bandwidth is the constrained resource, then
the request uses up bandwidth between the gateway and
service instance.

We are now in a position to list the additional features
our AC system should have over the current systems. In
order to solve the precise problem described by Eqn. 1,
(i) the AC needs spare capacity information of the en-
tire duration from the service instance, (i) service time,
reward and penalty of the request and (iii) complete infor-
mation about all the other requests. To solve problem (i),
the gateway requests the spare capacity information from
each service instance I whenever the refresh criterion is
met. The refresh criterion is true if either the gateway
has forwarded k requests to I or time T has passed since
the last update, where k, T are modifiable parameters.
We note that spare capacity estimation is done as de-
scribed in [2]. In order to solve problem (ii), the gateway
contains a proxy (See Figure 1) for every service instance
that would unmarshall the request to determine the re-
ward, penalty and request parameters. In order to esti-
mate the service time, the proxy has a Request-to-Seruvice
time Mapper(RSM) that takes as input the request pa-
rameters and returns estimated service time. To tackle
problem (iii), the proxy has a predictor that estimates
the arrival rate and service time distribution for requests
of each kind. This estimate can be used by the algorithm
in place of actual request attributes. The proxy also has
an admaission controller (AC) that implements the admis-
sion control algorithm. The overall design of the proxy is
described in Figure 2. Note that an RSM is also needed
at each service instance for spare capacity estimation over
a time horizon.

PREDICTOR

RESPONSE|

SERVICE

REQUEST

r.,,,“

API LIBRARY PROXY

INSTANCE

ADMISSION

REQUEST
DISPATCHER
API LIBRARY PROXY

CONTROLLER

RESPON:

PROXY

Figure 2: Layout of a Proxy

We now describe the control flow as a request r ar-
rives. The request dispatcher forwards r to the appropri-
ate proxy. The API proxy unmarshalls » and forwards the
parameters to RSM and AC. RSM ascertains the service
time from the request parameters and sends the service
time associated with the request to AC. The predictor
periodically sends the arrival rate and service time distri-
bution of requests that are expected to arrive in the near
future. The AC uses the above information and the spare
capacity information to decide based on the methodology
we describe later whether to accept the request. If the
request is accepted, it is forwarded to the corresponding
service instance. Otherwise, a "request rejected” response
is sent to the client. Note that even though the decision
to accept/reject a request is made by individual proxies,
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the dispatcher ensures that the workloads on different in-
stances are similar.

2.3.1 Request to Service time Mapping (RSV)

We begin by distinguishing service time from response
time. Service time of a request is the amount of time the
resource (CPU or network bandwidth) is used by the re-
quest and not the end-to-end delay, which is the response
time. Estimating the end-to-end response time for a web
request to a reasonable accuracy is difficult, given the un-
reliable nature of the web. However, service time does not
depend on the network delays and hence is unaffected by
the nature of the web. We use the following method to
estimate the service time of a multi-threaded web-service.
For each thread which serves a request, a log is generated
with the following information: 1) service parameters, 2)
start time of the request and 3) end time of the request.
A large number of diverse requests are sent to the web-
service and enough logs are generated to make the data
statistically reliable. Once the logs are generated, the ser-
vice time distribution is computed for each value of the
service parameters. The method is general enough to be
used for the service time estimation for any other types
of web-service implementations as well.

For any system, measured service time would then be
a statistical function of request parameters and would be
represented as P;(7|0) which is the conditional probabil-
ity that serviceT¥me = T given that request parameter
vector V' = ©. The service for which our admission con-
trol system was built is a content-based publish /subscribe
(pub/sub) messaging middleware [17]. Our experiments
showed that the service time of the pub/sub service for
any fixed number of attributes was Gaussian with the
mean of the distribution linearly related to the number of
attributes.

2.3.2 Prediction Methodology

The predictor makes a short-term forecast of arrival time
distribution and service time distribution. It uses time-
series analysis based short-term prediction for requests’
arrival rate (A:) as proposed in [1, 2, 13]. In practice,
aggregated web traffic in short observation time windows
is observed to be Poisson [1, 16], i.e.,

AN

P(inter-arrival delay = z) = e o

()
The predictor also computes the distribution of the re-
quest attribute values (P(9)), based on past usage. It
then uses these to compute the arrival rate (\;) for each
distinct parameter value vector(d) as

)\qj = P(’ﬁ) * /\tot (3)

P(9) for a publish-subscribe messaging utility [17] is ob-
served to have a unique distribution. The number of
attributes in a message is spread almost uniformly with
small number of attributes (typically less than five) but
decreases exponentially for larger numbers. The predictor
uses the parameter to service time mapping P;(7|0) gener-
ated by the request to service time mapper and computes
P,(t) (probability that a request would have service time
t) according to

Pi(t) = ZP(V = 0)Py(t[0) (4)



The service time distribution P (t) for the pub/sub mes-
saging service [17] has a body, with a uniform distribution,
and a tail, which follows a negative exponential distribu-
tion. The distribution was estimated using @.Q plot and
confirmed by the Chi Square test. However, it has been
observed that the service time of web-traffic follows heavy
tailed distribution. This property is surprisingly ubiqui-
tous in the Web; it has been noted in the sizes of files
requested by clients, the lengths of network connections,
and files stored on servers [19, 20]. By heavy tails we
mean that the tail of the empirical distribution function
declines like a power law with exponent less than 2. i.e, if
a random variable X follows a heavy-tailed distribution,
then P[X > z] ~ 27,0 < a < 2 where f(z) ~ a(z)
means that lim,_, o f(z)/a(z) = ¢, for some positive con-
stant c¢. Hence, any practical admission control system
should be able to perform well with a heavy-tailed service
time distribution as well.

3. SRJFBASED AC ALGORITHMS

In this Section, we propose short-term prediction based
AC algorithms for maximizing profit of the providers. We
present a provably optimal offline algorithm for a special
case of profit maximization problem in Section 3.1 and
then extend it for the general case. The challenge in
designing the algorithm is to come up with a practical
solution. Since the number of requests n is very large,
the algorithm for deciding whether a request r should be
serviced, needs to be independent of n. Hence, we need
a constant time algorithm for the NP-hard problem of
deciding whether or not a request r should be serviced.
Moreover, the problem has to be solved in an online set-
ting.

3.1 Maximizing Number of RequestsSer
viced

We now simplify the maximization problem described
by Eqn. 1 and find an offline solution to the simplified
problem. We fix all the rewards and penalty as unity.
Also, we assume that the reponseTimeBound b; is kept
the same as serviceTime s; for each request 7. Hence,
Eqgn. 1 reduces to

mazx Z((i wie) — (1 - i Tit)) (5)

with the same constraints. However, z;; = 1 can now
hold only at ¢ = a; because of the additional constraint
on responseTimeBound. That is, we have the objective
of maximizing the total number of requests serviced.
With complete information at hand, it is natural to ser-
vice short jobs first(SJF). We, instead, use the shortest
remaining time first that combines the idea of selecting a
job, which is short and has fewer conflicting requests, and
is used in operating system domain to minimize waiting
time [15]. As we work with non-preemptive requests we
refer to SRTF as Shortest Remaining Job First (SRJF)
to avoid any confusion. The only difference of SRJF from
SJF in this context is that the conflict set is restricted
to the set of undecided requests, i.e., the requests which
have neither been rejected nor serviced. The input to the
algorithm is a list of requests, which we call undecided list
and the output is a service list and a reject list. For ex-
ample, assume the input request set is as shown in Figure
3(a), and the SRJF policy is followed. We take requests
in an order, sorted by arrivalTime, i.e. rl, r2, r3, r4,
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Figure 3: (a) Input Request Set and (b) Output
Generated by SRJF

r5, r6. We consider rl first. Note that the only conflict-
ing request with a shorter remaining time than rl is r3.
Also, even after servicing r3, we have spare capacity left
for servicing rl. Hence, we accept rl. We then consider
r2 and reject it because in the capacity left after serving
rl, we cannot service both r2 and r3. By the shorter re-
maining time criterion r3 is preferred over r2. Hence, we
reject r2 and serve r3. In the second set of requests again
r4 is selected by a similar argument. But between r5 and
r6, although r6 is shorter it ends after r5, and so r5 is
selected. The output of the SRJF algorithm is given in
Figure 3(b).

DEFINITION 1. Shortest Remaining Job First Algorithm:
We order the requests in order of their arrival. Then we
service a request r; if we have capacity left for r; after
reserving capacity for all the undecided requests r;, s.t.
a; + s; < a; + si, Otherwise, we reject r;.

‘We note that once we have taken a request from the un-
decided list, we either accept it or reject it. It does not
go back to the undecided list.

DEFINITION 2. Define the conflict set of request ¢ at
time t (C!) to be the set of all such requests r; that have
been not been rejected till time t and either (a) a;+s; > a;
and ai+s; < aj+s; or (b) aj+s; > a; and ai+s; > aj+s;.

We now prove the central lemma of this Section.

LEMMA 1. If SRJF rejects a request r; in favor of r;
at time t, then Cf U4 C C;- Uj.

ProOF. Note that since SRJF rejects r; in favour of
r;, we have a; + s; < a; + sj. Let us assume there exists a
request T S.t. 7 € (Cf—C;-). Also, since a;+s; < aj+sj,
if case (a) is true for 74 to be in Cf, then a; +s; < aj + s
and we have a; + s; < ay + sg. Similarly, if 7 is not in C]t-
by Case (a), i.e., we have ar > a;j + s;, then ar > a; + s;.
So, 7y is either in both C; and C! or in none. Now we
look at Case (b). Since, 7y is in ct, we have a; < ap + s.
Also, since 7 is not in C]’?, we have ar + s < aj, ie,
a; < ag + sk < aj. Also, since r is in the active set
at time ¢, we also have ax + s > a;. Hence, we have a
contradiction. Therefore no such 7 can exist. [

THEOREM 1. If the capacity of the resource is unity,
SRJF mazimizes the total number of serviced requests.

PROOF. Let us assume the optimal services a set O of
requests and SRJF services a set S. Then Vr; € O —
S 3r; € Ss.t. SRJIF had accepted r;r in favour of ;.
By Lemma, 1, we have C;, uj' C C]"5 U j. Also, since r; is
rejected in favour of r;/, we have r;r € C]t-. Hence, we have
rj € S—0, as it conflicts with r; and so r; ¢ Q. We now
show that for any other r, € O — S, the corresponding



T # rj. This follows from the fact that rx ¢ C} U j
and C}, Uj' C C}jUj and hence, 7 ¢ C} Uj'. Note
that r, € Cf == 1y € C! and hence Vr; € C} uj
r; ¢ ChUk. Also, since Ci, UK C C} Uk, we have
Vr; € C;I Uj' :ri ¢ Ciy UK, ie., rjy # ry. Hence,
Vr; € 0 —S, I distinct r; € S — O hence, we have |0 —
S| < |S—-0), ie, |S| > |0, and as |O] > |S|, we have
10| =S| O

THEOREM 2. SRJF mazimizes the number of serviced
requests for any capacity n.

PROOF. (sketch): Theorem 1 can be naturally extended
from capacity 1 to n. It can be shown on similar lines that
for every request r; € O — S there exists n requests in S.
Now all these (n+ 1) requests cannot be serviced and op-
timal rejects at least one of the requests, i.e., for every
request r; € @ — S there exists a request r;; € S — Q.
An argument similar to Theorem 1 using Lemma 1 shows
that rjy =7 only if rj =r¢. O

3.1.1 Online SRIF

The offline algorithm described above needs a priori in-
formation about a request’s arrival and service time. Such
information is, however, not available in a real admission
control scenario. Also, the requests have a QoS bound on
the response time and can be delayed only till the QoS
bound is violated.

Hence, short-term prediction of requests’ arrival rate
and service time distribution is utilized to solve the re-
quest maximization problem in a practical online setting.
Note that we can compute the service time of a request as
well as the service time distribution using Eqn. 4. Also,
the request arrival rate to a web service can be modeled
as a distribution [1, 13](e.g., Poisson for web-traffic). No
assumption is made about the type of distribution or its
persistence in this paper.

Since the Shortest Remaining Job First (SRJF) algo-
rithm takes requests sorted on their arrival times, it is
easily transformed as an online algorithm. Owur online
SRJF algorithm then works in the following way. When
a request arrives, it is checked whether this request can
be serviced, given that the expected number of future re-
quests which are expected to end before it are serviced.
To illustrate further, if a request arrives at time ¢ and has
a service time of ten, we find the expected number of re-
quests which will arrive at either of (¢+1), (t+2,) .., (¢+9)
and end before (¢ + 10), i.e., all those requests which are
expected to be serviced before the current request ends.
This ensures that we maximize the total number of re-
quests serviced in an expected sense, i.e., if the assumed
distribution is an exact set of requests, we should be max-
imizing the number of requests serviced. Moreover, if the
request cannot be serviced immediately, the condition is
rechecked after a rejection till such a time that the re-
sponse time bound may be violated. To illustrate further,
if a request with a; = T, s; = 10 and b; = 20 can not
be serviced immediately by the SRJF criteria, it gets re-
evaluated till time (7' + 10), after which it is finally re-
jected. The pseudo-code of the algorithm is presented
below.

We define
L = the mean capacity of the requests,

Pr(i) = probability of event 7 happening.
E = random request with all parameters associated
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with the respective random variables
p = discount ratio

1 function schedule
2 for every element j in the available array A[l1...d]
3 futureRequests[j] = L * Pr(sg < (d — 7))
4 backlog =0
5 fork=1toj
6 backlog = backlog+
futureRequestslk] * Pr(sg > (j —k))

7 end-for
8 capacityLe ft = available[j]—

p * (backlog + futureRequests[j])
9 if(capacityLeft <1)
10 return false
11 end-if
12 end-for
13 return true
14 end function

The discount ratio p served two purposes. It captures
the confidence in the prediction as well as a future dis-
counting ratio. A predictor with a high error probability
would have a p much less than 1 as the estimation of
futureRequests may be off margin. On the other hand,
a sophisticated predictor would have p — 1. For actual
service deployment, the service provider should start with
a default value of p depending on the predictor used and
converge to the value optimal for her. Note also that in
case a request r is rejected by schedule once, it is recalled
till such a time when the QoS bound on the request r
cannot be satisfied, if it is delayed any further.

3.2 BalancedSRJFfor Profit Maximization

Our algorithm for the general case of Profit Maximiza-
tion (i.e., one in which all rewards and penalties are not
equal) is based on the following lemma about optimal Q.

LEMMA 2. If for any request 7;, 3C; C C} s.t.
(7) Vr; € C{

(@) CinCi=¢, (b) aj +s; <ai+si (c)r; 0
(ZZ) ETJ-GCQ R; + P; > R; + P;, then r; ¢ 0.

PROOF. (sketch) Let us assume that such an r; exists
and belongs to optimal Q. Let us define C; = Uy, ec C]t-.
By a simple analysis for each element of C; on the lines of
the proof of lemma 1, one can show that C, C C}. Hence,
we can replace 7; by C; in Q and the overall profit would
be increased. Hence, we achieve a contradiction. []

Hence, our offline algorithm (offline BSRJF) essentially
rejects all such requests r; for which C; exists. It finds out
all the candidate C; for each r; and pre-reserves capacity
for them. If spare capacity is left after pre-reservation,
then r; is serviced. This essentially leads to the following
theorem about offline BSRJF.

THEOREM 3. If offline BSRJF returns a set BS of re-
quests, then VS s.t |BS — S| < 1, the total revenue gen-
erated by BS is more than that generated by S.

ProOF. The proof follows directly from Lemma 2 and
the fact that BSRJF constructs BS s.t. Vr; € BS, 4C; O

In the online version of BSRJF, we compute the expected
sum of reward and penalties for such C} candidates, i.e.,
we compute the sum of the expected rewards and penal-
ties of non-conflicting request sets rs that arrive later. We



compare this sum with the reward of the current request
under consideration. If the sum of the expected rewards
and the penalties saved exceeds the reward of the current
request, we reserve capacity for rs. This ensures that r;
is serviced only if there is no expected C; that would be
rejected later.

This is incorporated by changing Line 3 of the online
SRJF algorithm by

3 futureRequests[j] = Lx

S (Pr(se = i) * £(d,i,5));

where,
f(d,i,j) = 1,if3kEN:Rn < Rs,+
Pr((se =3) < (d—j—1i)/k))x
k* (Rs + Ps)
R, = Expected (average) reward for a
request with serviceTime s
P, = Expected (average) penalty for a

request with serviceTime s

Note that now capacity is not reserved for all earlier end-
ing requests but only those who belong to a such a set C,.
The algorithm in the offline scenario no longer guarantees
an optimal solution but a solution that in some sense is
locally optimal. This is because there is no single request
r; that can be replaced from the solution by some C; and
the solution would improve. However, there may exist a
set of such r;’s that could be removed and the objective
function (Eqn. 1) may increase.

We take an example to explain the difference of this
algorithm from online SRJF. If a request r; of length 10
which starts at time-unit 50 and has successfully passed
up to 55" time-unit by the algorithm and there is a con-
flict with a request r;, which spans from 55 — 58, we may
choose r; if the probability of a request of length two (which
can fit in 58 — 60) times the penalty of one request is less
than the difference in net reward of r; and r;. More pre-
cisely, resource is not reserved for r; in favor of r; if for
an expected request k:

Pr(sp <2)(Rx + Px) < Ri+ P; — (R; + P;) (6)

Herein, a request of larger length r; is admitted which
may disallow an expected shorter request r; later but the
probability that there would be another request rj in the
remaining time is very low, i.e., expected sum of rewards
and penalties of C; = r; Uy is less than R; + P;. One
may note that within this formulation online SRJF can be
thought of as representing capacity for all such candidate
C; irrespective of the revenue generated by C;. We now
explain BSRJF’s behaviour when the requests are from
multiple SLA classes.

Multiple SLA Classes: When a choice has to be
made between requests from the same class, BSRJF chooses
the one that has a shorter remaining time. However, when
a choice is to be made between requests of different SLA
classes, the actual measure implicitly used is reward per
unit capacity consumed. Note that a request of low re-
ward class would have f(d,7,j) = 1 for all the expected
requests of higher classes, i.e., it would be rejected in favor
of any shorter request of the higher priority classes irre-
spective of the fact that there may not be any chance of
scheduling an extra request. On the other hand, assuming
zero penalty, a high priority request can be rejected in
favor of low priority requests only if it is longer than the
reward ratio of the two SLA classes times the expected
service time of the low priority requests, i.e., in a zero
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penalty scenario, where a request of Gold class has a re-
ward three times the reward of a Silver class request, we
would reject the gold request only if we expect to service
three disjoint silver requests in the same time.

3.3 Computational overheads

‘We now assess the overhead we have to incur for having
an elaborate admission controller. For any client server
system, a server thread would accept a request and add
it to a service queue. Also, even a simple tail-dropping
admission controller would have to look at the queue to
determine its length and decide if the incoming request
has to be dropped. Hence, the cost of admission control
is at least O(1) for every request which has arrived at
the AC. Note also that in case the request is accepted,
we have to add the request to the queue, which would
imply scanning the whole request which is O(l), where
I = length of the encoding of the request. Hence, the
running time per request is O(1).

In our AC system, we parse the headers of all requests
to determine its parameters. Once the parsing is done, the
AC algorithm works only with an array (available array of
length equal to the short-term forecast T'), which is rep-
resentative of the actual queue. Also, T can be suitably
replaced by any constant k that is equal to the number
of time-instances of T' (values taken by j in the pseudo-
code) at which we want to check the AC condition, e.g.,
if T = 100 and we make k£ = 10 equal sized partitions,
we collapse all the entries between 10 ¢ + 7, 0 < 57 < 10
into a single entry corresponding to the 3" partition. One
may reduce the number of points (in time) that one would
check the AC condition for, to account for the fact that
the load at different points would follow temporal corre-
lation. Hence, if the AC condition is satisfied at a time ¢
in the horizon, with high probability it would also satisfy
in the temporal neighbourhood of ¢t. This would bring
the overhead even lower and could be assumed to be con-
stant. Thus effectively the running time is O(I) per re-
quest, which is the same as a tail-dropping AC system.

4. EXPERIMENT AL RESULTS

We conducted a large number of experiments with a

hosted content-based publish-subscribe messaging mid-
dleware service [17]. Our experiments compare the per-
formance of our SRJF-based algorithms to the following
predictable service time-based AC algorithm.
Greedy: The greedy heuristic computes the expected
system load over a time horizon by estimating the ser-
vice time of all the requests which have been accepted
(i-e., which are in the service queue). It accepts a request
R, if there is spare capacity available to service R. Note
that this heuristic is superior to the tail-dropping strat-
egy, used by current web-servers. This is because greedy
directly uses the system load information, whereas, tail-
dropping systems use queue-length as an approximation
of the system load. Performance numbers obtained in our
experiments clearly establish the effectiveness of SRJF-
based policies for admission control over greedy and, by
extension, over tail-dropping as well.

The publish /subscribe messaging service [17] under con-
sideration supports a programmatic interface, based on
the standard Java Messaging Service (JMS) API, and al-
lows for attribute-based subscription of published mes-
sages. One key QoS parameter for a pub/sub messaging
service [17] is the latency of a message, i.e., the time a



message takes to reach a subscriber from a publisher via
the messaging broker assuming zero network delay. The
latency for a message is observed to vary with the CPU
utilization of the broker in a manner, described in Fig-
ure 4. Hence, to ensure an upper bound on the latency
guarantee as per the SLA, the CPU load should be kept
below the threshold value. This places a limitation on the
number of requests which can be serviced, as allowing any
more requests would load the CPU above the threshold
value and violate the latency bound resulting in losses for
the publish/subscribe service provider. Thus, we can view
the CPU as a resource which has a capacity equal to the
threshold value which limits the number of concurrent re-
quests. We instrumented the messaging service to obtain
a performance model, and to determine the CPU thresh-
olds to satisfy the QoS guarantees and the corresponding
limit on the number of concurrent requests (Figures 4, 5),
which is the capacity of the service.

4.1 Experimental Model and Parameters

The experiments simulate a request driven server model
that hosts a publish-subscribe messaging service using
empirical workload from the distributions generated as
described in Section 2.3.2. The traffic arrival was mod-
eled as a Poisson process. Reward was proportional to the
service time of the request and penalty was proportional
to the average service time (Section 2.2). We used two
service time distributions for our experiments. Firstly,
we used the service time distribution unique to the mes-
saging service, i.e., with an exponential tail. We also
conducted simulations with a heavy-tail replacing the ex-
ponential tail to study the performance in other service
time scenarios. Since we had no heavy-tailed data for the
publish-subscribe messaging service, we used traces from
Internet Traffic Archive. The trace used consisted of all
the requests made in a one week to the Clarknet WWW
server [21]. The service time distribution of the above
trace fitted a log-normal distribution, which is heavy-
tailed. For our experiments, the service time distribution
was scaled to have a mean of 1000 us. Each experiment
was repeated until statistical stability was achieved and
the computed means are reported.

We conducted experiments in the single and multiple
SLA class settings. The performance improvement of our
algorithms with multiple SLA classes is more significant
than with single SLA class. Moreover, the performance
improvement can be arbitrarily increased by increasing
the reward ratio of the classes. The reason for this lies
in the fact that Greedy is class blind. However, the sig-
nificant performance improvement over Greedy that we
achieve in a single SLA class scenario establishes that our
algorithms do not depend on the reward ratio to achieve
a superior performance. We would also like to note that
these results are also valid if the competing algorithm is
a proportionate greedy algorithm, one where a propor-
tionate share of the resource is alloted to each class and
that share is consumed greedily by the requests of that
class, as the admission control algorithm for each of the
partition of the resource could be interpreted as a greedy
algorithm in isolation.

In Section 4.2, we report the performance of our algo-
rithms against the greedy with varying inter-arrival delay,
i.e., the request arrival rate decreases along the r—axis.
In the second set of experiments we keep the arrival rates
and mean service time constant and increase the varia-
tion in service time, which we call spread. The mean of
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the service time was fixed at 1 ms.

We observed that greedy performs worse when the tail
is heavy as compared to a exponential tail. This can be
attributed to the fact that the long requests become more
frequent. However, our algorithms seem to show no ad-
verse effect because of the heavy tail (Figures 9, 10). This
is not surprising as our algorithms prune out the long re-
quests even if they are more frequent. For lack of space,
we report the full results with the exponential tail only
and note that the improvement with a heavy tail is more
significant (Figures 9, 10).

4.2 Effect of RequestArri val Rate on Per-
formance

The results show (Figures 6, 8) that when the resource
is in plenty (i.e., at low arrival rates or large inter-arrival
delay), greedy performs as good as SRJF and BSRJF al-
gorithm. This is expected because the requests are re-
jected very rarely, as at most times, spare capacity is avail-
able. However, as the request arrival-rate increases, the
intelligent algorithms consistently beat the greedy heuris-
tic by a large margin. In fact, we observe that the total
number of requests serviced are more than doubled at a
high request rate (low inter-arrival delay). These indi-
cate that, as the number of admission control decisions
increase, the performance improvement of our algorithm
over greedy increases, emphasizing their superiority over
greedy at heavy load. We note that BSRJF services ap-
proximately the same number of requests as SRJF. How-
ever, we note that the reward obtained by SRJF is less
than BSRJF (Figures 6, 7). Hence, BSRJF gets a sig-
nificant increase in rewards with only a small increase in
penalty as compared to SRJF, thus increasing the revenue
considerably.

The rewards obtained by the three heuristics implicitly
contain the information about the capacity utilization by
the heuristics. This is because reward is proportional to
the service time of the request in the model used for these
experiments. Hence, the sum of all the rewards obtained
is directly proportional to the total system capacity used
by all the serviced requests. It is also easy to see that
the rewards obtained by the greedy is a good approxi-
mation for the total capacity in high load scenarios as
greedy will almost always fully utilize the resource. In a
low load scenario as well, the rewards obtained by greedy
equal the maximum resource utilization as almost all the
requests are serviced. Thus, Figure 7 shows how well the
two heuristics consume the resource compared to greedy.

4.3 Effect of Sewice Time Variance on Per-
formance

The number of requests serviced by our heuristics in-
creases significantly with increase in spread as is evident
from Figures 9 and 10. Since the mean service time and
arrival rate are the same, the number of conflicts for
resource should be comparable for all the data points.
Hence, the only attribute, which increases, is the vari-
ability in the service time of the requests. As our algo-
rithms take the service time as the most important crite-
rion (SRJF uses it as the only criterion), the increase in
variability allows our algorithm to make more intelligent
decisions. This is reflected in the improved performance
as opposed to greedy, which services approximately the
same number of requests at all values of spread. A simi-
lar trend is visible (Figure 11) in the revenue obtained by
balanced SRJF when compared with greedy. The increase



in spread increases the revenue of the balanced SRJF
whereas it clearly shows no effect on the performance of
greedy, which is blind to service time variability.

5. CONCLUSION

We propose a short-term prediction based admission
control methodology for profit maximization of service
providers and demonstrate its effectiveness under heavy
and diverse workload conditions. Our methodology is less
susceptible to workload variations, observed in Internet
environment, since we do not assume any specific arrival
and service time distribution. Our algorithms perform
considerably better than greedy if either there is suffi-
cient resource constraint, i.e., there are many more re-
quests than the capacity available or the service times
have a larger spread. The reason for the first is that there
are actually more decisions to be made if there are more
conflicting requests and hence, the selected requested set
could be vastly different from the set that greedy gener-
ates. The second factor is an indicator of the diversity
of the requests and hence, our algorithms perform better
when the workload is more diverse.
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