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Abstract 
In this paper we present a new approach for network intrusion 
detection based on concise specifications that characterize nor- 
mal and abnormal network packet sequences. Our specification 
language is geared for a robust network intrusion detection by 
enforcing a strict type discipline via a combination of static and 
dynamic type checking. Unlike most previous approaches in net- 
work intrusion detection, our approach can easily support new 
network protocols as information relating to the protocols are 
not hard-coded into the system. Instead, we simply add suit- 
able type definitions in the specifications and define intrusion pat- 
tans  on these types. We compile these specifications into a high- 
pedormance network intrusion detection system. Important com- 
ponents of our approach include efficient algorithms for pattern- 
matching and information aggregation on sequences of network 
packets. In particular, our techniques ensure that the matching 
time is insensitive to the number of patterns characterizing differ- 
ent network intrusions, and that the aggregation operations typi- 
cally take constant time per packet. Our system participated in an 
intrusion detection evaluation organized by MIT Lincoln Labs, 
where our system demonstrated its effectiveness (96% detection 
rate on low-level network attacks) and performance (real-time de- 
tection at 500Mbps), while producing very few false positives 
(0.05 to 0.I per attack). 

1 Introduction 

Network-based attacks have been increasing in frequency and 
severity over the past several years. Consequently, many research 
efforts have focussed on network intrusion detection techniques 
aimed at identifying such attacks. This paper describes a new ap- 
proach to detect such attacks. The centerpiece of our approach 
is a domain-specific language that enables concise specification 
of network packet contents under normal as well as attack con- 
diUons. These specifications are compiled to produce a high- 
performance network intrusion detection system. The main ben- 
efits of our approach are: 

• concise, easy-to-develop intrusion specifications. Using our 
domain-specific language, we can specify network-based at- 
tacks or other anomalous behavior easily and concisely. We 
have encoded the signatures for most low-level network 
probes and attacks using a specification that is about five lines 
each. Such conciseness contributes to increased confidence in 
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the correctness of specifications, and leads to reduced devel- 
opment and debugging efforts. 

• high-speed, large-volume monitoring. A central component 
of our approach is a fast pattern matching algorithm whose 
runtime is insensitive to the number of attack signatures. This 
algorithm ~ensures that the same packet field is never exam- 
ined more than once, regardless of the number of patterns 
that refer to the field. This factor, combined with efficient 
data aggregation mechanisms, enable our system to support 
real-time performance at up to 500Mbps even when run on a 
standard PC. 

• robust and extensible. Since an attacker is likely to attempt to 
disable the intrusion detection system by any means possible, 
it is particularly important for the system to be robust under 
all traffic conditions, e.g., malformed network packets should 
not crash the system. We have developed a novel type system 
that enables compact declarations of network packet struc- 
ture and the constraints on their contents, so that these con- 
ditions can be automatically checked at compile-time and/or 
runtime without programmer involvement. Unlike previous 
approaches such as [MJ92] that hardcode network protocol 
specifics into the compiler for packet-filtering rules, our ap- 
proach achieves robustness without compromising extensibfl- 
ity, as it is very easy to specify new packet structures (and 
thus be able to deal with new protocols and network services) 
without any modifications to the compiler. 

• comprehensive evaluation of performance. This paper 
presents a comprehensive evaluation of our IDS based on a 
large set of intrusion training and test data provided by MIT 
Lincoln Labs [GLCFKWZ98]. The data covers a period of 
seven weeks, with each day's data in the range of 0.4 to 
1.2GB. The evaluation results indicate that our approach is 
very effective (e.g., detects 96% of all network protocol re- 
lated attacks in the test data), fast (approximate runtime of 15 
seconds per GB of network traffic), and uses very little mem- 
ory (less than 1MB). 

1.1 Organization of the Paper 
The rest of this paper is organized as follows. In Section 2 we de- 
scribe our specification language. We illustrate this language with 
several examples in Section 3. An overview of our implementa- 
tion is given in Section 4. Detailed study of the effectiveness 
and performance of our system are presented in Sections 5 and 6. 
Comparison with related work is presented in Section 7. We then 
conclude the paper with Section 8. 

2 Specification Language 
Intrusion specifications consist of variable and type declarations, 
followed by a list of rules. The rules are of the form pat  --> 
action, where pa t  captures a pattern on sequences of network 
packets, and action denotes the actions to be taken when we have 
a match for pat .  Each of these components of the language are 
described in more detail below. We confine these descriptions to 
features that are unique to our language. 



2.1 Declarations 
The declarations consist of type and variable declarations. Types 
may be primitive or user-defined. Primitive data types in the lan- 
guage include bool, bit, byte, short, int, long, float, 
and string. For integral types, both signed and unsigned ver- 
sions are supported. The compound types supported include 
event types (used to capture transmission or reception of pack- 
ets or other events ), packet types (used to capture the structure 
and content of network packets), lists, arrays and tuples. Below, 
we describe the event and packet types that are unique to our lan- 
guage. 

2.1.1 Events 
Events may be primitive or user-defined. Primitive events are 
generated by external systems and constitute the inl~t to our de- 
tection system. Primitive event declarations are of the form 

event even tName(parame terDee l s )  

where parameterDeels  is a list of declarations specifying the 
types of the parameters to the event even tName .  In a system 
with a single network interface, we may have just two events (say, 
t x  and rx) ,  corresponding to the transmission and reception of 
packets on this interface. On systems with multiple interfaces, 
we may still have the two event types, but have then take an addi- 
tional argument that specifies the interface, e.g., 

event rx(int deviceId, ether_hdr p) 

In addition to capturing reception or transmission of raw pack- 
ets, events may provide higher level information as well. For 
instance, the declaration 

event telnetConn (elient, server, username) 

may denote an event that is generated by a teinet server on com- 
pletmn of a teinet connection. Similarly, additional events may be 
used to describe information available from intermediate protocol 
layers, such as packet contents after IP fragment assembly. 

User-defined events am abstract events that correspond to 
the occurrence of (potentially complex) sequences of primitive 
events. They take the form 

e v e n t  even tName(params)  = pat  

where pat is an event pattern described in Section 2.2. All of the 
variables in params  must appear in pat.  

Sunilar to naming event patterns, our language also permits 
naming of arbitrary expressions. Named expressions are defined 
using the syntax 

expr  N ame(params  ) = expr 

where expr is an expression over the variables in params.  

2.I.2 Packets 
An obvious way to access the contents of a network packet is to 
treat it as a sequence of bytes. Then, a reference to the proto- 
col field of an Ethernet header in an Ethevaet packet in buffer 
p may be expressed using C-like syntax as (short)p[12]. 
Drawbacks of the byte sequence approach are that the type infor- 
mation for each field is lost and type casting is needed for most 
data references. Type-unsafety leads to several problems. For 
instance, a simple programming bug may cause access using an 
offset that is outside the packet boundaries which may cause a 
memory protection fault. Or, another simple programming bug 
using explicit type casting, such as ( £ n t  ) p [ 15 ] ,  may lead to a 
memory-related error on architectures that require integers to be 

aligned on a four or eight byte boundary. Semantic errors may 
arise even more frequently than access errors, since we may ac- 
cess an offset believing that it  contains certain iaformation, trot 
in fact, the packet may be of a totally different type and contain 
completely different information. Language features that min- 
imD¢ the likelihood of these common errors are needed, since 
errors such as those mentioned above can crash the intrusion de- 
tection system, which may in turn bring down the entire system 
or leave it open to attacks. 

Type systems used in most imperative, object-oriented or 
declarative programming languages are not sufficiently expres- 
sive to model network packets. In particular, a type system for 
network packets needs to deal with the following problems: 

s the compiler or nmtime system for thelanguage does not have 
the freedom to choose a runtime representation; rather, the 
representations are prespecified as part of protocol standards 

• the complete type of a network packet can be determined only 
at nmtime, so type checking cannot be completed at compile- 
time 

One way to deal with these problems is to hand-craft a type 
checker that is developed explicitly for a prespecified set of net- 
work protocols. This approach, used in BPF [MJ92] hard-codes 
the structure of packets for the prespecified protocols into the 
compiler, thereby requiring a redesign of the compiler to accom- 
modate protocols that axe not already built into the compiler, e.g., 
ATM, SNMP, and IPv6. We have developed an alternative ap- 
proach that is more extensible. It is based on a flexible and ex- 
pressive type system that can capture complex packet structures, 
while providing the capabilities to dynamically identify packet 
types at runtime and perform all relevant type checks before the 
packet fields are accessed. 

We begin the description of packet types with a simple exam- 
ple of the type declaration for an Ethernet header. We use syntax 
that is similar to that of the C-language. 

ETH_LEN = 6 
ether_hdr { 

byte e dst[ETH_LEN] ; /*Ethernet destination*/ 
byte e_src [ETH_LEN] ; /*and source addresses*/ 
short d_type; /*protocol of carried packet*/ 

} 

To capture the nested s~u~me of protocol heade~, we employ 
a nodon of mhcd~mce. For instance, an IP head= can be con- 
sidered as a sub~pe of ether.hdr with extra fields to store TP 
protocol infommfion. 

ip hdr: ether hdr { 
bit version[4]; /* ip version */ 
bit ihl[4] ; /* header length */ 
byte tos; /* type of service */ 
unsigned short tot_len; /* total length */ 
unsigned short id; /* Id for IP packet */ 
bit flag[3]; /* Various flags */ 
bit frag_of fset [ 13 ] ; 
byte t ime_tc i ire; 
byte protocol; /* high-level protocol */ 
unsigned short checksum; 
unsigned int saddr, daddr; 
/* Source and destintion IP addresses */ 

) 

Similarly, a TCP header inherits all of the data members from 
IP header and Ethernet header. However, simple inheritance by 
itself is not powerful or flexible enough to satisfy our needs. In 
particular, the structure describing a lower layer protocol data unit 
(PDU) typically has a field identifying the higher layer data that 
is carried over the lower layer protocol. For instance, the field 
e _ t y p e  specifies whether the upper layer protocol is IP, ARE or 



some other protocol. To capture such conditions, we augment in- 
heritance with constraints. The structure for ]P and TCP headers 
with the constraint information is as follows. 

ETHER_IP = 0x0800 
ip_hdr: ether_hdr with e_type=ETHER_IP { 

... /* all fields same as beore */ 
) 
IP_TCP = 0x0006 
tcp hdr: ip_hdr with protocol=IP TCP { 

short tcp sport; /*source port */ 
short tcp dport; /*destination port */ 
int tcp seq; /*sequence number */ 
int tcp_ackseq /*acknowledge number*/ 

/*other fields, omitted here */ 
byte tcp_data [tot_len-ihl] ; 

) 

FinaRy, we need to deal with the fact ~at the ~me higher layer 
data may be carried in different lower lay= protocols. For this 
purpose, we develop a notion of disjunctive inheritance as fol- 
lows. To capture the fact that ]P may be carried within either an 
Ethernet or a token ring packet, we modify the constraint associ- 
ated with ± p h d r  into: 

(ether_hdr with e_type=ETHER_IP) or 
(tr_hdr with tr_type=TOKRING_IP) 

It is instructive to compare disjunctive inheritance with traditional 
notions of single and multiple inheritance. In single inher/tance, 
a derived class inherits properties fiom exactly one base class. 
In multiple inheritance, a derived class inherits the properties of 
every one of the (several) base classes. In contrast, disjunctive 
inheritance asserts that the derived class inherits properties from 
exactly one of many base classes. Viewed alternatively, multi- 
ple inheritance would correspond to a conjunction of constraints, 
whereas disjunctive inheritance corresponds to an exclusive-or 
ol~ration, t 

The seanantics of the constraints is that they must hold before 
fields corresponding to a derived type are accessed. In particu- 
lar, note that at compile time, we will not know the actual type 
of a packet received on a network interface, except for the lowest 
layer protocol. For instance, all packets received on an Ether- 
net interface must have the head= given by e the r_hdr, but we 
do not know whether they carry an ARP or IP packet. To en- 
sure type safety, the constraint associated with the ip_hdr must 
be checked (at runtime) before accessing the ]P-relevant fields. 
More generally, before a field in a structure of a particular type T 
is accessed, all constraints associated with all of the base types of 
T need to be checked. 

2.2 Patterns 
Patterns on packet sequences are used to specify normal network 
traffic as well as intrusions. The simplest pattern captures the oc- 
cm'rence of a single event, and is of the form e ( z , ,  ..., zn) lcond,  
where e denotes an event (typically the reception or transmis- 
sion of a packet on a network interface) and z , ,  ...,z,~ denote 
the event arguments (typically the packet content), eond denotes 
a boolean-valued expression involving z l ,  ...,:on and possibly 
other variables. It may contain standard arithmetic, comparison 
and logical operations, and make use of external functions pro- 
vided by the runtime environment. Patterns denoting the occur- 
rence of several events can be combined using the [[ operator to 
denote the occurrence of one of these events. We can use the 
negation operator ! to denote nonoccurrence of events. The term 

1From the point of view of describing packet strectm~s, there seems to be little 
need for supporting multiple inheritance, as protocol layering typically ensures that 
a single PDU of a lower layer protocol can'ks a packet con~sponding to exactly one 
higher layer protocol. 

primitive pattern denotes a pattern obtained using the operator [[ 
and possibly containing a single negation operator at the outer- 
most level. Two examples of primitive patterns are: 

rx (p) I (P. daddr=129.186.44.33 ) && (p. tcp_dport=80 ) 
! (rx(p) [p.protocol in KNOWbLPROTOCOLS II 

tx (p) Ip.protocol in KNOWN_PROTOCOLS) 

The first pattern captures a TCP packet addressed to port 
80 on the host with ]P address 129.186.44.33. The second pat- 
tern captures any transmitted or received packet that is a non-IP 
packet, or has the protocol field in the ]p-header set to a value 
different from those contained in the list KNO~_PROTOCOLS. 

To capture sequencing or timing relationships among events, 
we use several operators to compose primitive patterns into com- 
plex patterns. The basic composition operators are: 

• Sequential composition: p1;P2 denotes pattern P, immedi- 
ately followed by pattern p2. 

• Alternation: px lip2 denotes the occurrence of either pl or P2. 

• Repetition: p ,  denotes zero or more repetitions of the pattern 
p. 

• Real-time constraints: p within [t,,~2] denotes the occur- 
rence of events corresponding to pattern p occurring over a 
time period ~1 _~ t _< ~2. p over t is a shorthand for p within 
[t, o¢], while p within t is a shorthand for p within [0, t]. 

Note that most of these operators are similar to those used in regu- 
lar expressions - -  the only difference is that we are trying to cap- 
ture patterns on sequences of events with arguments, whereas reg- 
ular expressions capture patterns on sequences of symbols. For 
this reason, we call our pattern language as regular expressions 
over events (gEE). 

To avoid excessive use of parenthesis, we define the following 
associativity and precedence for the sequencing operators. The 
operators [[ and ";" associate to the left. The operator ! has the 
highest precedence, " ."  has the next lower precedence, ";" has 
the next lower precedence and II has the lowest precedence. As 
a convenient shorthand, we use the notation Pl..p2 to stand for 
pl; (! (P* liP2)) *; p2, i.e., occm'rence of pl  followed by P2 without 
intervening occurrences of either pattern. Since we only permit 
negation of primitive patterns, the ".." operator is also applicable 
only for primitive patterns. To illustrate general patterns, con- 
sider: 

rx (pl) ; tx (p2) * ; rx (p3) I (p3. daddr=pl, daddr) 

which denotes a sequence of two inbound ]p-packets addressed 
to the same host with zero or more outbound packets in between. 
We will look at additional examples in the subsequent sections. 

2.3 Data Aggregation Operations 
In order to identify network attacks, it is often necessary to collect 
and aggregate information across many network packets, and act 
on the basis of this information. This operation needs to be more 
sensitive to recently received packets. Our language supports two 
principal abstractions for such aggregation, namely, counters and 
tables. We describe these abstractions below. 

2.3.1 Counters 
Counters keep track of the number of times a partioular event 
pattern occurs. They are characterized by 

• an aging function that assigns lower weights to events based 
on how far in the past they occurred 

• higher and lower thresholds for the counter value 
• high and low limit functions that are invoked when the 

counter value exceeds or falls below the high and low thresh- 
olds respectively 
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Desirable properties of a counter abstraction are that (a) it use 
constant space, and (b) the increment and decrement operations 
be performed in constant time. With arbitrary choice of aging 
functions, we cannot hope to satisfy these propet~es. For in- 
stance, suppose that we want the counter to weight event oc- 
currences in a manner inversely proportional to how far in the 
past they ocomv, d. Let to, ..., tn denote all of the times when the 
counter was incremented, with to _< .--  _< tn. Then we end up 
with an equation such as the following one for the counter value 
at t imer > tn: 

C(t) = ~ i / ( i  + k • (t - t,)) 
t = 0  

Given the value of C(t) and that another increment operation is 
invoked at time t ' ,  there is no apparent way to compute C ( f )  
short of reevaluating the above equation. Clearly, a reevalua- 
tion requires us to use O(N) storage and O(N) time where N 
is the number of occurrences of the increment operation in the 
past. Consequently, we focm on aging fancfious that can be im- 
plemented efficiently. 

Our choice for aging function uses exponential weighting. In 
addition, since we may not be interested in occurrences of an 
event more than T units of time in the past, we may want to ig- 
nore such events. This leads us to the following equation for the 
value of the counter at time t, where m is smallest number such 
that (t - t~ )  < T. 

rb 

C(t) = ~ a (t'-t) 

While there is no apparent way to compute C(t) incrementally 
m this case either, we can use approximations. In particular, we 
divide the interval T into k windows of size T/k  each. For each 
window, we maintain two quantities Ca and T~ that correspond 
respectively to the contribution of the window to the total count 
and the ending period of the window, i.e., 

f~2 

C~ = E 
a(ts--T~) 

where n l ,  .., n2 correspond to all occurrences of the increment 
operation within the time window j .  Now, C(t) can be computed 
using 

k 

C(t) = ~ a (T~-o • C, 

3=1 

which takes only O(k) time. Choosing a smatl k makes this op- 
eration fast. at the expense of losing some accuracy. In practice, 
a choice of k = 4 seems to work well enough. 

The syntax for specifying counters is as fonows: 

counter eounterName(a, T, k, h, I, f~, fi) 
where a, T and k have the meanings described above. The 
high and low thresholds are given by h and 1, and the cor- 
responding functions to be invoked are given by fh and ft. 
These counters rapport operatious to increment, decrement or re- 
set the counter, invoked using the syntax eounterName.ineO, 
counter Name.decO and counter N ame.clear O. The first two 
functions take an optional parameter that allows incrementing or 
decrementing by a number other than 1. 

'typically, the functions fh and ft print something to a log 
file or generate an event that is to be processed by a higher level 
system. To avoid repetitive generation of the same message, we 
incorporate "hysteresis" into the process of invoking the threshold 
functions. In particular, fh is invoked the first time the counter 
value crosses h after being below L Subsequent crossings of h do 
not remit in invocation of fh unless the counter value goes below 
I. A similar condition applies to the invocation of ft. 

2.:?.2 Tables 
Tables are used to keep track of co,ants of many events simultane- 
ously. They are similar to the histograms proposed in [Rannm~7], 
but generalize it in the following ways: information stored in the 
table can be indexed using arbitrary types, "stale" entries in the 
table are automatically purged, and prespeeified functions can be 
automatically invoked when the number of entries in the table go 
above or fall below specified thresholds. Purging stale enUies is 
particularly important, as it enables us to re~nember information 
relevant for detecting attacks while using only a small amount of 
memory. 

Each entry in a table is characterized by: 
• keyType: type of the key using which the entry will be ac- 

cessed from the table 
• dataType: type of additional data stored in the entry 
• a counter associated with the entry, characterized by 

a, T, k, h, 1, fh and fl  as before 
In addition, the following parameters are shared by all entries in 
a table: 

• N :  the maximum number of entries tbat can be stored in the 
table 

• fd, f f :  f u n c t i o n s  to  b e  i n v o k e d  when an entry is deleted from 
the table (fd) and when the table gets full (fy) 

When the number of entries in the table reaches the maximum 
number permitted, the entries associated with lowest counts are 
deleted from the table. This operation has the effect of retain- 
ing entries that have been accessed more often. The a~ng aspect 
of the counters ensures that among the entries that have been ac- 
cessed the same number of times, those that have been accessed 
more recently have higher counts than those accessed earlier. 

Rather than identifying and deleting only the entries with 
lowest counts, which may remit in repeated invocation of this 
deletion operation, we prefer to select a fraction f and delete 
k = r f  • N] entries with the lowest counts. This approach 
ensures that the deletion operation is invoked at most once ev- 
ery k = 0 ( N )  increment operations. Moreover, note that we can 
identify the lowest k entries in 0 ( N )  expected time 2. This means 
that the (expected) amortized cost of the deletion operation is just 
0(1) .  

The syntax for declaration of tables is as follows. Suitable 
defaults are used for unspecified arguments. The default for a is 
1, while the default for k is 4. 

Table tn(kt, dr, N, a, T, k, h, l, fh, fl, fd, f / )  
where tn, kt and dt denote the table name, key type and data type 
for the entries in the table. 

Tables may optionally be initialized with certain enlries. We 
refer to these entries as static entries to distinguish them from 
entries inserted dynamically in the table in response to receiving 
certain packets. Counts associated with static entries are main- 
tained as with dynamically insetted entries, but static entries are 
never deleted from the table. 

3 Examples 
3.1 V e r y  S m a l l  I P  F r a g m e n t s  
We begin with a simple example to identify unusual network 
packets that can often be used to launch attacks. For instance, 
very short IP fragments that are smaller than TCP headers can 
be used to bypass packet-filtering firewalls. We can detect such 
packets using: 

2A stand*rd alb~ntlun for accompl /~ tg  this is based on the quicksoit alsofithm 
- -  the difference being that instead of Opemliag lecursively on both halves obtained 
aner partitloning, the modified algofiflnn confines itself to the half that holds the kth 
smallest element 

l l  



MY NET = 129.186.44.0 
MY NET_MASK = 255.255.255.0 
my net_addr(a) = ((a&MY_NET_MASK)=MY_NET) 
is_frag(p) = (p.more_frags) l l(P.frag offset!=0) 

Table tcpFrag ( 
unsigned int, /*key is IP address, no data*/ 
100, 30, /*size i00, time window 30 sec*/ 
1, 0, /* hi, lo thresholds */ 
tcpFragBegin, tcpFragEnd) /*threshold fns */ 

rx(p) ]my_net_addr(p.daddr) && 
is_frag (p) && p.protocol=IP_TCP && 
p. tot_len < 48 -> tcpFrag.inc (p.saddr) 

The functions tcpFragBegin and tcpFragEnd write 
records to a log file. They both take an argument that is the value 
of the key field corresponding to the table entry for which the 
action is being executed. 

The threshold values in the example make attack detection 
to be very deterministic: an attack is recognized even ff a single 
packet matching the criteria is received. The reasons for using 
a table in such a case (as opposed to directly invoking a func- 
tion that generates an attack report) are as follows. First, we are 
able to distinguish among packets received with different source 
addresses and treat them as separate attacks. Second, the attack- 
ing host may generate a large number of fragmented packets that 
match this criteria. Rather than generating many attack messages, 
we may generate just two messages that indicate the beglnni~g 
and end of the attack. 

3.2 TCP SYN-Flood Attack 
SYN-flood attack, otherwise known as neptune attack, involves 
sending a TCP connection initiation packet to a victim host with 
a nonexistent source address. The victim host sends back a SYN- 
ACK packet, but since the source address of the first packet is 
non-existent, the victim does not receive the ACK packet to com- 
plete the connection. As a result, the coune~ion remains in a 
half-established state until a timeout occurs after a period of more 
than a minute. Since implementations of TCP limit the number 
of such half-open connections to a small number, the ability of 
the victim host to accept further TCP connections on a socket can 
be effectively eliminated by an attacker that sends in such attack 
packets, even at a relatively slow speed. We detect this attack 
using the following set of rules: 

same_session(p, q) = 
p. daddr=q, saddr && p. tcp dport=q, tcp_sport && 
p. saddr=q, daddr && p. tcp_sport=q, tcp_dport 

event tcp_syn (p) = 
rx(p) I my net_addr(p.daddr) && 

p.tcp_syn && !p.tcp_ack 
event tcp_synack{p, q) = 
tx(q) I same_session(p,q) && q.tcp_syn && 
q. tcp_ack && p. tcp_seqnum+l = q. tcp acknum 

event tcp ack(q, r) = 
rx(r)] same session(q,r) && !r.tcp_syn && 
r.tcp_ack && q.tcp_seqn%un+l = r.tcp acknum 

Table neptune ( 
(unsigned int, unsigned short) 
/*key: (IP address,port) pair, no data field*/ 
i000, 120, /*size i000, window 120 seconds */ 
4, i, neptuneBegin, neptuneEnd 
/* thresholds and associated functions*/) 

(tcp_syn (pl) . . tcp_synack (pl, p2 ) ) ; 
(('tcp_ack(p2,p3))* over 60) -> 

neptune, inc ( (pl. daddr, pl. tcp_dport) ) 

Each time a TCP SYN packet is received by a victim host (which 
may be any host within the network being monitored for intru- 

sion), and a subsequent SYN-ACK packet generated by the vic- 
tim host, this pattern monitors for the receipt of an ACK packet 
signaling the completion of the 3-way handshake. If this does not 
happen within sixty seconds, then the n e p t u n e  table is incre- 
mented. If  the increment operation is invoked sufficiently many 
times over a short period (e.g., four times within 120 seconds) 
then the n e p t u n e B e g i n  function would be invoked, which 
may in turn generate an alarm or record a message in a log file. 

To avoid false alarms due to connection attempts with a host 
that may be down or temporarily disabled for other reasons, the 
neptune pattern counts only those TCP connection attempts for 
which the victim responded with a SYN-ACK packet. If alter- 
native means to verify the health of the victim host were avail- 
able, then we may count all TCP connection attempts that do not 
progress within sixty seconds or so. 

For simplicity, the above pattern does not account for the fact 
that TCP connection attempts may be aborted in the middle, e.g., 
on receiving the FIN or RST packets. They can be dealt with by 
incorporating such packets into the above pattern. 

3.3 Teardrop Attack 
The teardrop attack involves fragmented IP packets that overhp. 
The following pattern captures any such overlap, without flagging 
those cases where a fragment is simply duplicated) 

frag_begin(p) = p.frag_offset*8 
frag_end(p) = frag_begin(p) +p.tot_len-20 
same _l~kt (p, q ) = 
p.daddr=q.daddr && p.saddr=q.saddr && p.id=q.id 

event overlapping_frag (pl,p2) = 
rx{p2) I same_pkt(pl,p2) && 

frag_begin (p2) < frag_end(pl) && 
frag_begin Ipl) < frag_end(p2 ) && 
! ( frag_begin (pl) =frag_begin (p2) && 

frag_end (pl) =frag_end (p2) ) 

(rx (pl) ] is_frag (pl) ; (rx I tx) * ; 
overlapping_frag (pl,p2)) within 60 -> . . . 

The pattern matches any sequence of packets that spans a pe- 
riod less than sixty seconds (one may choose a larger or smaller 
time frame), begins and ends with fragments of the same IP 
packet, and these fragments overlap partially. 

4 Implementation 
Our implementation consists of a compiler and a runtime system. 
The compiler is responsible for translating the intrusion speci- 
fications into C++ code. The aspects of compilation unique to 
our system include type-checking for packet data types and the 
compilation of pattern-matching. The C++ code produced by our 
compiler is compiled by a C++ compiler and linked with the run- 
time system to produce our IDS. 

4.1 Type-checking for Packet Types 
Type check/ng tasks that are specific to packet types involve name 
resolution and constraint enforcement. Hame resolution refers to 
the problem of identifTing the entity referred by an expression 
such as " a .  13". Name resolution is complicated by the fact that 
in an expression of the form a .  13, we may not know the exact type 
of a, but only the base class to which a belongs. To illustrate the 
problem, suppose that we have declarations of the form: 

event ethRx (ether_hdr p) 
event tokRx(tr_hdr p) 

3Not all overlaps couespend to teardcop attacks, bet we used this pa.em siace 
it is simpler than the one that would permit legitimate fiagment overlaps, and since 
overlapping IP fragments never appeared in the envhvnments where our IDS w a s  

tested. 
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The intuition here is that we associate an event type to denote 
packet reception on each type of network interface. Reception of 
a packet will result in the generation of this event, with the packet 
contents passed as a parameter to the event. Now consider the 
rule:  

e t h R x  (13) I p . t o t - l e n < 2 0  && 1 3 . t c p _ s p o r t = 8 0  - >  . . .  

At compile lime, based on the declaration of the event e thRx,  we 
only know that the type of p is e the r . . . hd r .  With this informa- 
tion, ff we attempt to resolve p .  t o t _ l  en,  there will be an error, 
since the e t h e r _ h d r  contains no such field. Reporting such an 
error is clearly not the desired result, so we extend the name res- 
olution process so that fl uses the field name information to infer 
the runtime type of p. Specifically, when we see an expression 
of the form a .b, we search for the field b in the (declared) type 
of a and all its subtypes. Using this process on the expression 
p .  t o t _ l e n ,  we can infer that the type of p is ip_hdr .  On en- 
countering the expression p. tcp_sport, we will further refine 
the type of p to be a tcp_hdr. When the t y p e  of p cannot be 
determined uniquely using this process, the type checker will re- 
turn an error. This would happen only when the declared type of 
T is such that two (or more) descendent classes of T use a field 
with the same name. To disambiguate such cases, the event argu- 
ments can be further qtudified to indicate the runtime type of an 
argument: 

e t h R x ( t c p _ ~ d r  p )  J p . t o t _ l e n < 2 0  . . .  

Finally, although a pattern may assume that packets being pro- 
cessed by that pattern are of a certain type, we need to verify 
this fact at runtime. More generally, before accessing a field f 
in a packet, we need to check all constraints associated with the 
type T containing f and all its ancestor types. For instance, in 
the above pattern, before we access the field p .  t o t _ l e n ,  which 
is a field in the class i p _ h d r ,  we need to verify the constraint 
p .  e_tyt3e  = ETHER_IP associated with this type. As part of 
type checking, we explicitly add these constraints to the event pat- 
terns. We also introduce checks to ensure that the packet length 
is large enough that all offset accesses fall within the packet. 

To ensure that the preconditions are indeed checked at run- 
time before accessing a particular field, the ordering among the 
newly introduced conditions and the original conditions in the 
pattern have to be maintained. We do this by introducing a new 
ordered conjunction operation &&& as follows. The semantics of 
ordered conjunction a &&& b is that the condition a needs to be 
checked first, and only if it is true, b will be checked 4. The result 
of applying these type-checking operations on the above pattern 
is: 

ethRx (p) [ length (p) >=offset (p. tcp_data) &&& 
(p.e_type=ETHER_IP &&& p.tot_len<20) && 
(p.e_type=ETHER IP &&& p.protocol=IP_TCP 

&&& p.tcp_sport = 80) -> ... 

Note that the same constraint may appear muitiple times in the 
pattern at tins point, but later stages of the compiler will ensure 
that no constraint is checked more than once. 

In the presence of disjunctions in the constraint, such 
as tcp_hdr: ether_hdr with e_type=ETHER_IP or 

tr_hdr with tr_type=TOKRING_IP, recall that the alter- 

natives in the condition are mutually exclusive. For instance, in 
the above example of e thRx, we will be able to determine stati- 
cally that the packet type is ether_hdr and not tr_hdr. Based 
on this, the constraint regarding tr_hdr *S not apphcable and can 
be discarded. 

4This contrasts with the semantics of &a, which does not tequlre us to order 
the tests. The mordenng permitted by &a plays an imporamt role in nnproving the 
performance of pattern-matching algodthms. 

b 

Ib(x)l¢l I ~  Mx)~ 1 ~ 

Figure 1: A NEFA and i t s~l~u~ent  DEFA 

4.2 Compilation of Pattern-Matching 
Efficient pattern-matching is key to the performance of our IDS. 
Our approach to pattern-matching is based on compiling the pat- 
terns into a kind of automaton in a manner analogous to comtfil- 
ing regular expressions into finite-state automata. We call these 
automata as extended finite-state automata (EF'SA). EFSA are 
simply standard finite state automata (FSA) that are augmented 
with a fixed number of state variables, each capable of storing 
values of a bounded size. Evexy transRion in the EFSA is asso- 
ciated with an event, an enabling condition involving the event 
argmnents and state variables, and a set of assignments to state 
variables. The final states of the EFSA may be annotated with 
actions, which, in our system, will co~respond to the response ac- 
tions given in our ruies. For a transition to be taken, the associated 
event must occur and the enabling condition must hold. When the 
transition is taken, the assignments associated with the transition 
arc performed. 

An EFSA is normally nondeterministic. The notion of ac- 
coptance by a nondeterministic EFSA (abbreviated as NEFA) is 
similar to that of an NFA. A deterministic EFSA (DEFA for short) 
is an EFSA in which at most one of the transitions is enabled in 
any state of the EFSA. A NEFA for the pattern ca(z); b*; b(z) is 
shown in Figure 1. The equivalent DEFA is also shown in the 
same figure. 

We have shown that translating a NEFA to a DEFA can result 
in an unacceptable blowup in the size of the automaton. There- 
fore we have developed a new approach that is based on translat- 
ing NEFA into what we call as quasi-deterministic extended finite 
state automata (QEFA). QEFA eliminate most of the sources of 
nondeterminism that are present in the NEFA, while still ensur- 
ing that their sizes are acceptable. A complete treatment of QEFA 
and the compilation algorithm can be found in [SU99]. 

4.3 Runtime System 
The runtime system provides support for capturing network pack- 
ets either from a network interface or from a file. The code for 
doing this is couzrently based on the Berkeley packet filter code. 
This code is used to read all network packets (either from a file 
or a network interface), leaving the actual filtering and other pro- 
cessing to the code generated by our compiler. The runtime sys- 
teem also provides the implementation of the data structures men- 
tioned earlier for performing data aggregation. 

5 Effectiveness 
Our IDS participated in a comprehensive evaluation of in- 
trusion detection systems conducted by MIT Lincoln labs 
[GLCFKWZ98]. To the best of our knowledge, this was the 
first comprehensive and comparative evaluation of intrusion de- 
tection systems to date. Participants in the evaluation included 
research groups from UC at Santa Barbara, Columbia University, 
RST Corporation, and two groups from SRI. A baseline system 
comparable to commercial intrusion detection systems was also 
included in the evaluation. It was determined that all of the sys- 
tems participating in the evaluation provided significantly better 
detection rates over the baseline system, while reducing false pos- 
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09:51:21 
09:51:21 
13:49:52 
15:08:16 
15:08:17 
15:08:18 
13:49:52 
15:08:18 
07:32:04 
07:40:15 
07:34:15 
07:40:15 
09:11:37 
09:14:52 
17:15:57 
17:16:05 
18:07:54 
18:05:55 
10:14:27 
15:30:05 
15:30:05 
15:30:07 
15:30:07 
02:03:29 

Portsweep attack began 
Portsweep attack ended 
Ping of death attack began 
UDPIP Fragment Too Small attack began 
Teardrop attack began 
Teardrop attack ended 
Ping of death attack ended 
UDPIP Fragment Too Small attack ended 
Portsweep attack began 
Portsweep attack began 
Portsweep attack ended 
Portsweep attack ended 
Neptune attack began 
Neptune attack ended 
Neptune attack began 
Portsweep attack began 
Neptune attack ended 
Portsweep attack ended 
Portsweep attack began 
UDPIP Fragment Too Small attack began 
Teardrop attack began 
Teardrop attack ended 
UDPIP Fragment Too Small attack ended 
Portsweep attack ended 

: 207.136.086.223 
: 207.136.086.223 
: 172.016.114.050 
: 172.016.113.050 
: 172.016.113.050 
: 172.016.113.050 
: 172.016.114.050 
: 172.016.113.050 
: 153.107.252.061 
: 195.073.151.050 
: 153.107.252.061 
: 195.073.151.050 
: 172.016.114.050 
: 172.016.114.050 
: 172.016.113.050 
: 166.102.114.043 
: 172.016.113.050 
: 166.102.114.043 
: 207.253.084.013 
: 172.016.113.050 
: 172.016.113.050 
: 172.016.113.050 
: 172.016.113.050 
: 207.253.084.013 

Figure 2: Sample output produced by our IDS. 

--> 172.016.114.050 
--> 172.016.114.050 

- ->  172.016.114.050 
- ->  172.016.114.050 
- ->  172.016.114.050 
--> 172.016.114.050 

--> 172.016.113.050 

--> 172.016.113.050 
--> 172.016.118.020 

--> 172.016.118.020 

itive rates by an order of magnitude or more. 
The evaluation organizers set up a dedicated network to con- 

duct a variety of attacks. Care was taken to ensure the accuracy 
of normal traffic as well. All of the network traffic was recorded 
in tepdump format and provided to the participants of the evalua- 
tion. The data provided consisted of seven weeks of training data, 
plus two weeks of test ,~ta. The topdump files were 0.4 to 1.2GB 
in length per day. 

The participants were required to tag each TCP session and 
each non-TCP packet in the tcpdump file as representing an at- 
tack or not. Optionally, a probab/lity could be assigned to indicate 
the likelihood of an attack. For TCP, entire sessions were tagged 
as opposed to individual packets. These "raw results" were then 
processed by MIT Lincoln labs to produce standardized scores for 
all the participants. Thus the results presented below have been 
independently verified [GLCFKWZ98]. Although the format of 
the raw results was verbose, the upside was that being so large 
(about 100K sessions per day), it was impossible to use manual 
approaches to cross-check the results produced by the IDS sys- 
tems before they were scored by Lincoln Labs. In addition to the 
raw results, our system is capable of producing human-friendly 
attack reports, a sample of which is shown in Figure 2. 

The attacks were classified into four categories. Of these, 
only two categories related to low-level network attacks for which 
our system is designed s. These two categories were probing and 
denial-of-service. 

Figure 3 shows the list of attacks that are currently identified 
by our system. The attacks are identified using rules that are gen- 
erally similar to the examples discussed earlier. However, in the 
process of training and debugging the system, we have found that 
the rules tend to get a bit more complicated than the examples. 
At times, we have also had to change the rules due to certain id- 
iosyncrasies or artifacts in the test data. 

Figure 4 shows the overall scores assigned to our system by 

5Attacks on higher-level softwme such as Imffer overflows, race conditions and 
velnerabiliues in setaid programs are not detected by the system described in this 
paper Thls is because it/s much hinder to piece ~oge~r low-kvel infomm~ion 
contained in wtwork pack~ts to identify these h/ghcr level at~cks. Instead, we rely 
on a &ffczent subsystem that intercepts and monitors system calls made by processes 
to identify such attacks. 

Lincoln Labs [GLCFKWZ98]. The scoring scheme assigned 
fractional credit to each attack based on the percentage of the 
attack-containing packets (or sessions) identified by the IDS be- 
ing evaluated. For instance, a port sweep may occur over hun- 
dreds or thousands of packets. Any IDS is able to identify only a 
subset of these packets as being part of aport sweep. This scoring 
procedure is not favorable for systems such as ours that empha- 
size low false positives. Such systems tend to err on the side of 
not identifying individual packets as attack-bearing, as long as 
a substantial number of packets within the attack can be tagged. 
Nevertheless, our system finished among the top two in both cate- 
gories at low false-positive rates of 0.05 to 0.1 false alarms per at- 
tack. At much higher false-positive rates, e.g., 2 to 3 false alarms 
per attack, some of the other systems start performing better than 
us. 

Figure 5 shows the scores obtained by our IDS for each kind 
of attack. Since it omits some of the higher-level probing and de- 
nial of service attacks that are not addressed by our system, the 
aggregate score shown in this table is an hnprovement over that 
given in Figure 4. This table also shows the result under a differ- 
ent scoring scheme that attempts to identify whether each an at- 
tack is completely missed by a system. If a substantial fraction of 
the attack-bearing packets (say, 50%) are detected by the system, 
then we treat the attack as having been detected. Otherwise, we 
treat the attack as having been missed. Our system demonstrated 
excellent detection capability (96%) when using this criteria. The 
only attacks missed were due to the fact that the tcpdump con- 
tained only packets arriving into the network Rein outside, while 
we had assumed that it contained all of the internal traffic as well. 
As such, the explosion in the number of packets expected by our 
system as part of a UDP loop attack was not present in the tcp- 
dump data, and hence the attack was missed by our system. 

6 Performance 

Our emphasis on efficiency of implementation paid off in terms 
of performance, as shown by the CPU and memory usage of our 
IDS for the ten days of test data as shown in Figure 6. While run- 
ning on a 450MHz Pentium H PC running RedHat Linux 5.2, our 
system can sustain intrusion detection at the rate of 15s/GB, or 
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It Attack name 
ipsw'eep 

I 
I land " 

neptune 
pod 
teardrop, nestea 
portsweep 

smurf 

UDP loop 

pin~oed 
ipspoo~as 

smurfAnt_site 
frag# 
ipversion, 
protocol 
tcpfragtoom~lt 

udpfragtoosmall 
broadcast 

u0p0amooo 
I nmap, satan, 
: saint, ~ t m  

Description 
Survefilal~e sweep perftwming port sweep or 
ping on multiple hosts 
Denial of service using TCP packet with 
the same source and destination address 
Syn flood denial of service 
Denial of service using oversized ping packets 
Overlapping IP fragments 
Sweep through many ports to determine 
available services on a single host 
iCMP echo reply flood, caused by an ICMP echo 
packet with spoofed address (of victim) sent to 
a network broadeast address 
Denial of service, created by sending UDP 
packets with source address of a simple UDP 
service and destination address of another 
Hood oficmp packets (but no smurf preeent)" 
Attempt to estabhsh a TCP connection 
with a spoofed source address 
Imennediate site for a muff  attack 
Like smuff, bet uses UDP rath~ than ICMP 
Unknown protocol or version 

TCP packet that is very small, 
yet has been fragmented at the IP level 
Similar to above, but for UDP 
Packets sent to broadcast addresses 
for simple UDP services 
unusually large volume of data for a UDP port 
surveillance tools, produce many different 
variations of pcft and ip sweeps, 
as well as attacks on higher level services 

Figure 3: Attack Repertoire 

Attack Category Number of [ False I Our Score Best score 
, Attacks positives in evaluation 

Probe 17 I 11 86% 86% 
Denim of servtce , , ,  43' 4 " 60% 65% 

Figure 4: Overall scores by category of attacks. 

equivalently, over 500Mb/seconcL (In measuring the CPU time, 
we considered only the time spent within the intrusion detection 
system, and ignored the time for reading packets Rom the tcp- 
dump file.) Its memory consumption is also low, largely the re- 
sult of our choice of data aggregation operations. The high per- 
formance is the result of our emphasis on the following aspects: 

• insensitivity of the pattern-marcher to the number of rules. 
Our IDS currently contains about 75 rules, so any pattern- 
matching approach that involves checking each of this pat- 
terns individually will be slow. By compiling the patterns 
into an automaton, we are able to identify all pattern-matches, 
while spending essentially constant time per packet that is 
independent of the number of patterns. Thus the pattern- 
matching time remains independent of the number of roles. 

• fast implementation of data aggregation operations. As de- 
scribed earlier, we have implemented the weighted counter 
and table data structures so that operations on them have an 
amortized O(1) cost per operation. As aresult, detection time 
increases only linearly (and slowly) with the number of at- 
tacks. 

We note that the time for detection does not monotonically in- 
crease with the number of roles. This is because of the fact that 
the addiUon of a new rule can reduce the frequency with which 

II Attack 
Smurf 
Teard~p 
Land 
Ping of Death 
IP Sweep 
satan 
Port Sweep 
saint 
nmap 
Neptune 
mscun 
UDP loop 

II Total 

[ Number [ Misses 
8 0 
4 0 
2 0 
5 0 
3 0 
2 0 
5 0 
2 0 
4 0 

i 7 0 
! t o 
I 2 2 
I 451 2 

I scot  II 
loo%l 
1oo~ ] 
100% 
99% 
96% 
94% 
90% 
89% 
78%", 
70% 
55% 
0% 

85~ II 

Figure 5: Scores on low-level network attacks. 

[ Week 

1 
1 
1 
1 
1 
2 
2 
2 

2 
2 

Day 

Men 
Tee 
Wed 
The 
Hi 
Men 
Tee 
Wed 
Thu 
Fri 

Data file 
size (OB) 

0.41 
0.84 
0.46 
0.76 
0.43 
1.20 
0.45 
0.54 
0.60 
0.50 

Trine3 GB Memory 
of data (sec) ] (MB) [ 

7.6 < 1 
21.4 < 1 
12.2 < 1 
21.8 < 1 
17.4 < 1 
21.4 < 1 
15.3 < 1 
8.7 < 1 

13.0 < 1 
10.6 < 1 

Figure 6: Runtime and memory usage for detection. 

an earlier rule was matching. This factor can lead to the situation 
w h ~ e  the addition of roles decreases the execution time. 

7 R e l a t e d  w o r k  

Historically, intrusion detection systems have been classified into 
two broad categories: host-based systems, which are aimed at 
protecting individual hosts and operate on the basis of informa- 
tion contained in audit logs or other similar sources of data, and 
network-based systems, which operate by monitoring network 
traffic. The system described in this paper falls in the second 
category. 

Although network intrusion detection systems 
[Heberleing0, PN97, Hochberg93, LPS99, MHL94, Paxson98, 
VK98, Ranum97] operate by inspecting IP (or lower level) 
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Figure 7: Pattern-matching time Vs number of rules. 
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Figure 8: Intrusion detection time Vs number of rules. 

packets, most of them attempt to reconstruct the higher level 
interactions between end hosts and remote users, and identify 
anomalous or attack behaviors. Based on this, they attempt 
to identify a broad class of attacks, focussing particularly on 
malicious attacks on network servers and other processes running 
on the target system. We place a different emphasis in our system 

we are particularly interested in detecting low-level attacks 
that do not target specific processes, but exploit vuinerabilities 
m the design and implementation of host operating systems 
and network protocols. Most surveillance, probing and a large 
number of denial-of-service attacks in existence fall into this cat- 
egory of low-level network attacks. This approach complements 
host-based approaches that can identify higher-level attacks by 
examining audit logs or system calls. 

A completely different approach is taken for intrusion de- 
tection in [LPS99], where techniques based on data mining are 
employed. Several previous works such as [Heberlein90] also 
employed statistical and expert-system based techniques for de- 
tecting anomalous behaviors that could be indicative of attacks. 
These techniques largely complement pattern-matching based 
schemes such as ours. In pafdcular, the benefits of our approach 
are speed, specificity and reduction of false positives. The down- 
side is that unknown attacks, hitherto not captured, may go unde- 
tecte& The anomaly detection systems are typically better at de- 
tecting unknown attacks, but their downsides include high false- 
positive rates, nonspecilic attack indicators, and need for exten- 
swe training. Combination approaches, such as those envisioned 
in EMERALD. can give us the benefits of both approaches while 
largely avoiding thek drawbacks. 

We e.artier developed a specification language for capturing 
behaviors in terms of UNIX system calls [SBS99], and also an 
algorithm for fast matching of behavioral patterns [SP99]. The 
pattern component of the language presented in this paper is the 
same as that work, but the type system and data aggregation ab- 
stractions presented in this paper are new. Moreover, the imple- 
mentation, experimentation and analysis results presented in this 
paper focus on network-based attacks, as opposed to attacks on 
processes. 

7.1 Related Work in Languages for Network 
Intrusion Detection and Packet Filtering 

The use of special-purpose languages for network intrusion de- 
tection has been studied earlier. The choices range from script- 
ing languages that make it easier to write intrusion detection 
code [Rauum97]. C-like-but-strongly-typed languages such as 
that used in Bro [Paxson98], to a pattern-matching language in 
NetSTAT [VK98]. A common feature of these languages is that 

they are based on an imperative programming paradigm, whereas 
our language is declarative. Moreover, our language permits us to 
more easily caplxwe patterns on sequences of packets, as opposed 
to other languages where patterns can characterize only individ- 
ual events. This capability, together with the data aggregation 
features provided by our language, contributes to the conciseness 
of intrusion specifications. Another important distinction of our 
approach is that our language is designed to support efficient im- 
plementations of the pattern-matching and data aggregation oper- 
ations. 

Most previous approaches for network intrusion detection (or 
packet filtering) hard-coded the details of TCP/IP packet formats 
in their implementations, whereas our language supports a type 
system to specify the structure and content of the packets. Our 
approach makes it easy to support new protocols m the effort 
involved is that of declaring the type for the packets formats cor- 
responding to the new protocol. The rest of the work, including 
dynamic type-checking to identify packet types at runtime and 
offset calculations to access specific fields, are automated by the 
compiler for our language. 

Our type system for network packets, originally described in 
[Guang98], is s'mailar topacket types that have been developed in- 
dependently in [CM99]. Their notion of type refinement is simi- 
lar to our notion of inheritance for packets in that both approaches 
make use of constraints to augment the traditional notion of inher- 
itance. This gives both approaches the ability to model layering 
of protocols. However, there are several significant differences 
as well. In particular, the approach of [CM99] affords increased 
expressive power in the following ways: 

• layering is captured in our approach purely in terms of in- 
heritance with constraints, with the contents of a higher layer 
PDU viewed as an extension of the header for the lower layer 
PDU. In contrast, [CM99] uses two distinct concepts, namely, 
refinement of a base type by which the values of certain fields 
are specified, and an overlay construct that overlays the data 
portion of the lower-layer PDU with that of the higher layer. 
The approach of [CM99] offers more power in that it can cap- 
ture protocols that use a header as well as trailer for packet 
content, while our approach trades off this power for simplic- 
ity. 

• processing of packets by protocol software can be captured 
using a becomes relation in [CM99], which maps the contents 
of packets before processing by a layer of protocol software to 
the contents after processing. For instance, a mapping could 
be provided between IP packets before and after rcassembly 
of fragments. In our approach, this mapping relation is not 
captured by the type system. 

Our approach provides the following features that are not sup- 
ported in [CM99]: 

• disjunctive inheritance that can capture the layering of a 
higher layer protocol on multiple lower layer protocols 

• capabilities for type resolution even when complete type in- 
formation is not provided (but only a base type) for a packet 

• a general purpose algorithm that avoids repetition of con- 
straint checking operations even ff they are repeated along 
an inheritance chain or within rules 

We remark that since both approaches are founded on the notion 
of inheritance and constraints, it should be easy to combine the 
features provided by the two approaches. 

8 Conclusions 
In this paper we presented a new approach for network intrusion 
detection. A key feature of our approach is a domain.specific lan- 

16 



guage for capturing patterns on normal and/or abnormal network 
packet sequences. We illustrated our language with several exam- 
pies. As shown by these examples, our language suglxa'ts concise 
and easy-to-write attack patterns. This in turn increases our con- 
fidence in attack specifications and reduces the development and 
debugging times needed for defending against new attacks. 

We have developed convenient and eXlXessive abstractions for 
aggregating data across multiple network packets. We have also 
developed efficient implementation of these abstractions. In addi- 
tion, we have developed efficient implementation of the pattern- 
matching operations needed in the language. A key feature of 
this implementation is that the pattern-matching time is insensi- 
tive to the number of rules, thus maki,g the approach scalable to 
large number of rules, and consequently, to a large number of at- 
tacks. The high performance also enables us to perform network 
intrusion detection without packet drops on high speed networks 
- sustaining detection at gigabit rates appears quite feasible. 

A contribution of this paper is a new type system for network 
packets that makes it convenient to operate on network packets, 
while also enhancing the robusmess of the systems operating on 
those packets by protecting against a variety of memory access 
and other type-related errors. Moreover, the high-level type in- 
formation makes it easier to achieve robusmess without compro- 
mising on efficiency. Finally, this approach makes our system 
easily extensible to support new network protocols. 

We presented the results of a comprehensive evaluation of our 
system by MIT Lincoln Labs [GLCFKWZ98] as part of a larger 
effort to compare current IDS. These results show that our ap- 
proach is effective and efficient for detecting low-level network 
attacks, while producing a very small number of false positives. 
In the near future, we plan to integrate the IDS described in this 
system with a second system that operates by intercepting and 
examining system calls made by processes. Together, we expect 
the system to provide robust defenses against most attacks known 
today. 
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