
An Adaptive Process Allocation Strategy for Proportional Responsiveness
Differentiation on Web Servers∗

Xiaobo Zhou Yu Cai Ganesh K. Godavari C. Edward Chow
Department of Computer Science

University of Colorado at Colorado Springs, Colorado Springs, CO 80933
{zbo, ycai, gkgodava, chow}@cs.uccs.edu

Paper number:

Abstract

There is a growing demand for provisioning of different
levels of quality of service (QoS) on Web servers to meet
changing resource availability and satisfy different client
requirements. The proportional differentiation model is get-
ting momentum because of its fairness and differentiation
predictability. It states that QoS of different traffic classes
should be kept proportional to their pre-specified differenti-
ation parameters, independent of the class loads.

In this paper, we present a processing rate allocation
scheme for providing proportional response time differen-
tiation on Web servers. A challenging issue is how to
achieve processing rates for different request classes in the
implementation. We propose a process allocation strategy,
which dynamically and adaptively changes the number of
processes allocated for handling different request classes
while ensuring the ratio of process allocations specified by
the processing rate allocation scheme. We implemented the
process allocation strategy at application level on Apache
Web servers. Experimental results showed that the process-
ing rate can be achieved by the adaptive process allocation
strategy and the Web servers can provide predictable and
controllable proportional responsive time differentiation.

1 Introduction

Clients of Web applications are different in their access
patterns, receiving devices, and service fees. There is a
growing demand for Web servers to provide different level
of Quality of Service (QoS) to meet changing system re-
source availability and satisfy different client requirements.
For example, in a Web content hosting farm, customers ex-
pect that the requests from their potential clients be serviced

∗This research work was supported in part by a NISSC AFOSR Grant
award.

with a quality proportional to their payments. In an indis-
criminate Web site, aggressive clients should be controlled
so that other clients are able to use their fair shares of the re-
sources at heavy-load periods. In an e-commerce site, cus-
tomer checkout requests are more important than catalog
browing requests of visitors and therefore should be han-
dled in a more timely manner. Evidently, providing differ-
entiated services at server side is an important issue.

The idea and concept of Differentiated Services (Diff-
Serv) was originally proposed and formulated by the Inter-
net Engineering Task Force (IETF) [6]. Its goal is to define
configurable types of packet forwarding in network core
routers, which can provide per-hop differentiated services
for large aggregates of network traffic. DiffServ has been
an active research topic in the arena of packet networks.
The proportional differentiation model [9] states that cer-
tain class performance metrics should be proportional to
their pre-specified differentiation parameters, independent
of the class loads. Due to its inherent fairness and differ-
entiation predictability, the model has been accepted as an
important relative DiffServ model and been applied in the
proportional delay differentiation (PDD) in packet schedul-
ing [9]. Many algorithms have been proposed in achieving
PDD provisioning in the networking core; see [10, 11, 16]
for representatives.

There are recent efforts on providing DiffServ from
server side [1, 2, 5, 7, 8, 15, 17, 18, 19]. In the server
side, response time is a fundamental performance metric.
Existing responsiveness differentiation strategies are mostly
based on priority scheduling in combination with admis-
sion control and content adaptation [1, 2, 5, 7, 8]. For in-
stance, the authors in [8] adopted strict priority scheduling
strategies to achieve responsive time differentiation on In-
ternet servers. The results showed that the differentiation
can be achieved with requests of higher priority classes ex-
periencing lower response time than requests of lower prior-
ity classes. However, this kind of strategies cannot control

1

the quality spacings proportionally among different classes.
They may also lead to starvation for requests in lower prior-
ity classes. Time-dependent priority scheduling algorithms
developed for PDD provisioning in packet networks can be
tailored for PDD provisioning on Web servers [15]. How-
ever, they are not applicable for response time differenti-
ation because the response time is not only dependent on
a job’s queueing delay but also on its service time, which
varies significantly depending on the requested services.

In [17, 18], we proposed processing rate allocation
strategies for server-side DiffServ provisioning in various
Web applications. We used slowdown, the ratio of a re-
quest’s queueing delay to its service time, as the perfor-
mance metric. We left a challenging implementation issue;
that is, how to achieve the processing rate for various traffic
classes on servers. In [19], the authors adopted anM/M/1
queueing model to guide node-based resource allocation for
stretch factor (a variant of slowdown) DiffServ provision-
ing in a server cluster. However, to achieve the processing
rate of classes, the node partitioning strategy still needs the
support of resource allocation on individual servers. In this
paper, we present a processing rate allocation scheme for
proportional response time differentiation. We then propose
and implement an adaptive process allocation strategy to
achieve the processing rate allocated to the request classes
on Apache Web servers.

The structure of the paper is as follows. Section 2 gives
the processing rate allocation scheme for responsive time
differentiation. Section 3 presents the design and imple-
mentation of the adaptive process allocation on Apache
Web servers. Section 4 focuses on experimental results and
performance evaluation. In Section 5, we review other re-
lated resource allocation and scheduling disciplines in the
DiffServ areas. Section 6 concludes the paper.

2 Processing Rate Allocation for Propor-
tional Responsiveness Differentiation

2.1 Differentiation Architecture

There are two types of DiffServ schemes [6]. One is
absolute DiffServ, in which each request class receives an
absolute share of resource usages. The other is relative
DiffServ, in which a class with a higher desired QoS level
(referred to as higher class) will receive better (at least no
worse) service quality than a lower class. Although abso-
lute DiffServ is desired to Internet services like audio/video
streaming applications that have hard time constraints, rel-
ative DiffServ is sufficient for soft real-time Web applica-
tions like e-Commerce transactions.

In order for a relative DiffServ scheme to be effective,
the scheme must satisfy two basic properties:predictabil-
ity and controllability. Predictability requires that higher

Figure 1. The architecture for proportional re-
sponsiveness differentiation.

classes receive better or no worse service quality than lower
classes, independent of the class load distributions. Con-
trollability requires that the scheduler contains a number of
controllable parameters that are adjustable for the control
of quality spacings among classes. An additional require-
ment on e-Commerce servers isfairness. That is, requests
from lower classes should not be over-compromised for re-
quests from higher classes. The proportional differentiation
model is important because of its inherent proportional fair-
ness property.

Figure 1 illustrates the architecture of precessing rate al-
location for proportional responsiveness differentiation on
Web servers. Incoming requests from different clients are
classified intoN (2 ≤ N) classes according to their desired
levels of QoS by the terminal router. The request classifi-
cation can be done based on clients’ profile, device, pay-
ment, etc. The requests of different classes are then routed
to different ports of a Web server. Each port is handled by
a virtual server configured with a process pool. The size of
the process pool is specified by the process allocation mod-
ule. Therefore, by runningN virtual servers configured
with different process pool sizes on the same Web server,
we want to achieve different processing rates for different
request classes and hence to provide proportional respon-
siveness differentiation on Web servers.

2.2 A Processing Rate Allocation Scheme

A proportional differentiation model ensures the quality
spacing between classi and classj to be proportional to cer-
tain pre-specified differentiation parametersδi andδj [10];
that is,

qi

qj
=

δi

δj
1 ≤ i, j ≤ N,

whereqi andqj are the QoS factor of classi and classj,
respectively. So it is up to applications and clients to select
appropriate QoS levels in terms of differentiation parame-
ters that best meets their requirements, cost, and constraints.

The proportional responsiveness differentiation model
aims to control the ratios of the average responsive time of

2

classes based on their normalized differentiation parameters
{δi, i = 1, . . . , N} (δi > 0,

∑N
i=1 δi = 1). Let Ti denote

the average response time of request classi. Specifically,
the model requires that the ratio of average responsive time
between classi andj is fixed to the ratio of the correspond-
ing differentiation parameters

Ti

Tj
=

δi

δj
1 ≤ i, j ≤ N. (1)

The differentiation predictability property requires that
higher classes receive better service, i.e., lower responsive
time. Without loss of generality, we assume that class 1 is
the ’highest class’ and set0 < δ1 < δ2 < . . . < δN .

Like others in [19], we adopt aM/M/1 FCFS queue
for modeling the traffic. Recent Internet workload mea-
surements indicate that for some Web applications a heavy-
tailed distribution is more accurate for service time distri-
butions [3, 18]. However, we note that the focus of this
paper is on adaptive process allocation for achieving differ-
ent processing rates in support of responsiveness differen-
tiation. The processing rate allocation scheme derived by
an M/M/1 queueing model can give the key insights about
the differentiation problem and the feasibility of the process
allocation strategy.

We partition the request processing rate of a Web server
into N virtual servers. Each virtual server handles requests
of one class in a FCFS manner. Letµi, 1 ≤ i ≤ N denote
the normalized request processing rate of the virtual server
i. We have

N∑
i=1

µi = 1. (2)

Assume requests of classi in Poisson process arrive at
virtual serveri in a rateλi. It follows that the traffic inten-
sity on the serverρi = λi/µi. LetTi be the average respon-
sive time of requests in classi. According to the founda-
tions of queueing theory [14], whenρi < 1 (λi < µi), we
have the expected response time as

Ti =
ρi

µi(1− ρi)
=

1
µi − λi

1 ≤ i ≤ N. (3)

For feasible rate allocation, we must ensure that the sys-
tem utilization

∑N
i=1 λi ≤ 1. That is, the total processing

requirement of theN classes of traffic is less than the Web
server’s processing capacity.

According to the definition of (3), the set of (1) in com-
bination with (2) lead to

µi = λi +
1−

∑N
i=1 λi

δi

∑N
i=1 1/δi

. (4)

From this equation, we can observe that the remaining ca-
pacity of the machine is fairly allocated to different request
classes with respect to their differentiation parameters.

It follows that the expected response time of requests of
classi, Ti, is calculated as:

Ti =
δi

∑N
i=1 1/δi

C −
∑N

i=1 λi

. (5)

From (5), we have the following three basic properties
regarding the predictability and controllability of the pro-
portional responsiveness differentiation given by the pro-
cessing rate allocation strategy:

1. Response time of a request class increases with its re-
quest arrival rate.

2. With the increase of the differentiation parameter of a
request class, its response time increases but all other
request classes have lower response times.

3. Increasing the workload (request arrival rate) of a
higher request class causes a larger increase in re-
sponse time of a request class than increasing the
workload of a lower request class.

3 Process Allocation Strategies and Imple-
mentation Issues

3.1 A Fixed Process Allocation Strategy

In a process-per-request Web server such as Apache, a
process is treated as the scheduling entity for an indepen-
dent activity. It is also the entity for the allocation of re-
sources, such as CPU cycles and memory space. Process
abstraction serves both as a protection domain and as a re-
source principal. Thus, we assume that the processing rate
of a Web server is proportional to the number of active pro-
cesses assigned to its classes.

In an Apache Web server, we can impose an upper bound
on the number of processes allocated to the process pool
for handling incoming requests. This maximum number is
usually set to be 32. To achieve the processing rate ratios
between classes, a straightforward solution is to split the 32
processes into multiple process pools. Each pool works as
a virtual server handling requests of a class in FCFS way.
Thus, we want to achieve the processing rates for different
classes. We refer to this solution asfixed process allocation
strategysince the number of total processes allocated to the
process pools is fixed.

The problem with the fixed process allocation strategy
is that not all allocated processes are active due to the
workload dynamics. For example, we consider a two-class
response time differentiation scenario. Given the arrival
rates, suppose the processing rate ratio of class 1 to class
2 (µ1 : µ2) is 3:1. According to the fixed process allocation
strategy, total 32 processes will be partitioned to 24 and 8

3

and they are allocated to the two process pools of classes 1
and 2, respectively. However, due to the workload dynam-
ics of two classes, it is likely that only 18 of 24 processes
allocated to class 1 are active while all 8 processes allocated
to class 2 are active. Thus, the real processing rate ratio of
class 1 to class 2 is 2:1, instead of 3:1. The fixed process
allocation strategy may not be able to achieve proportional
response time differentiation. We are going to show its re-
sults in Section 4.1.

3.2 An Adaptive Process Allocation Strategy

We propose an adaptive process allocation strategy. Its
objective is to dynamically and adaptively change the num-
ber of processes allocated to process pools for handling dif-
ferent classes while ensuring the ratio of process allocations
specified by the processing rate allocation scheme. The ra-
tionale is that to achieve the processing rate ratios among
classes, we have to assure that all processes allocated to the
process pools are active. If any process is idle, the strat-
egy is to decrease the number of processes allocated to the
classes proportionally. Algorithm 1 gives the details.

Algorithm 1 An Adaptive Process Allocation Algorithm.
1: initialize process multiplierm = 1;
2: while truedo
3: get the number of active processes (pi) currently allocated

to porti from Apache scoreboard; letP =
∑N

i=1 pi;
4: get the normalized process allocationsµ∗

1, µ
∗
2, · · · , µ∗

N ;
5: while P > m

∑N
i=1 µ∗

i do
6: m = m + 1;
7: while P < m

∑N
i=1 µ∗

i do
8: m = m − 1;
9: for each process, get its port numberi do

10: if pi > mµ∗
i // too many processes forked on porti

11: prohibit this process from listening new requests;
12: if pi < mµ∗

i // reduce allocations proportionally
13: m = m - 1;
14: end for
15: end while

At line 1, multiplier m is used to keep the ratio of the
number of active processes of classes to the value specified
by the allocation scheme (4). At line 4, the normalized pro-
cess allocationsµ∗

i) is the normalized integer value of the
number of processes allocated to the virtual serveri. For
example, in a two-class scenario, ifµ1/µ2 ≈ 3/1, µ∗

1 = 3
and µ∗

2 = 1. At line 6, m is increased by 1 if the total
number of active processes of all classes is greater than the
specified total number. This scenario is possible due to the
pre-forking mechanism of Apache Web servers. For exam-
ple, although the allocator initially assigns 3 and 1 processes
for listening port 1 (virtual server for handling class 1) and
port 2 (virtual server for handling class 2), respectively, the

Figure 2. The implementation of process allo-
cation strategies.

Apache server may actually have forked 10 and 4 processes
for listening the two ports respectively. Lines 6 and 8 aim
to get the desirable value ofm, which can approximate the
real allocations. Lines 9 to 13 modify the allocations to en-
sure the ratio of process allocations among the classes. Line
11 lets Apache itself kill a process when it is idle. When the
number of active processes of a virtual server is less than
the desired value, the allocator has to reduce the allocation
of all classes proportionally so as to ensure the ratios. This
is achieved by reducingm, as shown at line 13. Under the
scenario given in 3.1, the algorithm will adaptively change
the process allocation of two classes from (24, 8) to (18, 6)
so that the processing rate ratio of class 1 to class 2 is still
3:1 and all processes are active. It hasm = 6.

3.3 Implementation Issues

We implemented the process allocation strategies on
Apache Web servers and used a two-class workload to eval-
uate the impact of the allocation strategies on the propor-
tional response time differentiation. Figure 2 illustrates the
architecture of the implementation.

Two HP PCs (PIII 1 GHz, 516M RAM) installed with
Redhat 9 were used as a terminal router and a Web server,
respectively. Four HP PCs (PIII 233 MHz, 96M RAM) in-
stalled with Redhat 9 were used to generate Http requests.
We installed Apache 1.3.29 on the Web server. We modi-
fied Apache at application level to make one Apache Web
server listen to two different ports (80, 8000). The requests
of class 1 were routed to port 80 which was handled by the
process pool 1, and requests of class 2 were routed to port
8000 which was handled by the process pool 2.

We implemented the two process allocation strategies in
child main() function in httpmain.c file of Apache. The
process forking and killing mechanisms were not modified
and hence still handled by Apache itself. We expect this
application-level implementation is flexible and portable.

4

4 Performance Evaluation

4.1 Impact of the Fixed Process Allocation Strat-
egy on DiffServ Performance

In this section, we show the response time DiffServ due
to the fixed process allocation strategy. Figure 3(b) shows
the achieved average response time of class 1 and 2 under
various system load conditions. The arrival rate ratio of two
classes (λ1 : λ2) is 3:1. The differentiation weight ratio
(δ1 : δ2) is set to be 1:3. The fixed process allocation strat-
egy dynamically partitions all 32 processes into the two pro-
cess pools for class 1 and class 2 according to their arrival
rates. It can be seen that requests of class 1 always receive
lower response time than those of class 2. In this sense, the
responsive time DiffServ is achieved by the processing rate
allocation scheme.

Figure 3(a) shows the achieved response time ratio of
class 2 to class 1. When the system load is less than 60%,
the achieved ratio is far less than the expected ratio, due to
the reasons we discussed in 3.1. As the system load goes
beyond the certain value (70%), the achieved ratio is much
greater than the expected ratio. This can be explained by
the fact that the variance of interarrival distributions and
the variance of service time distributions affect the perfor-
mance of process allocation and scheduling significantly.
The figures have shown that response time DiffServ can be
achieved in the sense that the requests from higher prior-
ity classes always receive lower response time than requests
from lower priority classes. However, the fixed process al-
location strategy cannot achieve proportional response time
DiffServ because the processing rate of classes cannot be
achieved accurately due to the workload dynamics.

4.2 Impact of the Adaptive Process Allocation
Strategy on Differentiation Performance

In this section, we show the experimental results to
demonstrate that the proportional response time differen-
tiation can be achieved by the adaptive process allocation
when the system load is within a certain range. Figure 4(a)
depicts the achieved response time of classes 1 and 2 due to
the adaptive process allocation strategy under various sys-
tem load conditions. The arrival rate ratio of two classes
(λ1 : λ2) is 3:1. The differentiation weight ratio of two
classes (δ1 : δ2) is 1:3. It shows the allocation strategy can
also achieve response time differentiation. That is, requests
of class 1 always receive lower response time than requests
of class 2.

Figure 4(b) further depicts the achieved response time
ratio of class 2 to class 1. When the system load is between
40% to 80%, we can see that the proportional response time
differentiation can be achieved. The difference between the

achieved response time ratio and the expected ratio is trivial.
As we know, process abstraction serves both as a protec-
tion domain and as a resource principal in current general-
purpose operating systems. However, because an applica-
tion has no control over the consumption of resources that
the kernel consumes on behalf of the application, resource
principals do not always coincide with processes. We be-
lieve that this problem is one of the primary reasons for the
difference between the achieved ratio and the expected ra-
tio. There is a demand for new kernel-level resource man-
agement mechanisms, such asresource container, a new
operating system abstraction introduced by [4].

Figure 4(b) also shows that when the arrival rate is be-
low 30%, the expected response time ratio can still not be
achieved. This is explained that when the workload is light,
there is almost no queueing delay observed in all traffic
queues. Note that the request scheduling policy is work con-
serving. Therefore, DiffServ is not feasible under certain
light load conditions, as it was also observed in experiments
for PDD provisioning in packet networks [11, 16]. When
the system load is higher than 90%, we also find out that
the expected ratio is not achieved. This can be explained
that as the system load is close to its capacity, the impact
of the variance of incoming traffic on queueing delay dom-
inates and thus queueing delay in all traffic queues increase
significantly. This affects the controllability of the process
allocation strategy significantly.

Figure 5(a) depicts the achieved response time of classes
1 and 2 due to the adaptive process allocation strategy under
various system load conditions. We change the differenti-
ation weight ratio of two classes (δ1 : δ2) from 1:3 to 1:2.
The arrival rate ratio of two classes (λ1 : λ2) is kept to be
the same at 3:1. It shows the adaptive process allocation
strategy can also achieve response time differentiation. As
shown by Figure 5(b), the expected response time ratio can
be achieved when the system load is between 30% and 80%
and hence the proportional response time differentiation is
achieved.

To give more sensitivity analyses of the adaptive process
allocation strategy, we vary the arrival rate ratio in the fol-
lowing experiment. Class 1 consistently contributes 40% of
system load, while the traffic of class 2 increases. Figure 6
illustrates the achieved average response time of classes 1
and 2 and their ratios under various system load condi-
tions.It can be seen that the adaptive process allocation strat-
egy can achieve predictable and controllable response time
differentiation at various system load conditions. Further-
more, it can achieve the proportional response time differen-
tiation when the system load is between 50% and 80%. This
demonstrates that our proposed process allocation strategy
is effective in support of proportional responsiveness differ-
entiation on Web servers.

We performed a wide range of sensitivity analyses. We

5

(a) Achieved average response time. (b) Achieved response time ratio.

Figure 3. Two-class response time DiffServ due to the fixed process allocation (δ1 : δ2 = 1 : 3).

varied the number of classes, the arrival rate ratio of the
classes, and the differentiation weight ratio of the classes.
While we do not have space to present all of the results, we
note that we did not reach any significantly different conclu-
sions regarding to the predictability and controllability of
proportional response time differentiation achieved by the
proposed adaptive process allocation strategy.

5 Related Work

The DiffServ provisioning problem was first addressed
in the network core. The proportional differentiation
model [9] is getting momentum because of its inherent fair-
ness and differentiation predictability properties. It been ac-
cepted as an important DiffServ model and been applied
in the proportional delay differentiation (PDD) in packet
scheduling [10]. Many algorithms have been designed
to achieve the PDD provisioning in the network routers.
They can be classified into two categories: rate-based; see
BPR [10] for example, time-dependent priority based; see
WTP, PAD, and HPD [11], adaptive WTP [13, 16] for exam-
ples. Servers play an important role in end-to-end DiffServ
provisioning. Those algorithms can be tailored for request
scheduling for PDD provisioning in the server side [15].
However, the algorithms are not applicable to proportional
response time differentiation in the server side because re-
sponse time is not only dependent on a job’s queueing de-
lay but also on its service time, which varies significantly
depending on the requested services.

In the server side, there are recent efforts on priority-
based request scheduling for responsive time differentia-
tion [2, 5, 8, 12]. For example, in [2, 8], the authors
addressed strict priority scheduling strategies for control-
ling CPU utilization in Web content hosting servers. QoS
was introduced by assigning priorities to requests for dif-

ferent contents. Requests of lower priority classes were
only executed if no requests existed in any higher prior-
ity classes. The results showed that service differentiation
can be achieved but the quality spacings among different
classes cannot be guaranteed by this kind of strict priority
scheduling. Therefore, this kind of priority-based schedul-
ing schemes cannot achieve proportional response time dif-
ferentiation provisioning. In this paper, we propose a pro-
cessing rate allocation scheme to achieve the response time
differentiation. Our work is complementary to the previous
efforts.

Admission control is often used in combination with
priority-based scheduling for service differentiation provi-
sioning. For example, in [1], the authors used classical
feedback control theory to achieve overload protection, per-
formance guarantees, and service differentiation in Web
servers. The strategy was based on real-time scheduling
theory which states that response time can be guaranteed
if server utilization is maintained below a pre-computed
bound. Thus, control-theory approaches, in combination
with content adaptation strategies, were formulated to keep
server utilization at or below the bound. In [15], the
authors proposed admission control algorithms in combi-
nation with time-dependent priority scheduling for pro-
portional queueing-delay differentiation on a Web server.
Therefore, this kind of admission control itself is not suffi-
cient in PDD provisioning and is not applicable to the pro-
portional response time provisioning.

In [17, 18], we proposed processing rate allocation
schemes for proportional slowdown differentiation on var-
ious Internet application servers. In this paper, we extend
our previous work not only by proposing a rate allocation
scheme for proportional response time differentiation, but
also by designing and implementing an adaptive process al-
location strategy for achieving the processing rates.

6

(a) Achieved average response time. (b) Achieved response time ratio.

Figure 4. Two-class response time DiffServ due to the adaptive process allocation (δ1 : δ2 = 1 : 3).

(a) Achieved average response time. (b) Achieved response time ratio.

Figure 5. Two-class response time DiffServ due to the adaptive process allocation (δ1 : δ2 = 1 : 2).

(a) Achieved average response time. (b) Achieved response time ratio.

Figure 6. Two-class response time DiffServ due to the adaptive process allocation (δ1 : δ2 = 1 : 3).

7

6 Conclusions and Future Work

In this paper, we...
Future work is on improving the robustness of the adap-

tive process allocation strategy under various system load
conditions...

References

[1] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Per-
formance guarantees for Web server end-systems: a
control-theoretical approach.IEEE Trans. on Parallel
and Distributed Systems, 13(1):80–96, 2002.

[2] J. Almeida, M. Dabu, A. Manikutty, and P. Cao. Pro-
viding differentiated levels of services in Web content
hosting. InProc. ACM SIGMETRICS Workshop on
Internet Server Performance, pages 91–102, 1998.

[3] M. Arlitt, D. Krishnamurthy, and J. Rolia. Charac-
terizing the scalability of a large Web-based shopping
system.ACM Trans. on Internet Technology, 1(1):44–
69, 2001.

[4] G. Banga, P. Druschel, and J. Mogul. Resource con-
tainers: A new facility for resource management in
server systems. InProc. USENIX Symposium on Op-
erating System Design and Implementation, 1999.

[5] N. Bhatti and R. Friedrich. Web server support for
tiered services.IEEE Network, 13(5):64–71, 1999.

[6] S. Blake, D. Black, M. Carlson, E. Davies, Wang Z.,
and W. Weiss. An architecture for differentiated ser-
vices. IETF RFC 2475, 1998.

[7] S. Chandra, C. S. Ellis, and A. Vahdat. Differen-
tiated multimedia Web services using quality aware
transcoding. InProc. IEEE INFOCOM, pages 961–
968, 2000.

[8] X. Chen and P. Mohapatra. Performance evaluation of
service differentiating Internet servers.IEEE Trans.
on Computers, 51(11):1,368–1,375, 2002.

[9] C. Dovrolis and P. Ramanathan. A case for relative
differentiated services and the proportional differenti-
ation model.IEEE Network, 13(5):26–34, 1999.

[10] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Pro-
portional differentiated services: Delay differentiation
and packet scheduling. InProc. ACM SIGCOMM,
1999.

[11] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Pro-
portional differentiated services: Delay differentiation
and packet scheduling.IEEE/ACM Trans. on Net-
working, 10(1):12–26, 2002.

[12] L. Eggert and J. Heidemann. Application-level differ-
entiated services for Web servers.World Wide Web
Journal, 3(2):133–142, 1999.

[13] L. Essafi, G. Bolch, and A. Andres. An adaptive wait-
ing time priority scheduler for the proportional differ-
entiation model. InProc. of the High Performance
Computing Symposium, April 2001.

[14] L. Kleinrock. Queueing Systems, Volume II. John Wi-
ley and Sons, 1976.

[15] S. C. M. Lee, J. C. S. Lui, and D. K. Y. Yau. Admission
control and dynamic adaptation for a proportional-
delay DiffServ-enabled Web server. InProc. ACM
SIGMETRICS, 2002.

[16] M. K. H. Leung, J. C. S. Lui, and D. K. Y. Yau. Adap-
tive proportional delay differentiated services: Char-
acterization and performance evaluation.IEEE/ACM
Trans. on Networking, 9(6):908–817, 2001.

[17] X. Zhou, J. Wei, and C.-Z. Xu. Modeling and analysis
of 2D service differentiation on E-Commerce servers.
In Proc. the IEEE 24th Int’l Conf. on Distributed Com-
puting Systems (ICDCS), March 2004.

[18] X. Zhou, J. Wei, and C.-Z. Xu. Processing rate al-
location for proportional slowdown differentiation on
Internet servers. InProc. IEEE 18th Int’l Paral-
lel and Distributed Processing Symposium (IPDPS),
April 2004.

[19] H. Zhu, H. Tang, and T. Yang. Demand-driven service
differentiation for cluster-based network servers. In
Proc. IEEE INFOCOM, pages 679–688, 2001.

8

