Adaptive Process Allocation Algorithm (APA)

We can get a process allocation ratio for each port from formula (x). Now the question is how to determine the optimal number of processes allocated for each port based on the process ratio? For example, if there are two classes, the process ratio calculated is 3:1, the maximum number of processes for the server is 36, should we assign the actual number of processes as 3:1, 6:2 … or 27:9? If we assign 27:9, when the client traffic is not heavy, not all processes are busy, and the active process ratio might not be 3:1. If we assign 6:2, when the client traffic is heavy, we might waste a lot of system resources.

We propose Adaptive Process Allocation Algorithm (APA) to solve the problem. Under APA, the objective is to determine the optimal number of processes allocated for each port based on the process ratio. The rationale is that in order to maintain the active process ratio, we have to keep all allocated processes busy. Therefore we should adaptively control the number of processes allocated for each virtual server port.

- If all processes are busy, we will increase the ratio multiplier by 1, and allow apache to fork more processes accordingly.

- If any process is not busy, we will decrease the multiplier by 1, and prohibit the process from serving new requests. Apache will kill the idle process later.

The APA algorithm is given as:

Adaptive Process Allocation Algorithm (APA)

In each child process:

1. initialize process multiplier M=1;

2. while (true){ //while loop

3. get number of active processes Ti currently allocated for each port from apache scoreboard; Let T = ∑ Ti ,(i=1,…n);

4. get the process allocation ratio R1:R2…Rn ;

5.
for current process i, get its port number k;

6. mutex_lock(M)

7. while (T > M*(R1+R2+…+Rn)) { // needs to allocate more processes

8. M=M+1;}

9. while (T < M*(R1+R2+…+Rn)){ //needs to allocate less processes

10. M=M-1;}

11. if (Tk > M* Rk) { //too many active processes for port k

12. Prohibit process i from listening for new requests; }// let apache kill idle processes

13. if (Tk < M* Rk) { // needs to allocate less processes

14. M=M-1; goto 11;};

15. mutex_unlock(M);

16. }//termination of while loop

Implementation
We modify Apache 1.3.29 to make one apache server listen to two ports (80, 8000). The traffic of class 1 will be routed to port 80, and class 2 to port 8000 by admission control.

We assign two process pools to listen to the two ports, and the number of processes in each process pool is controlled by APA module. The APA module is implemented at child_main() function in http_main.c file of apache. The Process forking and killing is untouched and still handled by Apache itself.

We put the process allocation ratio and multiplier in a local text file(ratio file). The ratio and multiplier information is shared between apache processes. It is also shared by a resource management program, that will dynamically calculate the process ratio and update the ratio file. In the future work, we needs to find a better data structure.

The system implementation of adaptive process management is illustrated in Figure x (11.pdf)

