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Abstract
In this paper, we describe an effective compile-time anal-

ysis for software prefetching in Java. Previous work in soft-
ware data prefetching for pointer-based codes uses simple
compiler algorithms and does not investigate prefetching
for object-oriented language features that make compile-
time analysis difficult. We develop a new data flow anal-
ysis to detect regular accesses to linked data structures in
Java programs. We use intra and interprocedural analy-
sis to identify profitable prefetching opportunities for greedy
and jump-pointer prefetching, and we implement these tech-
niques in a compiler for Java. Our results show that both
prefetching techniques improve four of our ten programs.
The largest performance improvement is 48% with jump-
pointers, but consistent improvements are difficult to obtain.

1. Introduction

Software controlled data prefetching improves mem-
ory performance by hiding memory latency. Its goal is
to bring data into the cache before the demand access to
that data. Existing research shows the benefits of soft-
ware prefetching techniques for array-based, scientific pro-
grams [6, 21, 4, 19]. Given an array, the size of each ele-
ment, and a regular access pattern, a compiler can compute
the address of any element in the array and prefetch it.

Prefetching in pointer-based codes is difficult because
separate dynamically allocated objects are disjoint, and the
access patterns are thus less regular and predictable. Given
an object o, we know the address of objects that o refer-
ences, and we cannot prefetch other objects without fol-
lowing pointer chains. Recent pointer prefetching work
considers C programs only [16, 18, 24, 15, 28]. Object-
oriented Java programs pose additional analysis challenges
because they mostly allocate data dynamically, contain fre-
quent method invocations, and often implement loops with
recursion.

The memory penalty can be high for object-oriented pro-
grams that frequently traverse linked data structures. Fig-
ure 1 illustrates the percentage of time spent servicing mem-
ory requests in an object-oriented Java implementation of
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Figure 1. Memory penalty in compiled Java
programs

the Olden benchmark suite [7] using RSIM [22] with a cur-
rent, aggressive processor model. Memory stalls account
for 15% to 95% of the execution time in these programs;
thus, compiled Java programs suffer from the same latency
problems as imperative languages.

This paper includes a new data flow analysis for dis-
covering accesses to linked data structures. We implement
our analysis in Vortex, an optimizing compiler for object-
oriented programs [9]. We use our linked structure analy-
sis to identify opportunities for the compiler to insert pre-
fetches of objects. Our first prefetching implementation,
greedy prefetching, prefetches directly connected object(s)
during each iteration of a loop or recursive function call.
We also present an automatic, compile-time algorithm, and
implementation of jump-pointer prefetching. Jump-pointer
prefetching may hide additional latency by using an extra
pointer to prefetch objects further than a single link away.
Our algorithm uses our new analysis to identify objects to
which the compiler adds a jump-pointer field when either
a program creates or traverses a linked data structure. The
compiler generates prefetches using the jump-pointer field
when the program traverses a linked structure.

Our data flow analysis contains several interesting fea-
tures. We improve the precision of our analysis by tracking
data flow facts across stores and loads to object fields and



arrays. In our Java programs, analyzing object fields, when
combined with inlining or interprocedural analysis, is nec-
essary to discover linked structure accesses that program-
mers hide using encapsulation. Our analysis also identifies
indirect objects that are referenced by linked structures as
candidates for prefetching.

Both prefetching techniques improve four of the ten
programs in our benchmark suite. The largest run-time
improvement is 48% which occurs using jump-pointers.
Across all benchmarks, greedy and jump-pointer prefetch-
ing improve performance by a geometric mean of 4% and
10%, respectively. Even with prefetching, memory latency
is still a problem. Future work should combine other tech-
niques with prefetching to hide or eliminate latency.

We organize the rest of the paper as follows. Section 2
presents an overview of our contributions to prefetching
linked data structures. We describe our analysis for discov-
ering accesses to linked structures in Section 3. In Section 4
and Section 5, we present our implementations of greedy
and jump-pointer prefetching. We evaluate our prefetching
implementations on a set of object-oriented Java programs
in Section 6. Section 7 summarizes the related work.

2. Overview

To effectively insert prefetches, our compiler must iden-
tify regular accesses to linked data structures. We define a
new data flow analysis with intra and interprocedural com-
ponents to discover linked structure traversals in Java pro-
grams. We implement an existing compile-time technique
for prefetching linked structures, called greedy prefetch-
ing, which is able to prefetch directly connected objects in
linked data structures. We design and implement a compile-
time, jump-pointer prefetching algorithm which potentially
improves latency tolerance by prefetching further ahead in
the linked structure, and, thus, increasing the amount of
work between the prefetch and the demand request of an
object.

We implement our data flow analysis and software pre-
fetching schemes in Vortex, an optimizing compiler for
object-oriented programs [9]. Vortex is a whole program
optimizer that performs high-level optimizations targeted
to object-oriented languages such as intraprocedural class
analysis and class hierarchy analysis. Vortex implements
call graph construction algorithms and uses the call graph
to drive a general interprocedural data flow analyzer. Vortex
performs other high-level optimizations, such as inlining,
and low-level optimizations, including common subexpres-
sion elimination, copy propagation, and dead code elimina-
tion, to help produce efficient code.

3. Discovering accesses to linked structures
We identify regular traversals of a linked data structure

by a recurrent update to a pointer variable. A recurrent
update is a field assignment of the form o = o.next
that appears within a loop or recursive call, as shown
in the examples below. Each execution of the assign-
ment updates the pointer variable with a new object of
the same type, either directly or by using a temporary.
while (o != null)

o.compute();
o = o.next;

while (o != null)
o.compute();
t = o.next;
...;
o = t;

Our analysis, which we call recurrent analysis (RA),
contains an intraprocedural component and an interproce-
dural component. The intraprocedural algorithm finds re-
current pointer variables that occur in loops, and the inter-
procedural algorithm finds recurrent pointer variables that
occur due to recursive function calls. In this paper, we use
the term pointer variable to describe a variable that is de-
fined as a Java reference type.

In this section, we describe our basic intraprocedural al-
gorithm next. We follow with extensions to handle fields
and arrays that contain recurrent pointer variables, and for
indirect recurrent pointer variables. Then, we briefly de-
scribe our interprocedural analysis.

3.1. Basic intraprocedural analysis

Intraprocedural recurrent analysis discovers the field as-
signments that are recurrent due to loops. Our analysis is
similar to reaching definitions analysis combined with com-
puting definition-use chains for field references [1]. We
discover linked structure traversals using a unified, forward
data flow analysis.

We define the following sets in our data flow analysis.
Let PV be the set of pointer variables in a method, F be
the set of object fields, S be the set of statements in the
method, and RS be the recurrent status. The basic analysis
information is a set of tuples:

R PV F S RS

We define a function RA that maps program statements to
the analysis information, RA:s R, where s S.

The tuple contains the field name (F) to improve preci-
sion by reducing the number of recurrent pointer variables
that the analysis discovers. For example in Figure 2 (b),
we improve the precision of our analysis and effectiveness
of prefetching by recording that the next field causes the
recurrence and that the prev field does not.

We use the statement number (S) to properly handle the
case when we have two field assignments that occur out-
side a loop or recursive call. For example, if the sequence



class SList
int data;
SList next;
int sum()

prefetch(next);
if (next != null)
return data + next.sum();

return data;

(a) Linked list

class DList
int data;
DList next, prev;
int sum()
prefetch(next);
if (next != null)

return data + next.sum();
return data;

(b) Doubly linked list

class Tree
int data;
Tree left, right;
int sum()

prefetch(left);
prefetch(right);
int s = data;
if (left != null)

s += left.sum();
if (right != null)

s += right.sum();
return s;

(c) Binary tree

Figure 2. Examples of prefetching linked data structures

o=o.next; o=o.next is not in a looping construct, we
do not want to mark o as a recurrent pointer variable.

The recurrent status (RS) indicates when a program uses
a pointer variable to traverse a linked data structure. Let
rs RS = nr, pr, r . We order the elements of RS
such that nr pr r. We define the element values as
follows:
Not recurrent (nr). The initial value which indicates a

pointer variable is not involved in a traversal.
Possibly recurrent (pr). The first time we process a
field reference use, it is potentially recurrent.

Recurrent (r). This value indicates a pointer variable is
involved in a linked structure traversal.

The first time we analyze a loop, an object occurring on
the left hand side of a pointer field assignment becomes pr
(e.g., t = o.next). On the second iteration of the anal-
ysis, the object on the left hand side becomes r if the base
object of the field reference (i.e., o) is pr. If the base object
is nr, then t’s value remains the same.

The data flow equations for recurrent analysis (RA) are:

RA RA

RA RA KILL RA
GEN RA

Given tuples, t =(p ,f ,s ,rs ) and t =(p ,f ,s ,rs ), we
define the join operation, t t , as follows. If (p =p
f =f s =s ) then t t = (p,f,s,rs rs ). Otherwise, t

t = t , t . Given our ordering of the elements rs RS,
rs nr=rs, pr pr=pr, and rs r=r.

We define the GEN and KILL functions as follows:

GEN KILL S R R

At the initial statement, init(S), we initialize the function
RA to pv ,nr pv PV

The statements which affect the analysis include field
loads and assignments. We describe the details of our GEN
and KILL functions for each interesting program statement
below. In the following function definitions, f’ F, s’ S,
and rs’ RS.
o=p.f A field assignment at statement may create

a recurrent update when it occurs in a loop. Infor-
mally, the expression causes a recurrent update when
the value assigned to o is propagated to p, the base
object on the right hand side. The canonical example
is o = o.next in a loop with no other assignments
to o. The KILL and GEN functions for a field
assignment are:

KILL o=p.f R (o,f,i,pr) (o, ,nr)

GEN o=p.f R (o,f,i,pr) if (p, ,nr) R
(o,f,i,r) if (p,f,i,pr) R

The first time we process a field expression, we create
a tuple containing o with the pr recurrent status. If
the analysis does not reach a fixed point due to a loop,
the field assignment expression is processed again. If
there exists a tuple containing p with the recurrent sta-
tus pr, then there is no intervening assignment to p.
In this case, we create a tuple containing o with the r
recurrent status.

o=p A pointer variable assignment expression creates an
alias between p and o. For each tuple containing a
pointer variable p, we create a new tuple containing o
with the same field, statement, and recurrent status as
p. We kill the old information associated with o. The
KILL and GEN functions for an assignment are:

KILL o=p R (o,f’,s’,rs’)
GEN o=p R (o,f’,s’,rs’) (p,f’,s’,rs’) R

o=expr Any other assignment to a pointer variable kills
the analysis information for o. Our analysis sets the



recurrent status of any tuple containing o to not recur-
rent (nr). The kill and GEN functions for all
other assignments are:

KILL o=expr R (o,f’,s’,rs’)
GEN o=expr R (o, nr) (o,f’,s’,rs’) R

3.2. Storing an object into an array or field

In the previous section, we assume that the left hand side
expression is a simple object reference. We improve the
analysis by also tracking the recurrent information of ob-
jects assigned to object fields and array elements. For ex-
ample, in the following code sequence, the analysis in Sec-
tion 3.1 does not indicate that object o is recurrent because
the analysis does not propagate the recurrent information to
temp.f. This sequence occurs in Java programs that use
the Enumeration class to traverse linked lists, when in-
lining is enabled.

while (temp.f != null)
o = temp.f;
o.compute();
t = o.next;
temp.f = t;

To improve the analysis, we extend the data flow tuple
to include field references and arrays. Let PR be the set of
pointer variables, field references, and arrays. We define:

R’ PR F S RS

We also define a new analysis function, RA’:s R’.
For object fields, we associate the analysis information

with the field name and we ignore the base object. We
prepend the field name with its class name to avoid am-
biguity between fields from different classes. We can po-
tentially improve the precision by tracking the base object
which increases the analysis complexity cost. We treat ar-
rays as monolithic objects in our analysis, i.e., as an assign-
ment or use of the whole array.

We define the GEN and KILL functions to include
the same definitions as GEN and KILL with the fol-
lowing extensions:
p.f=o, a[j]=o Create data flow information for a
field or array reference. The GEN and KILL
functions are similar to a pointer variable assignment.

KILL p.f=o R’ (p.f,f’,s’,rs’)
GEN p.f=o R’ (p.f,f’,s’,rs’) (o,f’,s’,rs’) R’

KILL a[j]=o R’ (a,f’,s’,rs’)
GEN a[j]=o R’ (a,f’,s’,rs’) (o,f’,s’,rs’) R’

o=p.f, o=a[j] For any tuple containing p.f or a,
we create a new tuple containing o which includes the

field, statement, and recurrent status. The GEN and
KILL functions are:

KILL o=p.f R’ (o,f’,s’,rs’)
GEN o=p.f R’ (o,f’,s’,rs’) (p.f,f’,s’,rs’) R’

KILL o=a[j] R’ (o,f’,s’,rs’)
GEN o=a[j] R’ (o,f’,s’,rs’) (a,f’,s’,rs’) R’

p.f=expr, a[j]=expr Any other assignment to a
field or array kills the data flow information for p.f or
a. The GEN and KILL functions are:

KILL p.f=expr R’ (p.f,f’,s’,rs’)
GEN p.f=expr R’ (p.f, nr) (o,f’,s’,rs’) R’

KILL a[j]=expr R’ (a,f’,s’,rs’)
GEN a[j]=expr R’ (a, nr) (o,f’,s’,rs’) R’

3.3. Indirect recurrent pointer variables

An indirect pointer variable is a unique object that is ref-
erenced by a recurrent pointer variable, but is not recurrent
itself. An object is unique if it is referenced by at most one
other object. In contrast, an object is shared if it is refer-
enced by multiple objects. An example of an indirect re-
current pointer occurs in a traversal of a generic linked list,
where the data elements are separate objects from the list
nodes. Below, l is a recurrent pointer variable for a linked
list traversal, and both l and o are unique. In this example,
o is also an indirect recurrent pointer variable because it is
unique, and it is referenced by a recurrent pointer variable.

l
datadatadata

nextnextl

o o

l

o

next
while (l != null)

o = l.data;
o.compute();
l = l.next;

Both l and o are candidates for prefetching because each
iteration of the loop accesses a new list node and a new data
element. We do not want to prefetch shared objects because
each iteration may access the same data element which re-
sults in wasteful prefetches.

We must first classify objects as shared or unique to
compute the set of indirect recurrent pointer variables. We
use an approximation because statically classifying dynam-
ically allocated objects is not feasible. Our approximation
classifies class fields as shared or unique. For example, in
the code above, we classify the next and data fields as
unique because the fields reference a single object.

Our interprocedural, context-sensitive analysis is simi-
lar to Aldrich et al.’s shared object analysis for eliminating
unnecessary synchronization [2], and Dolby’s analysis for
finding inlinable objects [10]. We only briefly describe the
data flow analysis here.



The analysis begins by assuming that all fields are
unique. The analysis maintains a mapping between pro-
gram variables and field names. When processing an as-
signment of a variable to a field, the analysis creates an as-
sociation between the variable and the field name. The anal-
ysis removes other existing associations between the field
name and any different variable. If the variable appears on
the right hand side of multiple field store expressions, then
the analysis associates the variable with each field name.
When processing a field store, if there already exists an as-
sociation between the variable and the field, then the field is
shared.

The analysis also propagates the field information at as-
signments and field loads. At a function call, we assign the
field information associated with each actual to each for-
mal. After we process the function call, the caller updates
the analysis information with changes made in the callee by
assigning the field information associated with each formal
to each actual. We compute aliases among the objects to de-
termine if the object has previously been assigned to a field.
All fields are identified as either shared or unique at the end
of this analysis.

3.4. Interprocedural algorithm

We use an interprocedural algorithm to find linked struc-
ture traversals occurring across recursive method calls.
The algorithm is a bidirectional, context-sensitive traver-
sal of the call graph. A context-sensitive algorithm en-
ables the analysis phase to determine the fields used in
recurrent object updates across recursive function calls.
A context-insensitive algorithm cannot track the recurrent
fields from multiple call sites because the compiler ana-
lyzes each method only once. For example, in Figure 2 (c),
a context-sensitive analysis determines that this.left
and this.right are both recurrent fields in the recur-
sive method, sum. A context-insensitive analysis only an-
alyzes sum once, and will not determine that both left
and right are recurrent fields, unless the analysis is able
to determine the call sites are self-recursive.

A method definition has the form: r =
m(p ,...,p ), where p is a formal parameter,
and r is the return value. At a call site, we create a new
set of tuples, R , for the callee. We process each actual,
a ,...,a , as an assignment of the recurrent information
from the actual to the formal, p = a . At a call site, we
also add the recurrent field information to R for each of
the actual’s fields, a .f. After initializing R , we analyze
the callee method with R using the intraprocedural
analysis. Recursive calls cause the analysis to iterate until
the formals reach a fixed point.

We process a function return as an assignment of r to
the value on the left hand side of the method call by copy-
ing the analysis information from R to R . The analysis

uses the appropriate GEN and KILL function, which depends
on whether the left hand side expression is a simple object,
field reference, or array reference. Upon return we must
also update R with any tuple in R that contains a field
reference as an element of PR.

A context-sensitive interprocedural algorithm can be
quite expensive because each function may be analyzed
multiple times. Our interprocedural analysis can analyze
each function reached at each call site up to 3 times. Each
call site may invoke multiple functions due to polymorphic
function calls. We perform 0-CFA interprocedural class
analysis to reduce the number of potential functions reach-
able at each call site [27].

4. Greedy prefetching
In this section, we describe our greedy prefetching al-

gorithm which prefetches directly connected objects in re-
current accesses. Figure 2 shows simple class definitions
for a singly linked list, a doubly linked list, and a binary
tree. Each class contains a sum method which adds the el-
ements in the data structure. In the list examples, we insert
a prefetch instruction for the next object in the linked list.
We cannot prefetch objects further ahead because we do not
know the address of future objects.

Achieving the full benefits of prefetching requires that
the computation time between the prefetch and use of the
object be greater than or equal to the memory access time to
completely hide the latency. If the computation time is less
than the memory access time, the prefetch can partially hide
the latency. In the linked list examples, we only partially
hide the read latency of next if the cost of the addition
and function call is less than the cost of a memory access.
Similarly, we typically only partially hide the latency of the
prefetch of left in the binary tree example. Since we also
prefetch right, we may completely hide its latency.

The greedy prefetch algorithm consists of two parts; the
phase described in Section 3 which finds objects to prefetch,
followed by a phase which schedules the prefetch instruc-
tions. We describe the scheduling phase next.

4.1. Scheduling prefetch instructions
The scheduling phase computes which recurrent objects

to prefetch, and when to insert the prefetch instructions. The
algorithm is greedy because we do not perform any analysis
to determine if an object is already in the cache, and we try
to prefetch as much as possible.

For each recurrent object at each program point, we gen-
erate a prefetch for its recurrent fields when the object is not
null. The scheduler computes the set of non-null objects us-
ing information from the program structure. The scheduler
knows an object is not null under the following conditions:
(1) immediately after an object allocation, (2) after a com-
parison to null, (3) the base object of a field access, (4)



the this object upon entering a method, and (5) the first
parameter after a method call. For example, a loop that tra-
verses a linked list typically compares the current head ele-
ment to null at the start of the loop. In this case, the sched-
uler knows the head element is not null, and can generate a
prefetch for the recurrent field in the list.

The scheduler uses alias analysis information to gener-
ate a single prefetch for groups of aliased recurrent objects,
such as t=o.next; o=t;. In a loop, we mark both o
and t as recurrent, but we only generate a prefetch for one
of the objects. The following pseudo-code summarizes our
intraprocedural scheduling process.

Let R = RA (exit(S)); exit(S) is the last statement
For each assignment, o = expr, at statement s:

if o is not null
for each tuple (o,f,s,r) R

generate prefetch
remove (o,f,s,r) from R
for each p that is an alias of o

remove (p,f,s,r) from R

The compiler generates multiple prefetches if the size of the
object is greater than the size of a cache line. A command
line option specifies the cache line size.

The scheduling phase generates prefetches for all the in-
dividual elements of an array, if the array field is recurrent,
and the size of the array is a small, compile-time constant 1.
Computing the size of a Java array is not trivial since Java
programs allocate arrays dynamically at run time. Many
programs allocate arrays of the same type using compile-
time constants which makes it possible for the compiler to
determine the size of an array. When performing interpro-
cedural analysis, the compiler analyzes all the array alloca-
tion sites, and computes the set of constant size arrays of
the same type and size.
Interprocedural Scheduling: We must take care not to

generate redundant prefetches for recurrent objects passed
as parameters by issuing a prefetch in the caller and the
callee methods. We minimize redundant prefetches as fol-
lows. Our compiler performs a single, in-order pass over
the call graph to schedule recurrent parameters as high as
possible in the call graph. The scheduler does not issue a
prefetch of a recurrent parameter when the scheduler gener-
ates a prefetch for the parameter in a calling method.

Another source of useless prefetches in non-recursive
methods is due to method overriding. When a program
contains several implementations of a method that has a re-
current parameter, but only one of the implementations is
recursive, our analysis indicates that the parameter is recur-
rent in all the implementations. We eliminate this source of
useless prefetches by not generating a prefetch for a field

1We do not prefetch regular array accesses, e.g., while(i<N)
a[i++];, although many Java programs use arrays.
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Figure 3. Jump-pointer prefetching: Binary
tree traversal

of a recurrent parameter if the callee does not reference the
field.

5. Jump-pointer prefetching

In this section, we discuss our design and implementa-
tion of compile-time, jump-pointer prefetching. Figure 3
illustrates jump-pointer prefetching for a binary tree. Each
tree node contains a jump-pointer to a tree node two links
away. Thus, when the program accesses node 1, we issue a
prefetch for node 3. The number of links depends upon the
amount of latency we need to hide.

Jump-pointers are a flexible mechanism for linked data
structures because we can prefetch arbitrary objects and not
just directly connected objects. Jump-pointer prefetching is
potentially able to tolerate any amount of latency by vary-
ing the distance between the two objects. Greedy prefetch-
ing restricts the amount of latency tolerance by prefetching
direct links only, but does not require an additional field to
store the jump-pointer. Jump-pointer prefetching may also
reduce the number of prefetches, yet still remain effective.
In Figure 3 for example, greedy prefetching adds two pre-
fetches for each node reference, but jump-pointer prefetch-
ing adds one only. Furthermore, jump-pointer prefetching
does not prefetch null objects at the leaf nodes.

Our compiler automates jump-pointer prefetching by in-
serting code to create and update the jump-pointers as well
as inserting prefetch instructions at appropriate places in
the program. It has three main parts, (1) identify the ob-
jects to prefetch using the recurrent analysis from Section 3,
(2) schedule prefetches for the objects, and (3) generate the
code to create the jump-pointers. Step (2) uses the schedul-
ing algorithm from Section 4.1, but the prefetch code is dif-
ferent. Instead of generating a prefetch for each recurrent
field, the compiler generates a prefetch for the prefetch field,
i.e., prefetch . Step (3) is the major differ-
ence between jump-pointer and greedy prefetching, and we
describe it below.

5.1. Creating jump-pointers

The compiler creates jump-pointers when either an ob-
ject is created, e.g., using new, or when traversing a data
structure. We use a compiler option to specify the choice.



class Tree

int value;
Tree left;
Tree right;
Tree prefetch;

Tree createTree(int l)

if (l == 0) return null;
else

Tree n = new Tree();
jumpObj = jumpQueue[i];
jumpObj.prefetch = n;
jumpQueue[i++ % size] = n;
Tree left = createTree(l-1);
Tree right = createTree(l-1);
n.left = left;
n.right = right;
return n;

Figure 4. Inserting jump-pointers for a binary
tree

Generic List

Elements

1 2 3 4

A B C D

Figure 5. Indirect jump-pointer example
By default, our compiler builds jump-pointers at the object
creation site. In our current implementation, the compiler
adds only one jump-pointer field to a recurrent object. We
do not add jump-pointers when linked structures are up-
dated, unless the update occurs while traversing the linked
structure. The effectiveness of jump-pointer prefetching de-
pends on when and where the compiler creates the jump-
pointers. We discuss each choice in detail below.

Figure 4 shows the code for building jump-pointers in
a binary tree object at creation time. The circular queue,
jumpQueue, maintains a list of the last n objects allocated.
When an object allocation occurs, we create a jump-pointer
from the object at the head of jumpQueue to the new object.
Then, we insert the new object at the end of jumpQueue,
and advance the circular queue index. Currently, our com-
piler creates jump-pointers from the jumpQueue object to
the current object unless a command line option specifies
the reverse direction. We also use a circular queue when the
compiler updates the jump-pointers during a traversal.
Object Creation: Adding jump-pointers during object

creation is beneficial for data structures with regular access
patterns that do not frequently change. This choice mini-
mizes the run-time cost because the jump-pointers are cre-
ated once. Unfortunately, it is not always possible to create
effective jump-pointers at the creation site. For example,
in Figure 3, the creation phase must be preorder, beginning
with either the left or right subtree. If the programs builds
the tree bottom-up, then the jump-pointers will not be use-
ful. Another problem occurs in programs that frequently

update a linked structure containing jump-pointers because
the original jump-pointers become invalid.
Traversal: Building jump-pointers during traversals is

effective for programs that contain multiple instances of a
linked structure that a program frequently traverses and may
also update. Due to the overhead of maintaining the jump-
pointer queue, this approach is less effective when programs
do not change the linked structures, or when the traversal
patterns change, e.g., accessing a list in one direction fol-
lowed by an access in the reverse direction. An advantage
is that the code to create jump-pointers appears locally with
the prefetches, which means the compiler does not need
knowledge of the entire program.

5.2. Indirect jump-pointers

Section 3.3 discusses our analysis for discovering indi-
rect recurrent pointers. An indirect recurrent pointer vari-
able is a unique object that is referenced by a recurrent
pointer variable. We prefetch indirect pointer variables by
creating a second jump-pointer from the recurrent pointer
variable to the indirect recurrent pointer variable. We il-
lustrate indirect jump-pointers in Figure 5 which contains a
generic linked list (the rectangles) with pointers to the list
elements (the circles). If a program allocates the list objects
in order, A, B, C, and D, then we add jump-pointers as illus-
trated (1 to C, 2 to D, etc.). When the program traverses the
linked list, we schedule prefetch instructions for the list and
element jump-pointers. Greedy prefetching is unable to ef-
fectively prefetch these objects because there are no direct
links between them.

6. Experimental results
In this section, we evaluate the effectiveness of greedy

and jump-pointer prefetching. We implement our recur-
rent analysis and prefetching algorithms in the Vortex op-
timizing compiler [9]. We use Vortex to compile our Java
programs, perform object-oriented and traditional optimiza-
tions, and generate Sparc assembly code.

We evaluate our prefetching algorithms using an object-
oriented Java version of the Olden benchmark suite that our
research group wrote[7]. Other researchers use the C ver-
sion of the Olden suite to evaluate optimizations for pointer-
based programs [8, 18, 24]. Table 1 lists the benchmarks
we use in our experiments, along with characteristics about
each program. We compile the programs using JDK 1.1.6.
The lines of code (LOC) number excludes comments and
blank lines. Since our prefetching techniques do not attempt
to improve allocation and garbage collection performance,
we disable garbage collection which often increases the exe-
cution time substantially. We plan to address the interaction
between garbage collection and prefetching in future work.

We use RSIM to perform a detailed cycle by cycle simu-
lation of our programs [22]. RSIM simulates an aggressive,
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Figure 6. Prefetching performance
out-of-order processor that issues up to 4 instructions per
cycle, and has a 64 entry instruction window. The func-
tional units include 2 ALU, 2 FP, 1 branch, and 2 address
units. We use the default values for most of the parameters
except for the memory hierarchy which we list below.

L1 Cache 32KB, direct WT, split, 32B line
L2 Cache 256KB, 4-way, WB, unified, 32B line
L1 Cache Ports 2
L1/L2/Mem hit time 1/12/60 cycles
Miss Handlers (MSHR) 8 L1, 8 L2
Memory Bandwidth 32B/cycle

We have also run experiments with different cache configu-
rations. In general, changing the cache size and associativ-
ity parameters does not significantly affect the overall per-
formance results. When we increase the cache size or set as-
sociatively, our prefetching results tend to improve slightly,
until the cache grows large enough to eliminate most capac-
ity misses.

In RSIM, a prefetch instruction causes one cache line to
be brought into the L1 cache. If an object is larger than
a cache line, our compiler issues multiple prefetch instruc-
tions.
Overall results: Figure 6 shows the results of greedy (G)

and jump pointer (J) prefetching. We normalize the results
to those without prefetching (N). For jump-pointer prefetch-
ing, we use a prefetch distance of 8 objects, except for mst
which uses a distance of 2. In our programs, using a dis-
tance value greater than 8 does not improve performance
significantly. The compiler could compute this distance
based upon the number of instructions between accesses,
but we have not implemented this cost model. Jump-pointer
and greedy prefetching improve performance as much as
48% and 18%, respectively. Across all benchmarks, we see
improvements of 10% for jump-pointer and 4% for greedy
prefetching using the geometric mean.

Both prefetching techniques produce noticeable im-
provements on four of the ten programs, i.e., health, mst,
perimeter, treeadd. Either greedy or jump-pointer

0

20

40

60

80

100

health
mst

perimeter
treeadd

bh
bisort

tsp
voronoi

em3d
voronoi

Pe
rc

en
ta

ge
 o

f P
re

fe
tc

he
s

G J G J G J G J G J G J G J G J G J G J

unnec.
early

late
useful

Figure 7. Prefetch effectiveness (L1)
prefetching slightly improves performance in bh, bisort,
tsp, and voronoi. We describe each program that shows
an improvement below. Neither prefetching technique is
able to improve em3d and power because the number of
cache misses in very low in these programs so most of the
prefetches hit in the L1 cache. Our prefetching results are
similar to those reported in related work for linked struc-
tures in C programs [18, 24].

We present prefetching effectiveness and cache statistics
next. Then, we discuss the performance of the individual
programs in more detail.
Prefetching effectiveness: Figure 7 divides the dynamic

prefetches into several categories. A useful prefetch arrives
on time and is accessed. The latency of a late prefetch
is only partially hidden because a demand request occurs
while the memory system retrieves the cache line. The
cache replaces an early prefetch before the cache line is
used, or when the line is never used. An unnecessary pre-
fetch hits in the cache, or is coalesced into an MSHR. Fig-
ure 7 categorizes the L1 cache prefetches for greedy (G)
and jump-pointer (J) prefetching. Useful, late, and early
prefetches require accesses to the next level in the memory
hierarchy.

Table 2 lists the number of static and dynamic prefetches
that our benchmarks generate. The static value represents
the number of compiler generated prefetches. The dynamic
value is the number of prefetches issued at run-time. The
value in parentheses represents the number of prefetches
as a percentage of the demand reads. Finally, the third
value is the percentage increase in bus bandwidth due to
prefetching. Although bus traffic increases due to prefetch-
ing, the maximum bus utilization with and without prefetch-
ing is 46% and 25%, respectively. The dynamic prefetch-
ing counts show why prefetching is ineffective on em3d
and power; these programs do not frequently access linked
structures.
Cache statistics: Figures 8 and 9 display cache hit and

miss statistics in the L1 and L2 caches, respectively. From



Table 1. Current benchmark suite
Inst. Total BytesName Main Data Structure(s) LOC Methods Inputs

Issued Memory /Obj.
bh oct-tree, linked list 487 74 4096 bodies, 2 iters. 731 M 415 MB 28
bisort binary tree 164 14 100,000 numbers 1292 M 1.5 MB 24.1
em3d linked list 182 22 2000 nodes, 100 degree, 4 iters. 2120 M 6.5 MB 413
health quad-tree, linked list 279 36 5 levels, 500 iters. 366 M 22 MB 19.4
mst hashtable 183 26 1024 nodes 955 M 13 MB 25.9
perimeter quad-tree 242 47 4K x 4K image 188 M 3.4 MB 32
power tree 347 30 10K customers 2086 M 24 MB 32
treeadd binary tree 81 11 20 levels 168 M 24 MB 24
tsp binary tree, linked list 289 15 60,000 cities 787 M 14 MB 37
voronoi binary tree 526 70 20,000 points 848 M 35 MB 25

Table 2. Prefetch statistics

Greedy Jump
Program dynamic band. dynamic band.static

( ) (%)
static

( ) (%)
health 14 10518 (20%) 8.0 10 10204 (14%) 40.3
mst 3 2949 (8%) 9.2 3 2950 (9%) 19.9
perimeter 17 2523 (9%) 8.3 8 1001 (4%) 33.5
treeadd 2 2178 (23%) 21.1 1 845 (8%) 93.8
bh 34 5719 (4%) 23.2 3 759 (.6%) 11.9
bisort 8 7296 (31%) 19.6 4 3601 (13%) 77.2
tsp 20 12201 (20%) 46.9 18 21837 (32%) 76.9
voronoi 15 1155 (1%) 2.5 13 724 (.9%) 22.9
em3d 20 56 (.06%) 0.4 20 56 (.06%) 4.7
power 4 53 (.02%) 0.2 4 53 (0.2%) 1

bottom to top, we categorize each reference as a cache hit,
coalesce miss, capacity miss, or a conflict miss. A coalesce
miss hits in the MSHR due to a prior miss that the memory
subsystem is transferring into the cache. The cache statis-
tics mirror the overall results such that when prefetching
improves overall performance, the combined cache hit and
coalesced reference rate increases as well. In treeadd, for
example, prefetching is able to eliminate almost all capacity
and coalesce misses in the L1 cache, and also significantly
improve the L2 cache utilization.
health: Both prefetching schemes significantly im-

prove health which is not surprising considering its poor
locality. Health is the only program that builds jump-
pointers while traversing its linked structures, and con-
tains indirect recurrent pointer variables. The jump-pointers
eliminate all of the late prefetches, but we do not see larger
improvements due to the overhead of updating the jump-
pointers at traversal time. It is important that the compiler
generate the jump-pointers correctly. If the jump-pointers
are added during object creation, performance degrades by
13%.
mst: The linked structure is a hashtable. We see per-

formance improvements because the hashtable is small and
each hash entry contains several objects. Jump-pointer pre-

fetching increases the number of useful prefetches, but the
number of early prefetches also increases because the ob-
jects at the end of each list are not useful jump-pointers.
We create the jump-pointers in the reverse direction because
new elements are added to the beginning of each list. We
must limit the jump-pointer prefetch distance to see an im-
provement because each linked list is small.
perimeter: We obtain performance improvements

even though most of the prefetches hit in the L1 cache.
Adding the jump-pointer field increases the object size from
32B to 40B, so we prefetch two cache lines instead of just
one. Prefetching the extra cache line reduces the L2 hit
rate relative to the greedy prefetching results. Prefetch-
ing the extra cache line does help; if we only prefetch one
cache line, then performance only improves by 1% instead
of 5.5%.
treeadd: We see the largest performance improve-

ments for both prefetching schemes. Treeadd is a very
simple program that creates a binary tree and traverses the
tree in the same order. Figure 7 illustrates that only a small
number of useful prefetches are necessary to obtain im-
provements. Increasing the prefetch distance to 16 objects
almost eliminates the late prefetches with a small run-time
improvement.
bh,bisort,tsp,voronoi: Performance slightly

degrades in bh using greedy prefetching because our com-
piler issues too many prefetches. Bh contains an oct-tree
and each node is larger than a cache line, resulting in 16
prefetches for each node. The performance slightly im-
proves when we restrict the number of prefetches generated
for each node. Using jump-pointers reduces the number of
prefetches to 2 and results in a slight improvement. Per-
formance decreases in bisort, tsp, and voronoi using
jump-pointers because these programs either update their
linked structures or contain conflicting traversal patterns.
For example, bisort first traverses a binary tree in one di-
rection, and then traverses the tree in the opposite direction.
Obtaining further improvements in bisort is difficult be-
cause the read stall percentage is low. In tsp, the number



Table 3. Static prefetch statistics
IP Fields Intra ArrayProgram

M P (F) (I)
Inline

size
Total

health 8 5 1 5 (F) 4 (IP) 14
mst 3 3 (I) 3
perimeter 9 8 17
treeadd 2 2
bh 16 8 10 10 (F) 8 (IP) 34
bisort 4 4 8
tsp 6 14 20
voronoi 14 1 14 (I) 15
em3d 20 20 (F) 20
power 4 4
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Figure 8. L1 cache statistics
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Figure 9. L2 cache statistics
of unnecessary prefetches is high because the hit rate in this
program is high. Greedy prefetching improves voronoi
slightly even though the number of useful prefetches is low.

Analysis features Table 3 shows the features of our recur-
rent analysis that are responsible for generating static pre-
fetch instructions in our greedy prefetching scheme. We
show the contribution from interprocedural analysis (IP),
analyzing stores into fields (F), and intraprocedural analysis

only (I). The total number of greedy prefetches is IP+F+I.
Interprocedural class analysis divides the IP results into
monomorphic (M) and polymorphic (P) recursive method
calls. The Inline column shows how inlining affects our re-
current analysis. For example, in health, we generate the
five prefetches in the Field column only when inlining is
enabled and interprocedural analysis is disabled. In mst,
the compiler still generates the prefetches if we perform in-
traprocedural analysis only, and inlining is enabled. The
Array size column shows the results of our analysis for com-
puting the array sizes. Only two of the programs, health
and bh, use constant size arrays to represent n-ary trees.

Table 3 shows that both interprocedural analysis and ana-
lyzing stores into fields are important in our Java programs.
Intraprocedural analysis rarely discovers recurrent accesses
on its own. In health, most of the improvement comes
from analyzing field stores. When we disable field stores,
performance improves by less than 1% instead of 7%. In
perimeter, the prefetches in the monomorphic and poly-
morphic recursive calls contribute 2% and 4%, respectively.

7. Related work

In this section, we describe the related work on pre-
fetching linked data structures. We also describe related
compile-time analyses for identifying linked structures. We
omit prior work on array prefetching.

Luk and Mowry first developed an effective compiler
technique for software prefetching recursive data structures
in C programs [18, 17]. Their prefetching techniques in-
clude greedy prefetching, history-pointer prefetching, and
data-linearization. They show that prefetching improves
performance on programs that traverse linked data struc-
tures. Luk presents a compiler implementation of history-
pointer (jump-pointer) prefetching in his dissertation [17].
Our contributions include a new intra and interprocedural
data flow analysis for discovering objects to prefetch, and
an evaluation on a suite of Java programs. Luk and Mowry
do not perform interprocedural analysis, but they do de-
tect self-recursive calls. Our analysis works in the presence
of virtual method calls, and when data flow facts are as-
signed to object fields and arrays. We also detect indirect
recurrent pointer variables. We developed our implementa-
tion of jump-pointer prefetching simultaneously with Luk.
Other researchers present techniques for prefetching linked
structures, but they do not implement both prefetching tech-
niques in an optimizing compiler [16, 25, 5, 15, 28].

Roth and Sohi introduce several hardware and soft-
ware jump-pointer prefetching mechanisms for linked data
structures [23, 24]. They manually insert instructions to
create jump-pointer structures and issue prefetches. In
our work, the compiler automatically generates instruc-
tions to create jump-pointers and issue prefetches. Other



hardware approaches for prefetching linked structures in-
clude [13, 20, 29, 30].

Our analysis for identifying accesses to linked data struc-
tures is related to the work on identifying shapes in heap al-
located structures, called shape analysis (e.g., see [26, 12]).
A main difference is that we analyze traversal sites while
shape analysis analyzes creation sites to identify pointer re-
lationships. Our analysis requires less information since we
only discover how pointers are used instead of recording all
pointer relationships. Benedikt et al. define a logic for de-
scribing linked data structures which they briefly mention
can be used for identifying recurrent accesses [3].

The work by Hwang and Saltz on identifying def-use ex-
pressions in dynamic data structures is most closely related
to our data flow analysis [14]. They introduce the term loop
induction pointer to identify accesses to linked data struc-
tures. Their backward data flow analysis creates full inter-
procedural def-use chains, and a separate algorithm finds
the induction pointers by detecting cycles in the def-use
chains. Our forward data flow analysis maintains less infor-
mation by computing the recurrent access status of objects
rather than maintaining complete interprocedural def-use
chains. Stroutchinin et al. also prefetch simple linked lists
occurring in loops by identifying induction pointers [28].
Their prefetching technique works when list elements are
allocated contiguously in memory.

A recurrent pointer variable is similar to a loop in-
duction variable. A loop induction variable is a variable
that is incremented by a constant amount during each loop
iteration[1, 11]. Existing techniques identify induction vari-
ables by discovering cycles in the data dependence graph
and explicitly require the loop structure of the program.
The classic algorithm for finding induction variables must
first compute reaching definitions and loop invariant vari-
ables [1]. We formalize our analysis using data flow equa-
tions and we do not require a data dependence graph.

To summarize, our work has several unique contribu-
tions. We develop a novel interprocedural data flow analy-
sis for discovering linked structure traversals which we use
in our compile-time prefetching algorithms. We implement
and evaluate two different prefetching techniques for linked
data structures, greedy prefetching and jump-pointer pre-
fetching. We evaluate both of them on a suite of Java pro-
grams.

8. Conclusion and future work

In this paper, we introduce an effective data flow analy-
sis for identifying linked data structure traversals in object-
oriented programs using intra and interprocedural analysis.
We use our analysis to implement greedy and jump-pointer
prefetching in a Java compiler, and evaluate the effective-
ness of prefetching on a suite of pointer intensive, object-
oriented programs. Both prefetching techniques improve

performance in four of our ten programs. In one program,
jump-pointer prefetching improves performance by 48%,
but obtaining large improvements consistently is difficult.
One reason that prefetching is not more effective is that sev-
eral of our programs do not spend enough time accessing
linked structures. Prefetching is most effective on programs
with poor locality during linked structure traversals.

Greedy prefetching often improves the performance our
programs even in the presence of object-oriented features,
such as encapsulation, that hide accesses to underlying data
structures. As memory latency increases, greedy prefetch-
ing will become less effective in improving memory perfor-
mance. Our jump-pointer implementation has the potential
for bigger improvements than greedy prefetching, but it is
less consistent overall. Better compiler analysis is neces-
sary to improve jump-pointer prefetching. Even with pre-
fetching, our results show there is considerable room for
improving the locality of object-oriented programs.

We are currently addressing improvements to our pre-
fetching techniques and experimental methodology. We
plan to automate our jump-pointer prefetching implemen-
tation to choose the location for building the jump-pointer
links, and the distance and direction of the links. Choos-
ing the appropriate location and direction is feasible, but
consistently choosing the distance is difficult due to data
dependent data structures such as hashtables. We are devel-
oping techniques to take advantage of the garbage collec-
tor to improve prefetching. We need to change our copy-
ing garbage collector to recognize jump-pointer hints, and
update the links appropriately when copying linked struc-
tures. We are investigating the applicability of prefetching
to a wider variety of Java programs, such as the SPECjvm98
benchmark suite. We notice that the SPECjvm98 programs
frequently use arrays instead of linked data structures. We
are in the process of extending our recurrent analysis to rec-
ognize simple array access patterns, and we will prefetch
array elements and objects referenced by array elements.
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