
CS 3721: Programming Languages Lab
Lab #9: Memory layout

Memory layout Instead of drawing a pictorial graph of the memory snap-
shot, the following describes each activation record in a textual format.

Example code:
1: val x = 1;
2: fun g(z) = x+z;
3: fun h(z) =
4: let x = 2 in
5: g(z);
6: h(3);

Memory layout (runtime stack):
/* "->" means "points-to"; ":" means "has value" */
/* <global, code for g> is the closure storage for function g*/
/* <h(3) : ?> means h(3) has an undefined value at the time*/
/* <global.h(3)> means the h(3) storage allocated in the AV of global*/
==================
global : {

Control Link -> NULL;
Access Link -> NULL;
Return Address -> OS code;
Return Result Address -> OS data;
x : 1 ;
g -> <global, code for g> ;
h -> <global, code for h> ;
h(3) : ? ;

}
h(3) : {

Control Link -> global;
Access Link -> global;
Return Address -> <line after 6>;
Return Result Address -> global.h(3);
z : 3;

}

h(3)-1: {
Control Link -> h(3);
Access Link -> h(3);
x : 2 ;
g(z) : 4;

}
g(z) : {

Control Link -> h(3);



Access Link -> global;
Return Address -> <line after 5>;
Return Result Address -> h(3).g(z) ;
z : 3 ;
x+z : 4;

}

1. Draw (in the textual format) the memory layout for the following ML code
immediately before the first call to mult returns.

1: let val x = 1; val y = 2
2: in let fun compose(f, g) =
3: f(g(x));
4: fun mult(x) =
5: x*y
6: in let val x = 3 in
7: compose(mult, mult)
8: end
9: end
10: end;


