CS 3721: Programming Languages Lab
Lab #07: Assignments and loops in ML

7

ML supports variable assignments through the ”:=” operator, and only reference values
(i.e., storages associated with pointer values) can be modified. For example, if we want to
associate variable myvar with a memory storage that can be modified using assignment,
we can define myvar as the following.

- val myvar = ref 2.0;

val myvar = ref 2.0 : real ref
- myvar := 3.5;
val it = OO : unit

The following example uses a sequence of statements to modify reference storages before
returning a result.

let val a = ref 2.0; wval b = ref 3.0
in

a := la + !b;

b := la x la;

b
end;

ML also supports loops in the following syntax.
while <expression> do <expression>
The following illustrates the use of while-do loops.

val i = ref 1;
while !i <= 10 do i := 'i + 1;

Note that !i gets the value associated with variable 1.

1. Define an integer reference variable mywvar which initially has value 1; increment the
value stored in mywvar by 5; then return the value of myvar as result.

2. Define a reference variable mylist which initially has empty list as its value. Modify
mylist by prepending strings ”a” and ”b” to the list. Then, return the value of mylist
as result.



3. Define a reference variable mylist which initially has empty list as its value. Write a
loop which modifies mylist by prepending integers 1 through 50 to the list. Finally,
return the value of mylist as result.

4. Write a ML function OddSum which takes a single integer parameter x and returns
the sum of all the odd integer numbers between 1 and z. You could use the following
test cases for your code.

- 0ddSum(10);
val it = 25 : int
- 0ddSum(15);
val it = 64 : int
- 0ddSum(30) ;

val it = 225 : int

5. The following defines the factorial function recursively.
fun fact(n) = if n = 1 then 1 else n * fact(n-1);

Define a new function factl which computes the factorial of a number using the while
loop.



