
CS 3721: Programming Languages Lab
Lab #07: Assignments and loops in ML

ML supports variable assignments through the ”:=” operator, and only reference values
(i.e., storages associated with pointer values) can be modified. For example, if we want to
associate variable myvar with a memory storage that can be modified using assignment,
we can define myvar as the following.

- val myvar = ref 2.0;
val myvar = ref 2.0 : real ref
- myvar := 3.5;
val it = () : unit

The following example uses a sequence of statements to modify reference storages before
returning a result.

let val a = ref 2.0; val b = ref 3.0
in

a := !a + !b;
b := !a * !a;
b

end;

ML also supports loops in the following syntax.

while <expression> do <expression>

The following illustrates the use of while-do loops.

val i = ref 1;
while !i <= 10 do i := !i + 1;

Note that !i gets the value associated with variable i.

1. Define an integer reference variable myvar which initially has value 1; increment the
value stored in myvar by 5; then return the value of myvar as result.

2. Define a reference variable mylist which initially has empty list as its value. Modify
mylist by prepending strings ”a” and ”b” to the list. Then, return the value of mylist
as result.

1



3. Define a reference variable mylist which initially has empty list as its value. Write a
loop which modifies mylist by prepending integers 1 through 50 to the list. Finally,
return the value of mylist as result.

4. Write a ML function OddSum which takes a single integer parameter x and returns
the sum of all the odd integer numbers between 1 and x. You could use the following
test cases for your code.

- OddSum(10);
val it = 25 : int
- OddSum(15);
val it = 64 : int
- OddSum(30);
val it = 225 : int

5. The following defines the factorial function recursively.

fun fact(n) = if n = 1 then 1 else n * fact(n-1);

Define a new function fact1 which computes the factorial of a number using the while
loop.

2


