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Abstract—
We present an implementation and evaluation of an Ac-

tive Messages based communication system for tiny, wire-
less, networked sensors. The implementation includes two
major software components. The first is the device based
operating program which includes the communication sub-
system, dispatch loop and AM handlers. The second is a
communication library for general purpose host computers.
Using an Atmel 8535 based device and an Intel Pentium II
PC, we demonstrate an ad hoc networking application that
uses Active Message primitives for multi-hop route discov-
ery and packet delivery on silver dollar sized devices. We
also make observations about the applicability of TCP/IP to
the Tiny Networked Sensor regime.

I. I NTRODUCTION

The Post-PC era of computing has introduced an array
of small devices that perform a variety of specific func-
tions. Cellular phones, pagers and portable digital assis-
tants are common examples of these. As technology pro-
gresses, however, devices will continue to become smaller
and more specialized. One class of device that is begin-
ning to emerge is the tiny networked sensor. These ma-
chines are characterized by an embedded processor capa-
ble of a couple of MIPS, a limited amount of storage (i.e.
4Kb or less), a small power source, a short range radio,
and an array of sensors and/or actuators. The practical ap-
plications of such mini-devices range from environmental
monitoring to micro-robots capable of performing micro-
scopic scale tasks. While the functionality of an individual
device is limited, a collection of them working together
could accomplish a range of high-level tasks.

Paramount to achieving the goal of cooperative mini-
devices is the design of the communication subsystem.
The demands here are numerous. It must be efficient in
terms of memory, processor, and power requirements so
that it falls within the constraints of the hardware. It must
also be agile enough to allow multiple applications to si-
multaneously use communication resources.

Such demands inhibit the use of legacy communication
systems (e.g. TCP/IP) which have seen a great deal of
success in more conventional settings. The low level net-
working protocols of legacy stacks typically require many
kilobytes of memory at a minimum and their performance

is dependent on a fast processing component. Routing
protocols implemented above these (e.g., OSPF) are com-
plex and place bandwidth demands that become unten-
able for links with kilobits per second throughput. Fi-
nally, common high level software abstractions for using
the network, such as sockets, are not well suited to the
constrained environment of tiny network devices. Inter-
faces centered on “stop and wait” semantics do not meet
the power and agility requirements of these small devices.

In this paper, we investigate the application of the Active
Messages paradigm to mini-device communication. We
believe that there is a fundamental fit between the event
based nature of network sensor applications and the event
based primitives of the Active Messages communication
model. It is a framework that handles the limitations of
these devices, yet provides a powerful programming envi-
ronment capable of supporting a wide space of concurrent
applications.

Active Messages is centered on the concept of integrat-
ing communication and computation, as well as matching
communication primitives to hardware capabilities. Tiny
networked devices must take advantage of the efficiencies
that can be achieved by this matching. Furthermore, the
inability to support a large number of simultaneous exe-
cution contexts requires that computation and communi-
cation be overlapped so that valuable computational re-
sources are not wasted.

We demonstrate an implementation of Active Messages
for a prototype networked sensor mini-device with a 4
MHz Atmel AVR 8535 Microcontroller, 512 Bytes of
RAM and 8KB of FLASH memory. We show an ad-hoc
networking application built on top of the Active Message
primitives that performs automatic topology discovery and
data collection from autonomous nodes.

In the next section, we outline the fundamental aspects
of networked mini-devices that place strong requirements
on the communication model. Section 3 provides back-
ground information for Active Messages, autonomous sen-
sor devices and their operating system architecture. Sec-
tions 4 and 5 present a high-level overview and low-level
details of our tiny Active Messages implementation re-
spectively. Section 6 describes a demonstration applica-
tion built using tiny Active Messages. Section 7 evalu-
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ates our implementation in terms of usability and raw per-
formance. Section 8 presents retrospectives. Section 9
presents work related to network sensors. We conclude
with options for future work.

II. REQUIREMENTS

Networked sensors represent a new design paradigm
that is being enabled by significant advances in MEMS
structures and low power technology. Their communica-
tion requirements are determined both by their physical
design characteristics and their intended use scenarios.

The ability to create sensors and actuators with IC tech-
nology and integrate them with computational logic has
created an abundance of low-power sensors. Combining
these new sensors with the extensive work being done to
develop low power wireless communication [5] provides
the basis for networked sensors. They generally include
a tiny microcontroller, environmental detectors, and a low
power radio. This integration of computation, communi-
cation, and physical interaction together in silicon has cre-
ated the unique opportunity to shrink these devices down
to microscopic scales. Never before has it been so pre-
dictable that a physical device will track Moore’s law
down in physical size.

This trend toward highly integrated systems places strict
limits on physical capabilities of the devices. The desire
to continually shrink these devices, makes it necessary to
be as efficient as possible. Specifically, modern devices
must operate in only kilobytes of program memory and
hundreds of bytes of RAM.

Additionally, their interaction with the physical world
places real time constraints on their operation. If they are
receiving a communication over the radio, missing a dead-
line by a fraction of a second will cause the transmission
to be lost. Additionally, these sensors will be engaged in
multiple simultaneous interactions with the physical world
– sensing, communication, routing – which forces them to
be agile. It is clear that they must be able to support in-
tensively concurrent operations. This necessity makes the
programming paradigm of busy-waiting until data is avail-
able impractical.

These constraints are compounded by the fact that the
central processor in the microsensor is directly connected
to the I/O devices. Traditional systems generally use co-
processors and dedicated hardware to compose a system
hierarchy. This allows for a high degree of physical par-
allelism, which simplifies the task of the central proces-
sor. However, high levels of physical parallelism are not
practical for network sensors. In our system, the central
processor must service every bit of a radio transmission
individually, while simultaneously tending to the collec-
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tion of data from sensors and the execution of application
level code. Keep in mind this must be done by a processor
capable of only two MIPS.

The intended usage scenarios for networked sensors
also dictate additional requirements for the communica-
tion system. In general, the user will want to be able to
quickly deploy a large number of low cost devices without
having to configure or manage them. This means that they
must be capable of assembling themselves into an ad hoc
network. The mobility of individual sensors and the pres-
ence of RF interference means that the network will have
to be capable of reconfiguring itself in a matter of seconds.
Figure 1 shows a typical network topology.

Additionally, these devices must rely on small batter-
ies or ambient energy for power and run for long peri-
ods of time without maintenance. To conserve power, it
is important that a communication system is capable of
multi-hop routing. It is more efficient to relay data multi-
ple times towards a destination than to increase the trans-
mission strength so that it can be received by the endpoint
directly. Efficient use of the CPU can also lead to power
savings. While Moore’s Law will increase the computa-
tional abilities for a given size device, a 20% increase in
efficiency will always translate into a 20% increase in bat-
tery life. Software efficiencies can be translated into power
savings by reduction of clock speeds and CPU voltages.

Finally, these sensors will typically be tailored to a spe-
cific task. This tailoring will take the form of specialized
software routines as well as customized hardware. This di-
versity in design and usage puts extra requirements on the
overall system design. Specifically, it forces the system to
be architected in a highly modular fashion that allows mul-
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tiple application components to coexist. This precludes
any single application from assuming that it can utilize all
of the available CPU resources. Clearly, any communi-
cation model that busy-waits inherently assumes that no
other applications are running on the device and is imprac-
tical for this regime.

III. B UILDING BLOCKS

Instead of scaling PC based communications down, we
believe that it is possible to use the emergence of this new
design space as an opportunity to re-evaluate current ar-
chitectures with respect to modern technological advance-
ments. We have used the Active Messages communication
model and the event based TinyOS as building blocks for
our solution.

A. Active Messages

Active Messages (AM) is a simple, extensible paradigm
for message-based communication widely used in parallel
and distributed computing systems [14], [21]. Each Ac-
tive Message contains the name of a user-level handler to
be invoked on a target node upon arrival and a data pay-
load to pass in as arguments. The handler function serves
the dual purpose of extracting the message from the net-
work and either integrating the data into the computation
or sending a response message. The network is modeled
as a pipeline with minimal buffering for messages. This
eliminates many of the buffering difficulties faced by com-
munication schemes that use blocking protocols or special
send/receive buffers. To prevent network congestion and
ensure adequate performance, message handlers must be
able to execute quickly and asynchronously.

Although Active Messages has its roots in large parallel
processing machines and computing clusters, the same ba-
sic concepts can be used to the meet the constraints of net-
worked mini-devices. Specifically, the lightweight archi-
tecture of Active Messages can be leveraged to balance the
need for an extensible communication framework while
maintaining efficiency and agility. More importantly, the
event based handler invocation model allows application
developers to avoid busy-waiting for data to arrive and al-
lows the system to overlap communication with other ac-
tivities such as interacting with sensors or executing other
applications. It is this event centric nature of Active Mes-
sages which makes it a natural fit for these devices.

B. Pure Event-based Programming

Choosing to harness the power of an event based op-
erating system will clearly have a significant impact on
the communication paradigm. To construct our commu-
nication system, we use the event based TinyOS [9]. This

operating system is designed to meet the critical needs of
the networked sensor design regime. Its execution model
is similar to an FSM based model, but considerably more
programmable. It is designed to support the concurrency
intensive nature of networked sensors while allowing for
efficient modularity. Specifically, TinyOS’s event model
allows for high concurrency to be handled in a very small
amount of space. A stack-based threaded approach would
require orders of magnitude more memory than we ex-
pect to have available. Furthermore, the Active Messages
event based communication abstraction fits well inside the
TinyOS event based programming model.

The TinyOS design is centered on a tiny scheduler and
a graph ofcomponents. Components interact by receiving
commands from “higher level” components and handling
events from “lower level” components. To facilitate modu-
larity, each component declares the commands and events
it uses and handles.

Event handlers are invoked to deal with hardware
events, either directly or indirectly. The lowest level com-
ponents have handlers connected directly to hardware in-
terrupts, which may be external interrupts, timer events,
or counter events. Events propagate up through the com-
ponent hierarchy as necessary. In order to perform long-
running computation, components can request to have
tasks executed on their behalf. Once executed by the
scheduler, these tasks run to completion and execute au-
tonomously with respect to other tasks. However, they can
be periodically interrupted by higher priority events. Be-
cause a task must complete before a subsequent task can be
executed, they must never block or busy-wait. Commands,
tasks, and event handlers all have access to a component’s
private, persistent state. This model allows simple compo-
nents to be composed together into complex applications.

IV. T INY ACTIVE MESSAGES

In bringing Active Messages out of the high perfor-
mance parallel computing world and down into this low
power design regime, we have attempted to preserve the
basic concepts of integrating communication with com-
putation and matching communication primitives to hard-
ware capabilities. The basic paradigm of typed messages
causing handlers to be invoked upon arrival matches up
well with the event based programming model supported
by TinyOS and demanded by the underlying sensor hard-
ware. The low overhead associated with event based noti-
fication is complementary to the limited resources of net-
worked sensors. Applications do not need to waste re-
sources while waiting for messages to arrive. Addition-
ally, the overlap of computational work with application
level communication is essential. Execution contexts and
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stack space must never be wasted because applications are
blocked, waiting for communication. Essentially, the ac-
tive messages communication model can be viewed as a
distributed eventing model where networked nodes send
each other events. While quite basic, we believe that all
applications can be built on top of this primitive model.

In order to make the active messages communication
model a reality, certain primitives must be provided by
the system. We believe that the three basic primitives
are: best effort message transmission, addressing, and dis-
patch. More demanding applications may need to build
more functionality on top of these primitives, but that is
left for the applications developer to decide. By creating
the minimal kernel of a communication system, all appli-
cations will be able to build on top of it.

Additionally, it is likely that there will be a large variety
of devices with different physical communication capabil-
ities and needs. By building the communication kernel as
three separate components using the TinyOS component
model, developers can pick and choose which implemen-
tations of the basic components they need. This can take
the form of selecting from a collection of delivery com-
ponents that perform different levels of error correction
and detection. However, by providing a consistent inter-
face to communication primitives, application developers
can easily transfer their applications to different hardware
platforms.

Just as there will be various implementations of the
core components for the developer to choose from, vari-
ous other extensions will be available such as reliable de-
livery. This is similar to the design of Horus [20], which
attempted to have modular PC based communication pro-
tocols where application developers could chose from a
variety of building blocks including encryption, flow con-
trol, and packet fragmentation. It is extremely advanta-
geous to be able to customize protocols when dealing with
Networked Sensors due to their extreme performance con-
straints and their large diversity of physical hardware.

Finally, the selection of an event based communication
mechanism does not preclude the use of a threaded, block-
ing, execution model. An event-based model can easily
be transformed into a threaded model through the use of a
queue, where an event simply places the data into a queue
structure that can be accessed by the thread. When the
queue is empty, the thread can block until data arrives. On
the contrary, it is difficult to switch from a threaded imple-
mentation to an event-based model. Similarly, the imme-
diate propagation of messages to the application layer does
not prevent the use of buffers to temporarily hold messages
until the application is ready to deal with them. An appli-
cation level buffer component could be used to accomplish
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this. However, including extra buffers inside the commu-
nication primitives precludes the application from elimi-
nating them.

V. I MPLEMENTATION

In this section, we present the design of our Tiny Ac-
tive Messages implementation. We believe that the basic
primitives that we have provided are all that is needed to
construct application level protocols the meet any applica-
tion’s needs. The discussion includes the device and host
PC components and aspects that are common to both. We
will follow with an evaluation section that demonstrates
how we have successfully used these primitives to con-
struct an ad-hoc networking application based on data col-
lection using networked sensors.

A. Components

The interface to our messaging component is quite sim-
ple. It accepts TinyOS commands from the applications to
initiate message transfers and fires off events to message
handlers based on the type of messages that have been re-
ceived. There is an additional event that signals the com-
pletion of a transmission. Send commands include the des-
tination address, handler ID, and message body. Internally,
our Active Messages component performs address check-
ing and dispatch and relies on sub components for basic
packet transmission. Figure 2 shows the complete TinyOS
component graph of or application.

The underlying packet level processing components
simply perform the function of transmitting the block of
bytes out over the radio. We assume that this is a best ef-
fort transmission mechanism. While we do not expect re-
liable, error free delivery, we do assume that there will be
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some basic logic that attempts to avoid transmission col-
lisions. The interface to the packet level component pro-
vides a mechanism to initiate the transmission of a fixed
size, 30 byte packet, as well as two events that are fired
when a transmission or a reception are complete. We have
multiple implementations of packet level components each
providing different levels of error correction or detection.
They include, basic transmission without any error detec-
tion or correction, CRC checked packets that have error
detection, and forward error corrected packets that provide
basic error correction as well as error detection.

Additionally, we have implemented a Host PC package
that consists of a software library that is linked into appli-
cations. The library communicates over the PC serial port
to a special base station sensor that has both a RS232 com-
munication channel as well as RF communication. This
provides a way to quickly develop communication bridges
that bring data collected and transmitted on the networked
sensors into a more traditional computing environment.
Using this library, it is simple to create a bridge that re-
transmits messages collected from the networked sensors
onto the Internet using TCP/IP or UDP.

B. Packet Format

The first two bytes of a received packet are used to iden-
tify the destination of the packet (R0) and the ID of the
message handler that is to be invoked on the packet (H0).
The AM component first checks that the address matches
the local address and then it invokes the listed handler,
passing on the remaining 28 bytes of the packet. In the
event that the message is bound for a handler that is not
present on the receiving device, the packet is ignored. The
dispatch routine that is used by the message handler is au-
tomatically generated at compile time based on the mes-
sage handlers that are present. This is done to eliminate
the need for expensive handler registration mechanisms.

C. Multi-hop Packet Format

In order to demonstrate how application specific needs
could be met by building on top of the basic Active Mes-
sages primitives, we have developed a component that sup-
ports source based multi-hop routing. To accomplish this,
we have defined a generic message format and specialized
routing handler. This format, depicted in Figure 3, dedi-
cates seven additional bytes to allow a maximum of 4-hop
communication. Four of these bytes are used to hold the
intermediate hops of the route (R1,R2,R3,R4), one is used
for the number of hops left (N ), one is used to store the
source of the packet (S), and one is used for the handler
ID that is to be invoked once the message arrives at its
destination (HF ). In this instance, the multi-hop router

R0 H0 N Hf R1 R2 R3 R4 S D0 . . .D1

R0 - Next Hop
H0 - Next Handler
N   - Number of Hops
H0 - Destination Handler 
R1, R2 ,R3 ,R4  - Route Hops
S   - Sending Node
D0, D1 … - Payload

Fig. 3
MULTI -HOP PACKET FORMAT.

is simply the handler of a typed message. More complex
routing information is stored inside the message and used
by application level handlers to route the packet to its next
destination. This simple component can be used in any
application that wishes to have source based routing. Ad-
ditionally, applications that need other functionality can
seamlessly coexist along side of it.

While the packet is in-route,H0 is set to zero: the rout-
ing handler. In response to the reception of a packet, the
routing handler decrements the hop count and rotates in
the next hop and pushes the local node address to the end
of the route chain. This process records the route that the
packet has taken in the route table so that the recipient
knows how to route a response packet. If the next hop
is the final destination (number of hops is one), the routing
handler inserts the destination handler,HF , intoH0.

D. Special Addresses

In developing sample applications to test the usability
of our messaging layer, two special addresses were de-
fined. The first special address that was needed was the
broadcast address. The concept of a one-to-all broadcast
greatly simplifies the route discovery and exploration al-
gorithms. Combining this with routing handlers designed
to record the path that a packet has taken yields a trivial
implementation of a route discovery application. In its
simplest form, an application can send a two-hop packet
to the broadcast address followed by its own address. This
will cause any device that is in range to respond with its
own address recorded in the packet that the original device
receives.

Secondly, a special address was chosen for the Host PC
in the device virtual network. Arbitrarily chosen to be
0x7e, a device receiving a packet for this destination for-
wards the packet to the local data UART instead of the
radio. This exposes the basic need to have the notion of
gateway addresses that get treated specially.
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VI. D EMONSTRATION

We have built an ad hoc networking application to col-
lect information from a set of nodes that have been ran-
domly distributed throughout the environment. The appli-
cation uses the Active Message primitives to explore rout-
ing topology and then to propagate information towards a
central collection node. Additionally, as sensors are relo-
cated, the application automatically reconfigures itself in
light of the new routing topology. We have selected this
application because we believe that this closely mirrors
real world networked sensor applications.

To construct our ad-hoc network we use a variation on a
Destination-Sequenced Distance Vector [18] algorithm tai-
lored to having all nodes transmit to a basestation. While
not the most efficient algorithm, it is straightforward to im-
plement and understand. It servers the purposes of demon-
strating the capabilities of the system. Our framework can
easily be used to implement and evaluate more sophisti-
cated networking algorithms.

The system starts out with zero knowledge of the iden-
tity or topology of sensors that are present. Each mobile
node knows only its own identity. Additionally, the base
station knows that it is directly connected to the host PC.
The base station is the origin of all routing update mes-
sages. It periodically broadcasts out its identity and that it
has connectivity to the host PC. Devices in direct commu-
nication range of this base station receive the message and
use it to update routing information. They then rebroadcast
a new routing update to any devices in range that there is a
path to the base station through them. Devices remember
the first routing update that they hear, which corresponds
to the shortest path to the base station. In order to pre-
vent cycles in the routing topology, time is divided into
eras and route updates are broadcast once per era. With-
out these boundaries, nodes may get confused as to which
route updates they should latch onto.

For information collection, each node periodically gen-
erates and transmits information, and it participates in the
routing of network data towards the base station. A de-
vice’s transmissions are addressed to the device ID that
was received in the last routing update. The recipient will
repeat the same process until the packet reaches the base
station. In this system, each node simply knows the iden-
tity of the next hop that will bring the packet closer to the
base station.

In addition to forwarding the packet, the identities of
the intermediate hops are stored in the packet as it travels
to the base station. This allows us to determine the over-
all routing topology that the network is using. By look-
ing at the route traveled by several packets from different

Fig. 4
ROUTING DIAGRAM GENERATED BY ANALYSIS OF

MESSAGES COLLECTED ATHOST PC.

sources, we can eventually determine the topology of the
entire system. For demonstration purposes, we feed this
information into a display application that plots the current
routing topology graphically. This takes the form of a tree
rooted at the base station node with edges corresponding to
communication routes. One example is shown in Figure 4.
Each node is labeled with the ID of the device and deco-
rated with a box that represents light level sensor reading
being collected. Information is also displayed showing the
number of data packets that have traveled through a node
and received from a node.

VII. E VALUATION

While it is important to verify that our communication
mechanisms perform well, the quantitative metrics are not
as important as the qualitative metrics associated with pro-
grammability. Thus, we have developed a sample applica-
tion that demonstrates the power of the primitives that we
have included. For completeness, we will also provide a
small number of performance benchmark results.

A. Utility of Active Messages

In the routing application, there are two types of active
messages. One message type is dedicated to route up-
date messages, and the other is dedicated to data collection
messages. Surprisingly, we were able to implement both
the base station and remote node applications in approxi-
mately 100 lines of commented code (approx. 70 lines of
actual C statements).

The route update message handler performs the func-
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tion of recording the received information in the routing
table and then initiating the retransmission of the propa-
gated route update message. Similarly, the data collection
message handler responds to the receipt of a packet that
needs to be forwarded towards the base station. This han-
dler checks the routing table, updates the payload of the
packet to record that it transitioned through the local node
and then sends the packet towards the recipient stored in
the routing table.

Finally, there is a third type of event that is handled by
the application. There is a clock event that periodically
triggers the node to begin collection of data from its sen-
sors and then transmits the newly collected data towards
the base station. These three event handlers are all that are
needed to pull off this seemingly complex application.

In comparison, there are several ways that this appli-
cation could be mapped into a threaded execution model.
One method would involve creating separate application
level threads to be in charge of local data collection
and network management. The networking thread would
block, waiting for data to be received. Upon arrival, it
would either forward the data to the next node or use the
information to update the local routing table. Meanwhile,
the data collection thread would be periodically collecting
sensor readings and sending them out on the network. In-
herently, this model would involve significantly more over-
head on the part of the operating system managing these
execution contexts. We have yet to mention the additional
execution contexts that must support the threaded model.
Furthermore, this increased complexity would not be off-
set by a simplified programming experience. A majority
of the application level code would remain unchanged.
In fact, it is likely that the code would be more complex
than the Active Messages based implementation because
the application developer would be responsible for creat-
ing multiple threads and performing dispatch on messages
received over the network.

B. Raw Metrics

Here we attempt to quantitatively evaluate our imple-
mentation with respect to the traditional metrics of round
trip message time and throughput. For networked sensors
these do not completely reflect the impact of the commu-
nication subsystem on all the design parameters of con-
cern. Thus we include two additional measurements that
are critical for small devices: software footprint and en-
ergy usage.

The round trip time (RTT) metric measures the time for
a message to be sent from the host PC to a specific sen-
sor device and back. Figure 5 presents the RTT results for
various route lengths through the network. A route length

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6
Hops

R
T

T
 (

m
se

c)

Fig. 5
ROUND TRIP TIMES FOR VARIOUS ROUTE LENGTHS. NOTE

THAT ONE HOP MEASURES THE TIME FOR A MESSAGE

BETWEEN THEHOST PC AND BASE STATION DEVICE.

of one measures the Host-PC to basestation RTT (40ms)
and reflects the cost of the wired link, device processing,
and the host OS overhead. The difference between request
arrival and reply transmission of .3 ms shows that the Ac-
tive Message layer only accounts for .75% of the total RTT
time over the wired link. This decreases when compared
to the longer transmission times of the wireless link.

Component Cumulative Time (msec)

First bit of request on device 0
Last bit of request on device 15.6
First bit of reply from device 15.9
Last bit of reply from device 32.8
First bit of next request on device 40.0

TABLE I
CUMULATIVE TIME PROFILE FOR A SINGLE HOPRTT TEST.

Table 1 presents a cumulative profile of the single hop
RTT. For routes greater than one hop, the RTT also in-
cludes the latency of the wireless link between two de-
vices. The difference between the two and one hop RTT
yields the device-to-device RTT of 78ms. The additional
cost of the device-to-device message is accounted to the
slower link rate and the encoding scheme. At 10Kbps and
50% encoding overhead, the one way link transmit time is
approximately 36ms.

The wireless link and encoding schemes also deter-
mine the maximum throughput of the communication sys-
tem. Using the 4b6 encoding algorithm that is required
by the RFM radio [2] being used, the maximum realizable
throughput is 833 bytes/sec.

The software footprint refers to the total number of
bytes occupied by a software component on the device



8

memory resources. The Active Message layer occupies
a total of 322 bytes. The total device binary is 2.6 Kbytes
and includes the packet level, byte level and bit level con-
trollers, the AM component and the routing application.
Of the Active Message footprint, 40 bytes are used for
static data. This includes a 30 byte buffer, a one-byte local
address, 4 bytes of state and 5 bytes for compiler align-
ment.

The last, and perhaps most critical, metric is power con-
sumption. The event model supported by Active Messages
enables the device to enter an idle state when no commu-
nication or computation is being performed. We measured
the power consumption for this idle state, the peak power
consumption and the energy required to transmit one bit.
The results are presented in Table 2.

Idle State 5 µAmps
Peak 5 mAmps
Energy per bit 1 µJoule

TABLE II
POWER AND ENERGY CONSUMPTION MEASUREMENTS.

VIII. R ETROSPECTIVE

The Active Message model exploits the symmetry be-
tween the networked sensor hardware and event based
communication mechanisms. The physical structure of the
network sensor that we have described forces the devel-
oper into an event-based model. This is in part due to the
large number of devices that a single processing unit must
deal with. However, it is also driven by the fact that energy
is the most precious resource. While the CPU may have
time to poll across multiple devices or internal queues, it
cannot afford the energy that this would consume. The
event-based model that we have developed eliminates all
polling from the architecture. When all tasks have com-
pleted, the CPU goes to sleep. It only awakes when a
hardware event triggers it. This is identical to the behavior
of an application written above the active messages layer.
When it completes its work, it terminates until an active
messages event awakes it. Furthermore, in both cases the
nature of the event tells it exactly what is to be done. The
active messages paradigm is a reflection of the underlying
hardware properties.

Interestingly, many Active message implementations on
large parallel and distributed systems do not use events.
Studies have shown that polling in these large scale sys-
tems to achieve a higher level of performance due the high
computational overhead of interrupts and events [12]. Es-
sentially, they are forced to trade CPU cycles for improve-

ments in latency or bandwidth figures. For networked sen-
sors, power limitations make these types of schemes im-
practical. This is because the underlying operating systems
prevent the use of user level interrupt handlers. Interrupts
must be handled by the kernel and indirectly relayed to the
application. However, starting over on this new class of
device has allowed us to redesign the underlying operating
system.

Another advantage to using events is that polling based
I/O mechanisms see significant performance degradation
when the number of interfaces that must be periodically
checked increases. Performance measurements using the
select system call to poll across multiple open sockets
show that as the number of sockets increases the perfor-
mance decreases [16]. Essentially, the solution is to use
a single event queue to limit the number of places that
need to be checked in determining which sockets have
data ready. The same approach of reducing the number of
places that need to be polled to improve performance has
been used in high performance communication implemen-
tations. We have taken this idea a step further: we have
reduced it to zero things to poll. One of the main reasons
that high performance systems have not taken the same
step is because traditional Unix kernels are not designed
to support this mode of operation. More specifically, inter-
rupts are expensive on modern systems and, it is not easily
possible to have an interrupt handler directly invoke a user
level thread.

It is intuitive to believe that communication models that
have been successful in the PC world could be applied to
this new design regime. However, we believe that there are
fundamental differences that inhibit the use of established
schemes. Specifically, we argue that a traditional socket
based TCP/IP communication model is not optimal for the
networked sensor regime. While sockets have seen a great
deal of success in modern PCs, it is not clear that they
can be efficiently mapped down into low-power, wireless
systems.

First, the use of a traditional socket based abstraction
as a communication mechanism forces the systems into a
thread based programming model. This is because sockets
have a stream-based interface where the user application
polls or blocks as it waits for data to arrive. As argued
in [9], it is not currently possible to support the use of
thread based programming models on the class of device
envisioned for the tiny networked sensor because of over-
head associated with context switches and the storage of
inactive execution contexts. While the wire line protocols
of UDP and TCP do not force a programming model on
the user, all popular implementations do.

It is also important to consider the “bits on the wire”
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overhead. Communication is extremely expensive for net-
work sensors; while transmitting, a radio will consume
more power than the CPU. This makes it very advanta-
geous to transmit as few bits as possible. Assuming that
a packet based communication mechanism will be used,
this translates into wanting the fewest number of overhead
bits per packet. In TCP/IP and UDP, these bits take the
form of sequence numbers, addresses, port numbers, pro-
tocol types, etc. In all, a TCP/IP packet has an overhead
of 48 bytes. This is not counting the overhead associated
with acknowledgements and retransmissions. While these
packets are useful for a general class of applications, they
should not be forced on all applications.

Third, there is a significant amount of overhead inher-
ent in the TCP/IP protocol that makes it ill-suited to this
class of device. This includes the memory management
associated with a stream based interface. The network-
ing stack must buffer incoming data until the application
requests it whereupon it must be copied into the applica-
tion’s buffer while any remaining data remains buffered
by the protocol stack. This buffer management greatly in-
creases complexity and overhead. If there is insufficient
buffer space, data will be discarded without informing the
application. The stream based communication model also
has significant overhead on the sender side in the form
of intermediate copies and data fragmentation. While ad-
vanced implementations have attempted to perform zero
copy TCP/IP [17], these require significant increases in
complexity.

There is an assortment of Operating Systems that pro-
vide TCP/IP based network connectivity to embedded de-
vices. These systems include many commercial real time
operating systems such as VxWorks [4], OS-9 [15], Pal-
mOS [1] and QNX [11], [13]. However, these systems
have been designed to operate on hardware equivalent of a
90’s PC. While this allows them to handle the complexity
and overhead of the BSD sockets based TCP/IP commu-
nication model, it is no surprise that these real time oper-
ating systems consume significantly more resources than
are currently available on the class of hardware that we
are targeting. In general, memory footprints and CPU re-
quirements are orders of magnitude beyond the hardware
capabilities [9].

Moore’s law states that it will be possible to place mod-
ern microkernels on tiny networked devices within a few
years. However, it is envisioned that hardware of tiny net-
worked devices will exploit technological innovation to
achieve unprecedented form factors opening new frontiers
to computer science. Tiny networked sensors will follow
technological trends towards the microscopic physical size
while maintaining a constant level of performance. This is

in contrast to traditional paradigms of increasing the capa-
bilities for a given physical size.

Efforts have been made to create reduced complexity
implementations of TCP/IP such as TinyTCP [7]. They
have alleviated some of the protocol overhead by creating
a TCP implementation without a socket-based interface.
However, in the case of TinyTCP, the programming model
does not allow multiple applications to coexist. Its ”busy
waiting” style of programming completely consumes the
processor during communication. This is clearly not ac-
ceptable for the concurrency intensive operation of net-
work sensors. Moreover, the limited implementations of
TCP/IP are centered on achieving minimal connectivity for
socket endpoints. They cannot handle application scenar-
ios where individual nodes act as forwarding gateways for
other nodes. For example, the Seiko iChip [3] provides an
extremely low power TCP/IP stack in hardware, but was
designed for use in client devices that create a small num-
ber of connections. While there is a large class of devices
that fit into that design paradigm, the networked sensor
is not one of them. Particularly, multi-hop routing appli-
cations need the ability to have low power intermediated
nodes forward data on behalf of other nodes.

IX. RELATED WORK

On the hardware side, the Smart Dust Project [19] is
developing a millimeter cubed integrated network sensor.
There is also work in developing low power hardware to
support the streaming of sensor readings over wireless
communication channels [5]. However, both of these sys-
tems have focused on the enabling hardware rather than on
the programming interface that will be used by application
developers.

The Wireless Application Protocol (WAP) [10] ad-
dresses many of the same wireless device issues presented
in this paper (e.g. power and CPU constraints). It’s stan-
dards cover a vertical section of the network protocol stack
from application interfaces to low-level transports. How-
ever, WAP is targeted mainly at client-server type applica-
tions where the wireless device presents a human interface.
Our work investigates a design space of small autonomous
devices that that may operate in large (i.e. hundreds or
thousands) collectives.

Additionally, extensive work is being done to explore
applications enabled by network sensors. Piconet [6] and
The Active Badge Location System [22] have explored the
utility of networked sensors. Work at ISI [8] has explored
routing alternatives and power saving mechanisms for the
networked sensor regime. These systems have focused on
application level optimizations, assuming the existence of
a basic messaging protocol, such as Tiny Active Messages.
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X. FUTURE WORK

It is clear that the next step is to demonstrate our archi-
tecture supporting more complex ad hoc routing protocols.
We have started with an algorithm that is simple to reason
about but is not optimized for efficiency. We need to har-
ness the significant research has gone into the development
of more advanced algorithms.

Additionally, while our system does currently support
the ability to broadcast messages out to everyone, another
primitive that we believe should be added is the support of
a multicast like mechanism. This could be used to dissem-
inate information to a collection of devices that are work-
ing in concert. An example would be to the dissemination
of configuration information. The goal is to prevent re-
transmission of messages whenever possible. This would
be a simple single hop optimization not designed to solve
the routing issues associated with multicast subscription.
However, more traditional versions of multicast routing
layers would be enabled by it.

Finally, this could be used to setup virtual channels or
virtual networks in a sensor net. In addition to receiving
messages bound for multicast addresses, devices could be
configured to use a separate dispatching mechanism for
these messages. This could be another way of providing
per application handler naming mechanisms. For exam-
ple, applications could specify that their special handlers
be invoked for messages that arrive on certain multicast
channels. This could be used to selectively transmit infor-
mation to a collection of devices deployed in a heteroge-
neous environment.

XI. CONCLUSION

The emergence of networked sensors and actuators has
created a wide space of new problems in distributed sys-
tems design. One of the driving forces behind these new
problems is a shift in the perception of performance: high-
endurance, low energy use, and modularity over FLOPS
and throughput. In this paper, we have investigated a com-
munication architecture for networked sensors based on
the Active Messages model. We have built and analyzed a
reference implementation of Active Messages for a proto-
type wireless networked sensor which include components
for Tiny OS and a library for a host PC. This implemen-
tation demonstrates the ability to handle the concurrency
intensive demands of the networks sensor regime. Addi-
tionally, the communication layer consumes 322 bytes of
memory and consumes less than 5µAmps while in the idle
state. A ad-hoc networking application built on top of the
implementation demonstrates the extensibility of the Ac-
tive Messages paradigm to specific applications.

Admittedly, there is one potential drawback of using
Active Messages: It’s not TCP/IP. The recent ubiquitous
deployment of IP has thrust it to be the protocol of choice
for many network applications. However the power and
scalability demands of the networked mini-device forces
a rethinking of network protocols. We have presented
several reasons why socket based, TCP/IP, communica-
tion paradigms are not appropriate for tiny networked de-
vices. In contrast, we have shown how the Active Message
paradigm is a natural fit for the demands of these devices;
it provides an efficient, agile, and extensible communica-
tion mechanism.
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