

EFFICIENT ASYMMETRIC IPSEC FOR SECURE ISCSI

Murthy S. Andukuri* and C. Edward Chow†
Department of Computer Science, University of Colorado at Colorado Springs,

1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA
mandukur@uccs.edu, chow@eas.uccs.edu

Keywords: IPSec, Asymmetric Secure Protocol, iSCSI, Online Data Backup

Abstract: In this paper we propose a new asymmetric IPsec scheme to enhance the security of data at the remote end,
while simultaneously improving the overall performance. The idea is to apply IPsec encryption/decryption
in a segmented manner on the iSCSI traffic, such that the user data remains encrypted after leaving the
sender, and is decrypted only when it is retrieved by the sender. A dual key cryptographic scheme is
proposed where the private key is used to encrypt the iSCSI payload at the sender and traditional IPsec is
modified to encrypt/decrypt only on the TCP/iSCSI headers. A development test bed was built using User-
Mode-Linux virtual machines for developing and debugging the asymmetric IPsec software and running as
the sender and receiver to verify the functionality and security features of the proposed design. A
benchmark test bed was built with two real PCs where the asymmetric IPsec modules can be dynamically
loaded. The performance results show that the existing implementation of the proposed asymmetric IPsec
scheme reduces the IPsec processing time by about 25%.

1 INTRODUCTION

Remote backup of data for security has become a
subject of rapidly growing interest in the recent
times (Kirk, 2006). The importance of backups, and
remote storage for security in today's networked
world can hardly be overstated. Of the various
options available, iSCSI seemed the most worthy of
study because its design smartly makes full use of
the universally proven strengths of existing
protocols like TCP, IP and IPsec, thereby reducing
the cost, effort and time of learning, setup and
deployment. The various mechanisms that can be
used are FCIP, iFCP, iSCSI (Clark, 2002) (Shurtleff,
2004). Among these, iSCSI has been getting a lot of
attention of late because it can be run on commonly
available, relatively inexpensive IP networking
infrastructure already in place. iSCSI is an
application layer protocol that uses the available IP
network to make a remote storage disk accessible as
a simulated local SCSI disk.
†: This research work was supported in part by two

NISSSC AFOSR grant awards under numbers
FA9550-06-1-0477 and FA9550-04-1-0239.

*: Murthy Andukuri is now with Verizon Business. This
work was done as part of his master thesis.

This locally accessible remote disk can be written to,
or read from, like any local disk. An iSCSI setup has
two parts - The iSCSI initiator is the 'client' program
located on the source machine and writes to / read
from the remote machine. The iSCSI target is the
software on the destination machine that helps store
the data and return it on demand. iSCSI restricts
itself to handling the user-level data and leaves the
actual details of transmission to the TCP and IP
layers. By default, the data is transmitted in plain
text between the initiator and the target. This
vulnerability can be remedied by using IPsec to
secure the data in transit.

IPsec is designed to provide interoperable, high
quality, cryptographically-based security for IPv4
and IPv6. The set of security services offered
includes access control, connectionless integrity,
data origin authentication, protection against replays
(a form of partial sequence integrity), confidentiality
(encryption), and limited traffic flow confidentiality.
These services are provided at the IP layer, offering
protection for IP and/or upper layer protocols
(RFC2401).

IPsec encrypts the data leaving the network layer
on the sender and, at the receiving end, decrypts the
data before it leaves the network layer. This secures
the data in transit but does not help secure the data

AFTER it has reached its destination. This makes
data very vulnerable to theft when the target site gets
break-in. This vulnerability can be alleviated by
reencrypting the received data using a third party
software – and redecrypt, so that the IPsec layer can
encrypt it in preparation for transmission back to the
sender. Figure 1 shows such a scenario.

Third party
SW

scsi

 iscsi

tcp

ip

 ipsec

 Re-decrypt ion

Decrypted
here

Encrypted
 here

Decrypted
 here

To iscsi
target

To iscsi
init iator

Encrypted
 here

Init iator Target Re-encrypt ion

Unencrypted
pay load

scsi

 iscsi

tcp

ip

 ipsec

 Figure 1. Re-encryption/decryption at target site.

This situation presents the following issues:

• The data is in an un-secured form on a remote
disk just after being received, and just before
being transmitted.

• This scheme involves three encryptions and three
decryptions that increase the computational and
operational costs.

• The third party software involves extra cost.
Another solution (Shurtleff, 2004) is to use

application layer software to encrypt the data on the
sender, store it in the encrypted state on the receiver
and decrypt it only on retrieval. This scheme also
involves three encryptions and three decryptions.
However, this is better than that of Figure 1
described above, because the data is never in an un-
encrypted state outside of the Initiator. This presents
two choices, both of which have issues of their own.

Scenario 1: Use an application layer software to
encrypt user data, and transmit it without IPsec.
Figure 3 shows this scenario. This leaves the iSCSI,
TCP and IP headers exposed during transit. While
the data is encrypted, the headers remain vulnerable.

Scenario 2: Use an application layer software to
encrypt user data and decrypt it after retrieval.
Transmit using IPsec.

This secures the TCP and iSCSI headers (and
optionally the IP header as well). However, this also
involves
• RE-encryption of the encrypted payload on the

sending side,

• Decryption of the same on the receiving side to
undo the above encryptions

• RE-encryption of the encrypted payload on the
receiving side for retrieval by sender

• Decryption of the same on the sender (after
retrieval) to undo the above, second encryption.
As such, it is obvious that this scheme only

partially addresses the shortcomings of the previous
approach.

The proposed efficient asymmetric IPsec scheme
hopes to address the above concerns as follows. It is
proposed that the process of encrypting/decrypting
the transmitted data be divided into two parts:

• The encryption of the TCP and iSCSI headers
is performed per the normal IPsec procedures –
using the keys generated and managed by Internet
Key exchange (IKE) between cthe source and
destination.

• The core IPsec encryption functionality, i.e.,
the algorithm implementation excluding the IKE, is
still used to encrypt the user data. However, the key
for the encryption is generated on the source
machine independent of the IKE mechanism. This
key will NOT be shared with the destination.

Encrypted
pay load

On ly headers
Decrypted

here

On ly headers
Encrypted

 here

Pay load
Decrypted
 here w ith
custom key

To iscsi
target

To iscsi init iator

 Pay load
 Encrypted

 w ith custom key

Init iator Target
Encrypted

pay load

Unencrypted
pay load

scsi

 iscsi

tcp

ip

 ipsec

scsi

 iscsi

tcp

ip

 ipsec

Figure 2. Proposed AsymmetricIPsec Scheme.
 At the destination only the TCP, iSCSI header are

decrypted per normal IPsec process to extract the
iSCSI details and to write the user data, which
continues to be in encrypted form, to the remote
disk. During retrieval by the sender, the user data is
returned in the same encrypted form and
accompanied by headers that are now appropriately
encrypted by IPsec on the target. Upon arrival, the
headers are decrypted per the normal IPsec scheme,
i.e. using the keys mutually agreed upon through the

IKE mechanism. The user data is now decrypted
using the core IPSec decryption functionality but
with the customized, locally generated key that was
used originally to encrypt the data. Figure 2 shows
the proposed scheme.

2 ASYMMETRIC IPSEC FOR
ISCSI PROTOCOL DESIGN

The essentials of the Asymmetric IPsec for
iSCSI scheme are detailed as follows:

2.1 When the initiator is sending iSCSI

date to the target

• In the 'sending side' code of the IPsec layer on
the initiator, identify and isolate the user data in
the network traffic going to the target .

• Encrypt the rest of the traffic (i.e. All traffic other
than the user data) using the standard IPsec
mechanism, using keys generated and managed
by the IKE.

• Use a custom key, generated independently of
the IKE mechanism, to encrypt the user data. Do
not share this key with the target. Save this key
for future use to decrypt the same user-payload
when it is returned.

• At the target, decrypt the headers using standard
IPsec procedure, but do not attempt to decrypt
the user payload. Pass it in the encrypted form to
the upper layers so that the SCSI layer can write
it as is (in the encrypted form) to disk.

2.2 When the initiator is trying to read
the iSCSI data from the target

• On the target, encrypt the headers using standard
IPsec mechanism. Do not attempt to encrypt the
user payload.

• On the initiator, decrypt the headers using the
keys generated and managed by IKE. Use the
second, custom key originally used to encrypt the
user data, to decrypt the data.

• In order to come up with an implementation of
this scheme, the pattern of the flow of packets
between the initiator and the target, WITHOUT
IPsec was studied to understand the exact
sequence of packets – both when writing to the
target and when reading from the target. The
study threw a surprise. When the initiator is
writing, the user payload is carried as a part of
Data-out PDUs. When the initiator is reading, the

user-payload is carried in a plain-vanilla TCP
packet. A packet with a Data-in PDU precedes
this packet. Even more surprisingly, the
DataSegmentLength field of the Data-In PDU
reflects the length of the user payload, even
though the payload is actually carried by a
separate packet. The author could not find an
answer for this behavior nor a way to change it
so that a Data-in PDU contains the user payload.
Hence the solution implemented was designed
accordingly.

The proposed scheme entails changes to the

IPsec-specific code in the Linux 2.6 network stack.
To understand how the actual code-modification
scheme was arrived at, it helps to recap how data
would be handled by the IPsec code in its native
form.

2.3 The native IPsec operation on
iSCSI

The IPsec scheme used in the current thesis is
called 'transport' mode. This means an ESP header is
inserted between the IP header and the TCP header.
The 'protocol' field in the IP header is changed by
the IPsec layer to '50' to indicate the presence of an
ESP header following the IP header. Prior to the
'encryption' part of the IPsec code, this 'protocol'
field of the ip header was populated with ‘6’, which
is 'TCP'. This information is saved in the IPsec layer,
before the 'protocol' field is overwritten with '50'.
The saved value will be entered later in the last byte
of the padding that is going to be added at the end of
the payload. The iSCSI header together with the user
data forms the payload for the TCP layer. The TCP
header plus the iSCSI payload, in turn forms the
payload for the IPsec protocol. This IPsec payload is
padded so that the total length (tcp header + IPsec
payload + padding) is an exact multiple of the block
size of the encryption algorithm being used. Care is
taken to make sure that the padding is at least 2
bytes long. The last byte of the padding, is set to the
protocol ID saved earlier. The last-but-one byte is
set to the total number of padding bytes (Hence the
need to make sure the padding is at least 2 bytes
long). The TCP header, iSCSI header, iSCSI
payload and the ESP trailer are together encrypted as
one unit. The padding forms the ESP trailer. An ESP
authentication trailer is inserted after the ESP-trailer.
This trailer contains the cryptographic checksum of

Ipheader + esp header + tcp header + iSCSI
header + iSCSI data + esp trailer.

The authentication trailer is NOT encrypted.

On the receiving end, the cryptographic
checksum is recomputed on the same components as
mentioned earlier. This is compared to the value
stored in the ESP authentication trailer. The packet
is rejected if they do not match. If they are found to
be matching, the code proceeds to decrypt the tcp
header + iscsi header + iscsi data + esp trailer. After
decryption, the esp header placed between the IP
header and the tcp header is removed. The '50' in the
'protocol' field of the IP header is replaced by the
value in the last byte of the padding. The last-but-
one byte of the total payload (which is the length of
the padding) gives the number of padding bytes to
be stripped.

3 PERFORMANCE ANALYSIS

We have set up a User Mode Linux virtual
machines test bed with our Asymmetric IPsec
implementation.

The available alternative involves the following
computations, given in terms of 16 byte blocks – the
block size for the AES encryption algorithm. Table 1
reports the respective durations taken for encryption
and decryption during the round-trip of a single TCP
segment of 1024 bytes. In the table, the TCP header
is shown as consisting of two 16-byte blocks. This
has been done for two reasons.

In the proposed scheme, the TCP header + iSCSI
header unit needs to be an integer multiple of the
block size. Given that the iSCSI header is fixed at 48
bytes (which happens to be an integer multiple of 16
bytes), even if the TCP header were to have the
smallest possible size of 20 bytes, the TCP header
still needs to be padded with of 12 bytes so that the
sum of TCP header size + iSCSI header size comes
to be an integer multiple of the block size.
Incidentally, the TCP header on the virtual machines
was indeed observed to be 32 bytes long.

For the other scheme, even if the TCP header
were to be the smallest possible size of 20 bytes, the
fact remains that the total of TCP header + iSCSI
header + payload needs to be padded to become an
integer multiple of 16 bytes. The total number of 16-
byte blocks does not change. From the above
numbers, it is obvious that the proposed scheme is
expected to take only 36% (74/202) of the other
scheme. This gain in efficiency, combined with the
fact that the data never is left unencrypted outside of
the initiator, makes the proposed scheme attractive.

Table 1. Number of 16-byte blocks encrypted

during round-trip of 1 TCP segment

Under Available options
(3*64 + 2 *(2+3))

Under Proposed scheme
(64 + 2*(2+3))

Encrypted 202
blocks

Encrypted 74
blocks

Decrypted 202
blocks

Decrypted 74
blocks

From the experiments conducted on the test bed, we
observed as the file size increases from 1M and on,
the performance gains gravitate towards 25% - 30%
range. However, this is less than the expected 65%
gain as mentioned earlier. Running a profiler on the
implementation of the proposed scheme might throw
more light on whether there is room for
improvement.

6 CONCLUSION

An efficient asymmetric IPSec protocol
enhancement was proposed for reducing the
processing time and improving security of secure
iSCSI based online-backup systems. A development
test bed was constructed using UML virtual
machines to facilitate the development/debugging of
IPSec kernel/networking code. A benchmark test
bed with two real PCs was installed with the new
modified IPSec module and a set of test runs were
made to collect the performance data of the
proposed system. The analysis of the data from the
UML test bed does not show the expected
performance gains but running the same trials on
actual machines shows performance gains in the
25%-30% range.

REFERENCES

Kirk, J., 2006, “Symantec unveils remote data backup
software” by Jeremy Kirk,
http://www.computerworld.com/securitytopics/
security/story/0,10801,110148,00.html

Clark, T., 2002, “IP SANs: A Guide to iSCSI, iFCP, and
FCIP Protocols for Storage Area Networks”. Addison
Wesley Professional, 2002.

Shurtleff, J., 2004, “IP storage: A review of iSCSI, FCIP,
iFCP,” 2004.
http://www.iscsistorage.com/ipstorage.htm

RFC2401, 1998, “Security Architecture for IP,” Kent &
Atkinson.

	1 INTRODUCTION
	2 ASYMMETRIC IPSEC FOR ISCSI PROTOCOL DESIGN
	3 PERFORMANCE ANALYSIS
	6 CONCLUSION

