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Concurrent Multipath Transfer Using SCTP
Multihoming Over Independent End-to-End Paths
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Abstract—Concurrent multipath transfer (CMT) uses the
Stream Control Transmission Protocol’s (SCTP) multihoming
feature to distribute data across multiple end-to-end paths in a
multihomed SCTP association. We identify three negative side-ef-
fects of reordering introduced by CMT that must be managed
before efficient parallel transfer can be achieved: (1) unneces-
sary fast retransmissions by a sender; (2) overly conservative
congestion window (cwnd) growth at a sender; and (3) increased
ack traffic due to fewer delayed acks by a receiver. We propose
three algorithms which augment and/or modify current SCTP
to counter these side-effects. Presented with several choices as
to where a sender should direct retransmissions of lost data, we
propose five retransmission policies for CMT. We demonstrate
spurious retransmissions in CMT with all five policies and propose
changes to CMT to allow the different policies. CMT is evaluated
against AppStripe, which is an idealized application that stripes
data over multiple paths using multiple SCTP associations. The
different CMT retransmission policies are then evaluated with
varied constrained receive buffer sizes. In this foundation work,
we operate under the strong assumption that the bottleneck
queues on the end-to-end paths used in CMT are independent.

Index Terms—End-to-end, load balancing, load sharing, multi-
path, SCTP, transport layer.

I. INTRODUCTION

AHOST is multihomed if it can be addressed by multiple
IP addresses, as is the case when the host has mul-

tiple network interfaces. Though feasibility alone does not
determine adoption of an idea, multihoming is increasingly
economically feasible and can be expected to be the rule rather
than the exception in the near future, particularly when fault
tolerance is crucial. Multihomed nodes may be simultaneously
connected through multiple access technologies, and even
multiple end-to-end paths to increase resilience to path failure.
For instance, a mobile user could have simultaneous Internet
connectivity via a wireless local area network using 802.11b
and a wireless wide area network using GPRS.
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We propose using Concurrent Multipath Transfer (CMT)
between multihomed source and destination hosts to increase
an application’s throughput. CMT is the concurrent transfer of
new data from a source to a destination host via two or more
end-to-end paths.

The current transport protocol workhorses, TCP and UDP, do
not support multihoming; TCP allows binding to only one net-
work address at each end of a connection. At the time TCP was
designed, network interfaces were expensive components, and
hence multihoming was beyond the ken of research. Changing
economics and an increased emphasis on end-to-end fault tol-
erance have brought multihoming within the purview of the
transport layer. While concurrency can be arranged at other
layers (as discussed in Sections IV-D and VI), the transport
layer has the best knowledge to estimate end-to-end paths’
characteristics.

The Stream Control Transmission Protocol (SCTP) [1],
[2] is an IETF standards track protocol that natively supports
multihoming at the transport layer. SCTP multihoming allows
binding of one transport layer’s association (SCTP’s term
for a connection) to multiple IP addresses at each end of the
association. This binding allows a sender to transmit data to a
multihomed receiver through different destination addresses.
Simultaneous transfer of new data to multiple destination
addresses is currently not allowed due primarily to insufficient
research. This research attempts to provide that needed work.

Though CMT uses SCTP in our analysis, our goal is to
study CMT at the transport layer in general. The issues and al-
gorithms considered in this research would apply to any multi-
home-aware transport protocol. We chose SCTP primarily due
to lack of mature multihoming mechanisms in any other prac-
tical transport layer protocol and partly due to our expertise
with it. We note that the Datagram Congestion Control Pro-
tocol (DCCP) [3] does provide “primitive multihoming” at the
transport layer, but only for mobility support. DCCP multi-
homing is useful only for connection migration, and cannot be
leveraged for CMT.

Following preliminary concepts and terminology in
Section II, Section III specifies three algorithms resulting
in CMT —a protocol that uses SCTP’s multihoming feature
for correctly transferring data between multihomed end hosts
using multiple independent end-to-end paths. A CMT sender
can direct retransmissions to one of several destinations that
are receiving new transmissions. In Section IV, we present an
evaluation of CMT versus an “idealized” hypothetical appli-
cation which stripes data across multiple SCTP associations
(AppStripe). We also propose and evaluate five retransmission
policies for CMT. We conclude our discussion of CMT in
Section V, and discuss related work in Section VI.
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II. PRELIMINARIES

We first overview several ideas and mechanisms used by
SCTP; some are compared with TCP to highlight similarities
and differences. SCTP is defined in RFC2960 [2] with changes
and additions included in the Specification Errata [1]. An SCTP
packet, or protocol data unit (PDU), consists of one or more
concatenated building blocks called chunks: either control or
data. For the purposes of reliability and congestion control,
each data chunk in an association is assigned a unique trans-
mission sequence number (TSN). Since chunks are atomic,
TSNs are associated with chunks of data, as opposed to TCP,
which associates a sequence number with each data octet in
the bytestream. In our simulations, we assume one data chunk
per PDU for ease of illustration; each PDU thus carries, and is
associated with, a single TSN.

SCTP uses a selective ack scheme similar to SACK TCP
[4]. SCTP’s congestion control algorithms are based on RFC
2581 [5] and include SACK-based mechanisms for better per-
formance. Similar to TCP, SCTP uses three control variables:
a receiver’s advertised window (rwnd), a sender’s congestion
window (cwnd), and a sender’s slow start threshold (ssthresh).
However, unlike TCP’s cwnd, which reflects which data to send,
SCTP’s cwnd dictates only how much data can be sent. In SCTP,
rwnd is shared across an association. Since an SCTP association
allows multihomed source and destination endpoints, a source
maintains several parameters on a per destination basis: cwnd,
ssthresh, and round-trip time (RTT) estimates. An SCTP sender
also maintains a separate retransmission timer per destination.
RFC 2960 does not allow a sender to simultaneously send new
data on multiple paths. New data must be sent to a single pri-
mary destination, while retransmissions may be sent to any al-
ternate destination.

We operate under the assumption that the bottleneck queues
on the end-to-end paths used in CMT are independent. Overlap
in the paths is acceptable, but again bottlenecks are assumed
independent. Two motivating examples where this assumption
holds are telephony networks and battlefield networks.

(1) Signaling communication in telephony networks is
being migrated to IP and uses SCTP for transport.
Given the stringent availability requirements on these
networks, signaling devices are multihomed and are
inter-connected via multiple, independent end-to-end
paths for reasons of fault tolerance. The end-to-end
paths share no network resource, thus avoiding any
single point of failure [6].

(2) The U.S. Army’s proposed Future Combat System
for battlefield networks will equip mobile hosts with
multiple interfaces, often connecting to independent
wireless networks, for example, a terrestrial short-range
radio, and a long-range communication to either
low-flying or geostationary satellites. These different
communication technologies will provide multiple in-
dependent paths between nodes [7]

We recognize that our assumption of independent paths is a
strong one. If used in the presence of a shared bottleneck, CMT
will be as aggressive as multiple SCTP associations sharing
a bottleneck. This assumption can be dropped by employing

an end-to-end bottleneck detection technique [8]–[12]. We will
pursue this line of work in the future.

CMT schedules new data to different destinations as band-
width becomes available on corresponding paths, i.e., as corre-
sponding cwnds allow. When cwnd space is available simulta-
neously for two or more destinations, data is sent to these des-
tinations in arbitrary order—a reasonable transmission policy
when the CMT sender has no a priori knowledge of the paths’
characteristics. Our choice to use the full cwnd of a path before
using the other path was to reduce reordering.

For CMT, we do not disable heartbeats (HBs) or any other
SCTP feature. As long as the application has some data to send,
CMT will send data on all paths. Should the application stall in
providing data, then even with CMT, HBs should be sent on idle
paths. CMT does not need any feature modifications other than
the ones described in this paper.

A note on language and terminology. A reference to “cwnd
for destination X” means the cwnd maintained at the sender for
destination X, and “timeout on destination X” refers to the expi-
ration of a sender’s retransmission timer maintained for destina-
tion X. Since bottleneck queues on the end-to-end paths are as-
sumed independent, each destination in our topology uniquely
maps to an independent path. Thus, “cwnd for destination X”
may be used interchangeably with “cwnd for path Y,” where
path Y ends in destination X. SCTP acks carry cumulative and
selective ack (also called gap ack) information and are called
SACKs. In the paper, sometimes “SACK” is used rather than
“ack” to emphasize when an ack carries both cumulative and
selective acks.

The simulations presented in this paper use the University of
Delaware’s SCTP module for ns-2 [13], [14].

III. CMT ALGORITHMS

As is the case with TCP [15]–[17], reordering introduced
in an SCTP flow degrades performance. When multiple paths
being used for CMT have different delay and/or bandwidth char-
acteristics, significant packet reordering can be introduced in
the flow by a CMT sender. Reordering is a natural consequence
of CMT and is difficult to eliminate in an environment where
the end-to-end path characteristics are changing or unknown a
priori, as in the Internet. In this section, we identify and re-
solve the negative side-effects of sender-introduced reordering
by CMT in SCTP.

Several algorithms propose to eliminate the effects of re-
ordering due to the network [15]–[17]. In this paper, we discuss
reordering introduced at the sender and not in the network. The
sender has more information about sender-induced reordering
and can address this reordering more effectively.

To demonstrate the effects of reordering introduced in SCTP
by CMT, we use a simple simulation setup. Two dualhomed
hosts, sender with local addresses and , and receiver

with local addresses and , are connected by two
separate paths: Path 1 and Path 2 having
end-to-end available bandwidths of 0.2 and 1 Mb/s, respec-
tively. The round-trip propagation delay on both paths is 90 ms,
roughly reflecting the U.S. coast-to-coast delay. CMT sender
sends data to destinations and concurrently and uses a



IYENGAR et al.: CONCURRENT MULTIPATH TRANSFER USING SCTP MULTIHOMING OVER INDEPENDENT END-TO-END PATHS 953

Fig. 1. CMT with SCTP: evolution of the different cwnds.

scheduling algorithm that sends new data to a destination when
allowed by the corresponding cwnd.

The simulation results described in this section (Figs. 1 and 5)
both show cwnd evolution over time. The figures show the CMT
sender’s: (1) observed cwnd evolution for destination ;
(2) observed cwnd evolution for destination ; (3) calcu-
lated aggregate cwnd evolution [sum of (1) and (2)] ; and
(4) expected aggregate cwnd evolution . This last curve rep-
resents our initial performance goal for CMT—the sum of the
cwnd evolution curves of two independent SCTP runs, using
and as the primary destination, respectively.

Fig. 1 shows how, when using SCTP without any modifi-
cations, CMT reordering significantly hinders both and

’s cwnd growth. Normally, cwnd reductions are seen when a
sender detects loss, but, for Fig. 1, no packet loss was simulated.
The aggregate cwnd evolution is significantly below the
expected aggregate cwnd evolution .

We identify and resolve three negative side-effects of re-
ordering introduced by CMT that must be managed before the
full performance gains of parallel transfer can be achieved: (1)
unnecessary fast retransmissions at the sender (Section III-A);
(2) reduced cwnd growth due to fewer cwnd updates at the
sender (Section III-B); and (3) increased ack traffic due to
fewer delayed acks (Section III-C) [18]. While designing these
algorithms, we implicitly assumed that any retransmission will
be sent to the same destination as the original transmission. We
revisit this assumption in Section IV.

A note on notation: CMT refers to a host performing con-
current multipath transfer using current SCTP. CMT , CMT ,
and CMT refer to a host performing CMT with Split Fast
Retransmit (SFR) (Section III-A), Cwnd Update for CMT
(CUC) (Section III-B) and Delayed Ack for CMT (DAC)
(Section III-C), respectively. Multiple subscripts indicates use
of more than one algorithm.

A. Preventing Unnecessary Fast Retransmissions

When reordering is observed, a receiver sends gap reports
(i.e., gap acks) to the sender which uses the reports to detect loss
through a fast retransmission procedure similar to the one used

by TCP [2], [5]. With CMT, unnecessary fast retransmissions
can be caused due to reordering [19], with two negative conse-
quences: (1) since each retransmission is assumed to occur due
to a congestion loss, the sender reduces its cwnd for the destina-
tion on which the retransmitted data was outstanding and (2) a
cwnd overgrowth problem explained in [19] causes a sender’s
cwnd to grow aggressively for the destination on which the re-
transmissions are sent, due to acks received for original trans-
missions. In Fig. 1, each cwnd reduction observed for and

is due to an unnecessary fast retransmission. These unneces-
sary retransmissions are due to sender-induced reordering and
not spurious retransmissions due to network effects [20], [21].

Conventional interpretation of a SACK chunk in SCTP
(or SACK options in TCP) is that gap reports imply possible
loss. The probability that a TSN is lost, as opposed to being
reordered, increases with the number of gap reports received
for that TSN. Due to sender-induced reordering, a CMT sender
needs additional information to infer loss. Gap reports alone do
not (necessarily) imply loss, but a sender can infer loss using
gap reports and knowledge of each TSN’s destination.

Algorithm Details: The proposed solution to address the
side-effect of incorrect cwnd evolution due to unnecessary fast
retransmissions is the Split Fast Retransmit (SFR) algorithm
(Fig. 2). SFR extends a previous incarnation which could not
handle cycling changeover [19]. SFR introduces a virtual queue
per destination within the sender’s retransmission queue. A
sender then deduces missing reports for a TSN correctly using
SACK information in conjunction with state maintained about
the transmission destination for each TSN in the retransmission
queue. Thus, SFR enables a multihomed sender to correctly
apply the fast retransmission procedure on a per destination
basis. An advantage of SFR is that only the sender’s behavior
is affected. SFR introduces two additional variables per desti-
nation at a sender:

(1) highest_in_sack_for_dest—stores the highest TSN
acked per destination by the SACK being processed.

(2) saw_newack—a flag used during the processing of a
SACK to infer the causative TSN(s)’s destination(s).
Causative TSNs for a SACK are those TSNs which
caused the SACK to be sent (or TSNs that are acked in
this SACK, and are acked for the first time).

In Fig. 2, step (2) sets saw_newack to TRUE for the destina-
tions to which the newly acked TSNs were sent. Step (3) tracks
on a per destination basis, the highest TSN being acked. Step (4)
uses information gathered in steps (2) and (3) to aid in inferring
missing TSNs. Two conditions in step (4) ensure correct missing
reports: (a) TSNs to be marked should be outstanding on the
same destination(s) as TSNs which have been newly acked and
(b) at least one TSN, sent later than the missing TSN, but to the
same destination address, should be newly acked.

B. Avoiding Reduction in cwnd Updates

The cwnd evolution algorithm for SCTP [2] (and analogously
for SACK TCP [4], [5]) allows growth in cwnd only when a
new cumulative ack (cum ack) is received by a sender. When
SACKs with unchanged cum acks are generated (say due to re-
ordering) and later arrive at a sender, the sender does not modify
its cwnd. This mechanism again reflects the conventional view
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Fig. 2. SFR Algorithm: Eliminating unnecessary fast retransmissions.

Fig. 3. CWND update for the CMT (CUC) algorithm: Handling side-effect of reduced cwnd growth due to fewer cwnd updates.

that a SACK which does not advance the cum ack indicates pos-
sibility of loss due to congestion.

Since a CMT receiver naturally observes reordering, many
SACKs are sent containing new gap reports but not new cum
acks. When these gaps are later acked by a new cum ack, cwnd
growth occurs, but only for the data newly acked in the most re-
cent SACK. Data previously acked through gap reports will not
contribute to cwnd growth. This behavior prevents sudden in-
creases in the cwnd resulting in bursts of data being sent. Even
though data may have reached the receiver “in-order per des-
tination,” without changing the current handling of cwnd, the
updated cwnd will not reflect this fact.

This inefficiency can be attributed to the current design prin-
ciple that the cum ack in a SACK, which tracks the latest TSN
received in order at the receiver, applies to an entire associa-
tion, not per destination. TCP and current SCTP use only one
destination address at any given time to transmit new data to,
and hence, this design principle works fine. Since CMT uses
multiple destinations simultaneously, cwnd growth in CMT de-
mands tracking the latest TSN received in order per destination,
information not coded directly in a SACK.

We propose a cwnd growth algorithm to track the earliest
outstanding TSN per destination and update the cwnd, even in
the absence of new cum acks. The algorithm uses SACKs and
knowledge of transmission destination for each TSN to deduce
in-order delivery per destination. The crux of the CUC algo-

rithm is to track the earliest outstanding data per destination
and use SACKs which ack this data to update the corresponding
cwnd. In understanding our proposed solution, we remind the
reader that gap reports alone do not (necessarily) imply conges-
tion loss; SACK information is treated only as a concise descrip-
tion of the TSNs received by the receiver.

Algorithm Details: Fig. 3 shows the proposed Cwnd Update
for CMT (CUC) algorithm. A pseudo-cumack tracks the earliest
outstanding TSN per destination at the sender. An advance in a
pseudo-cumack triggers a cwnd update for the corresponding
destination, even when the actual cum ack is not advanced. The
pseudo-cumack is used for cwnd updates; only the actual cum
ack can dequeue data in the sender’s retransmission queue since
a receiver can reneg on data that is not cumulatively acked. An
advantage of CUC is that only the sender’s behavior is affected.
The CUC algorithm introduces three variables per destination
at a sender:

(1) pseudo_cumack—maintains earliest outstanding TSN;
(2) new_pseudo_cumack—flag to indicate if a new pseudo-

cumack has been received;
(3) find_pseudo_cumack—flag to trigger search for a new

pseudo-cumack. This flag is set after a new pseudo-
cumack has been received.

In Fig. 3, step (2) initiates a search for a new pseudo_cumack
by setting find_pseudo_cumack to TRUE for the destinations
on which TSNs newly acked were outstanding. A cwnd update
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Fig. 4. Delayed ack for CMT (DAC) algorithm: Handling side-effect of increased ack traffic.

is also triggered by setting new_pseudo_cumack to TRUE for
those destinations. Step (3) then processes the outstanding TSNs
at a sender, and tracks on a per destination basis, the TSN ex-
pected to be the next pseudo_cumack. Step (4) finally updates
the cwnd for a destination if a new pseudo_cumack was seen for
that destination.

C. Curbing Increase in Ack Traffic

Sending an ack after receiving every two data PDUs (i.e.,
delayed acks) in SCTP (and TCP) reduces ack traffic in the
Internet, thereby saving processing and storage at routers on the
ack path. SCTP specifies that a receiver should use the delayed
ack algorithm as given in RFC 2581, where acks are delayed
only as long as the receiver receives data in order. Reordered
PDUs should be acked immediately [5]. With CMT’s frequent
reordering, this rule causes an SCTP receiver to frequently not
delay acks. Hence, a negative side-effect of reordering with
CMT is increased ack traffic. To prevent this increase, we pro-
pose that a CMT receiver ignore the rule mentioned above. That
is, a CMT receiver does not immediately ack an out-of-order
PDU, but delays the ack. Thus, a CMT receiver always delays
acks, irrespective of whether or not data is received in order.1

Though this modification eliminates the increase in ack traffic,
RFC 2581’s rule has another purpose which gets hampered.

An underlying assumption that pervades SCTP’s (and TCP’s)
design is that data in general arrives in order; data received
out-of-order indicates possible loss. According to RFC 2581,
a receiver should immediately ack data received above a gap in
the sequence space to accelerate loss recovery by triggering the
fast retransmit algorithm [5]. In SCTP, four acks with missing
reports for a TSN indicate that a receiver received at least four
data PDUs sent after the missing TSN. Receipt of four missing
reports for a TSN triggers the sender’s fast retransmit algorithm.
In other words, the sender has a reordering threshold (or dupack
threshold) of four PDUs. Since a CMT receiver cannot distin-
guish between loss and reordering introduced by a CMT sender,

1We do not modify a receiver’s behavior when an ack being delayed can be
piggybacked on reverse path data, or when the delayed ack timer expires.

the modification suggested above by itself would cause the re-
ceiver to delay acks even in the face of loss. When a loss does
occur with our modification to a receiver, fast retransmit would
be triggered by a CMT sender only after the receiver receives
eight(!) data PDUs sent after a lost TSN—an overly conserva-
tive behavior.

The effective increase in reordering threshold at a sender can
be countered by reducing the actual number of acks required
to trigger a fast retransmit at the sender, i.e., by increasing the
number of missing reports registered per ack. In other words, if
a sender can increment the number of missing reports more ac-
curately per ack received, fewer acks will be required to trigger
a fast retransmit. A receiver can provide more information in
each ack to assist the sender in accurately inferring the number
of missing reports per ack for a lost TSN. We propose that in
each ack, a receiver report the number of data PDUs received
since the previous ack was sent. A sender then infers the number
of missing reports per TSN based on the TSNs being acked in
a SACK, number of PDUs reported by the receiver, and knowl-
edge of transmission destination for each TSN. We note that
additionally, heuristics (as proposed in [15]) may be used at a
CMT sender to address network induced reordering.

Algorithm Details: The proposed Delayed Ack for CMT
(DAC) algorithm (Fig. 4) specifies a receiver’s behavior on
receipt of data, and also a sender’s behavior when the missing
report count for a TSN needs to be incremented.2 Since SCTP
(and TCP) acks are cumulative, loss of an ack will result in loss
of the data PDU count reported by the receiver, but the TSNs
will be acked by the following ack. Receipt of this following
ack can cause ambiguity in inferring missing report count per
destination. Our algorithm conservatively assumes a single
missing report count per destination in such ambiguous cases.
The DAC algorithm requires modifications to both the sender
and the receiver.

No new variables are introduced in this algorithm, as we build
on the SFR algorithm. An additional number is reported in the
SACKs for which we use the first bit of the flags field in the

2The DAC algorithm also can be used when ack traffic lesser than with de-
layed acks is desirable, such as in data center environments [23].
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Fig. 5. CMT : evolution of the different cwnds.

SACK chunk header—0 indicates a count of one PDU (default
SCTP behavior), and 1 indicates two PDUs.

In Fig. 4, at the receiver side, steps (1) and (2) are self ex-
planatory. The sender side algorithm modifies step (4) of SFR,
which determines whether missing report count should be in-
cremented for a TSN. The DAC algorithm dictates how many
to increment by. Step 4-i) checks if only one destination was
newly acked and allows incrementing missing reports by more
than one for TSNs outstanding to that destination. Further, all
newly acked TSNs should have been sent later than the missing
TSN. If there are newly acked TSNs that were sent before the
missing TSN, step 4-i-a) conservatively increments by only one.
If more than one destinations are newly acked, step (4-ii) con-
servatively increments by only one.

Fig. 5 shows cwnd evolution for CMT after including the
SFR, CUC and DAC algorithms, i.e., CMT . With the neg-
ative side-effects addressed, we hoped to see CMT ’s cwnd
growth to come close to the expected aggregate cwnd growth.
In fact, we observed that CMT cwnd growth exceeded the
expected aggregate cwnd growth!

To explain this surprising result, we remind the reader that the
expected aggregate cwnd is the sum of the cwnd growth of two
independent SCTP runs, each using one of the two destination
addresses as its primary destination. In each SCTP run, one de-
layed ack can increase the cwnd by at most one MSS during slow
start, even if the ack acks more than one MSS worth of data. On
the other hand, we observe with CMT that, if a delayed ack
simultaneously acks an MSS of data on each of the two desti-
nations, the sender simultaneously increases each of two cwnds
by one MSS. Thus, a single delayed ack in CMT that acks
data flows on two paths causes an aggregate cwnd growth of two
MSS. With delayed acks during slow start, each SCTP associ-
ation grows its cwnd by 1.5 times each RTT, whereas CMT
can increase its cwnd by more than 1.5 times in each RTT (up to
two times in the best case where every delayed ack acks an MSS
on each path). Delayed acks which simultaneously contribute to
the cwnd growth of two destinations helped the aggregate cwnd
growth of CMT exceed expected aggregate cwnd growth.

This phenomenon occurs in slow start, therefore benefiting
CMT initially and during some timeout recovery periods.

Fig. 6. Schematic: AppStripe and CMT.

Though the aggregate cwnd growth exceeds expected aggregate
cwnd growth, we argue that the sender is not overly aggressive,
i.e., not TCP-unfriendly. The sender is able to clock out more
data due to delayed acks that ack data flows on multiple paths.
The sender does not create bursts of data during slow start, and
builds up the ack clock as expected. Though it does not improve
CMT ’s performance significantly, this phenomenon demon-
strates a benefit of sequence space sharing among flows on dif-
ferent paths that occurs within a CMT association.

IV. CMT PERFORMANCE EVALUATION

With correct behavior ensured by CMT (henceforth re-
ferred to simply as CMT), we now evaluate its performance.
In Section IV-A, we discuss our methodology for evaluating
CMT. In Section IV-B, we present five retransmission policies
for CMT. In Section IV-C, we identify two modifications that
must be made to CMT to accomodate the different retransmis-
sion policies. In Section IV-D, we evaluate CMT against App-
Stripe—our reference application for performance evaluation of
CMT. In Section IV-E, we compare and analyze the different re-
transmission policies to decide upon a recommended policy for
CMT.

A. Evaluation Methodology

As a reference, we use AppStripe—a hypothetical multi-
home-aware application that achieves the highest throughput
possible by an application that distributes data across multiple
SCTP associations (see Fig. 6). We emphasize that AppStripe
performs idealized scheduling at the application layer and is
not doable in practice. End-to-end load sharing is performed at
the application layer by AppStripe and at the transport layer by
CMT.

We simulate AppStripe by postprocessing simulation traces.
We simulate separate file transfers over multiple separate SCTP
associations, each on a separate path to the receiver. To find an
“optimal” transfer time, we use these two traces to extract the
time when the total amount of data transferred, across the two
associations, equals the desired transfer size.

AppStripe hypothetically assumes the ability of an applica-
tion to schedule data to each transport association immediately
when a transport association is able to send data to a receiver.
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Fig. 7. Simulation topology used for evaluation.

Such an ability requires a complex application-transport inter-
face, which to our knowledge, is not realized in practice today. A
typical application distributing data over multiple associations
would have to use a heuristic to decide the fraction of data to be
scheduled on each association. Thus, AppStripe’s performance
in our paper represents the best achievable separation of data
over multiple paths.

The simulation topology (see Fig. 7) is simple—the edge
links represent the last hop, and the core links represent
end-to-end conditions on the Internet. This simulation topology
does not account for effects seen in the Internet and other
real networks such as network induced reordering and delay
spikes; these effects are beyond the scope of this study. Our
simulation evaluation provides insight into the fundamental
differences between AppStripe and CMT, and between the
different retransmission policies in a constrained environment.
We chose a simple topology to avoid influence of other effects,
and to focus on performance differences which we believe
should hold true in a real environment as well.3 The loss rate
on Path 1 is maintained at 1% and on Path 2 is varied from 1 to
10%. A loss rate of 1% means a forward path loss rate of 1%
and a reverse path loss rate of 1%.

Our choice of simulation parameters was based on our under-
standing that end-to-end throughput is influenced by loss rate
and delay. We focus on loss-rate differences since we believe
loss rate has a more significant impact on the retransmission
policy. We are currently studying the influence of different de-
lays and delay combinations on CMT [23].

The absolute bandwidths were chosen to be sufficiently high
so that end-to-end delays are dominated by propagation delay.
The relative bandwidths of the links were chosen so that any
queuing happens at intermediate routers where a uniform loss
rate is applied to the packets. End-to-end delay was chosen as
45 ms to represent a typical U.S. coast-to-coast delay.

B. CMT Retransmission Policies

Multiple paths present an SCTP sender with several choices
of where to send a retransmission. However, these choices
are not well-informed, since SCTP restricts sending new data,
which can act as probes for information (such as available
bandwidth, loss rate, and RTT) to only one primary destination.

3The simulation topology is clearly simplistic. We are currently doing further
study involving more complex topologies with variable cross traffic [24]. Our
initial results support our conclusions in this paper.

Consequently, an SCTP sender has minimal information about
other paths to a receiver. On the other hand, a CMT sender
maintains more accurate information about all paths, since
new data are being sent to all destinations concurrently. This
information allows a CMT sender to better decide where to
retransmit.

We present five retransmission policies for CMT [24]. In four
policies, a retransmission may be sent to a destination other than
the one used for the original transmission. Previous research on
SCTP retransmission policies shows that sending retransmis-
sions to an alternate destination degrades performance primarily
because of the lack of sufficient traffic on alternate paths [25].
With CMT, data is concurrently sent on all paths, and thus the
results in [25] are not applicable. The five retransmission poli-
cies for CMT are as follows.

• RTX-SAME—Once a new data chunk is scheduled and
sent to a destination, all retransmissions of the chunk are
sent to the same destination (until the destination is deemed
inactive due to failure [2]).

• RTX-ASAP—A retransmission of a data chunk is sent to
any destination for which the sender has cwnd space avail-
able at the time of retransmission. If multiple destinations
have available cwnd space, one is chosen randomly.

• RTX-CWND—A retransmission is sent to the destination
for which the sender has the largest cwnd. A tie is broken
by random selection.

• RTX-SSTHRESH—A retransmission is sent to the desti-
nation for which the sender has the largest ssthresh. A tie
is broken by random selection.

• RTX-LOSSRATE—A retransmission is sent to the desti-
nation with the lowest loss-rate path. If multiple destina-
tions have the same loss rate, one is selected randomly.

Of the policies, RTX-SAME is simplest. RTX-ASAP is a
“hot-potato” policy—retransmit as soon as possible without re-
gard to loss rate. RTX-CWND and RTX-SSTHRESH practi-
cally track and attempt to move retransmissions onto the path
with the estimated lowest loss rate. Since ssthresh is a slower
moving variable than cwnd, the values of ssthresh may better
reflect the conditions of the respective paths. RTX-LOSSRATE
uses information about loss rate provided by an “oracle”—infor-
mation that RTX-CWND and RTX-SSTHRESH estimate. This
policy represents a hypothetically ideal case; hypothetical since
in practice, a sender typically does not know a priori path loss
rates; ideal since the path with the lowest loss rate has highest
chance of having a packet delivered. We hypothesized that re-
transmission policies that take loss rate into account would out-
perform ones that do not.

C. Modifications to Protocol Mechanisms

Two modifications are needed to allow redirecting retrans-
missions to a different destination than the original.

1) CUCv2: Modified CUC Algorithm: The CUC algorithm
(Fig. 3) enables correct cwnd updates in the face of increased
reordering due to CMT. To recap, this algorithm recognizes a
set of TSNs outstanding per destination, and the per-destina-
tion pseudo_cumack traces the left edge of this list of TSNs,
per destination. CUC assumes that retransmissions are sent to
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Fig. 8. CUCv2: Modified CUC algorithm.

the same destination as the original transmission. The per-des-
tination pseudo_cumack therefore moves whenever the corre-
sponding left edge is acked; the TSN on the left edge being
acked may or may not have been retransmitted.

If our assumption about the retransmission destination is vi-
olated and a retransmission is made to a different destination
from the original, CUC cannot faithfully track the left edge on
either destination. We modify CUC to permit the different re-
transmission policies. The modified algorithm, named CUCv2,
is shown in Fig. 8.

CUCv2 recognizes that a distinction can be made about
the TSNs outstanding on a destination—those that have been
retransmitted, and those that have not. CUCv2 maintains two
left edges for these two sets of TSNs—rtx_pseudo_cumack and
pseudo_cumack. Whenever either of the left edges moves, a
cwnd update is triggered.

2) Spurious Timeout Retransmissions: When a timeout oc-
curs, an SCTP sender is expected to bundle and send as many
of the earliest TSNs outstanding on the destination for which
the timeout occurred as can fit in an MSS (Maximum Segment
Size) PDU. Per RFC 2960, more TSNs that are outstanding on
that destination “should be marked for retransmission and sent
as soon as cwnd allows (normally when a SACK arrives).” This
rule is intuitive. While sending, retransmissions are generally
given priority over new transmissions. As in TCP, the cwnd is
also collapsed to 1 MSS for the destination on which a timeout
occurs.

A timeout retransmission can occur in SCTP (as in TCP) for
several reasons. One reason is loss of the fast retransmission

of a TSN. Consider Fig. 9. When a timeout occurs due to loss
of a fast retransmission, some TSNs that were just sent to the
destination on which the timeout occurred are likely awaiting
acks (in Fig. 9, TSNs and ). These TSNs get in-
correctly marked for retransmission on timeout. With the dif-
ferent CMT retransmission policies, these retransmissions may
be sent to a different destination than the original transmission.
In Fig. 9, spurious retransmissions of TSNs and are
sent to destination , on receipt of acks freeing up cwnd space
for destination . Spurious retransmissions are exacerbated in
CMT, as shown through this illustration, due to the possibility
of sending data (including retransmissions) to multiple destina-
tions concurrently.

We simulated the occurrence of such spurious retransmis-
sions with the different retransmission policies in CMT. The
simulation topology used was the one described in Section IV-A.
Fig. 10(a) shows the ratio of retransmissions relative to the
number of actual packet drops at the router. Ideally, the two
numbers should be equal; all curves should be straight lines at

. Fig. 10(a) shows that spurious retransmissions occur
commonly in CMT with the different retransmission policies.

We propose a heuristic to avoid these spurious retransmis-
sions. Our heuristic assumes that a timeout cannot be triggered
on a TSN until the TSN has been outstanding for at least one
RTT. Thus, if a timeout is triggered, TSNs which were sent
within one RTT are not marked for retransmission. We use an
average measure of the RTT for this purpose—the smoothed
RTT, which is maintained at a sender. This heuristic requires
the sender to maintain a timestamp for each TSN indicating the
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Fig. 9. Example of spurious retransmissions after timeout in CMT.

Fig. 10. Spurious retransmissions in CMT: (a) without RTT heuristic and (b) with RTT heuristic.

time at which the TSN was last transmitted (or retransmitted).
Fig. 10(b) shows how the application of this heuristic dramati-
cally reduces spurious retransmissions.

D. Performance of CMT Versus AppStripe

Fig. 11(a) compares the time taken to transfer an 8-MB file
using CMT with the five retransmission policies versus using
AppStripe. The -axis represents different loss rates on Path 2.
Each plotted value is the mean of at least 30 simulation runs.
Overall, AppStripe [ in Fig. 11(a)] performs worst, and CMT
using any of the retransmission policies performs better than
AppStripe; some policies better than others. At a 7% loss rate on
Path 2, AppStripe takes 40.4 s to transfer an 8 MB file, whereas
CMT using RTX-SAME or RTX-CWND takes 35.5 or 33.2 s,
respectively. We first discuss the performance difference be-
tween CMT in general and AppStripe.

CMT using any retransmission policy performs better than
AppStripe, particularly as the loss rate on Path 2 increases. Note
that our AppStripe represents the best possible performance ex-
pected by an application that stripes data over multiple SCTP as-
sociations. AppStripe is an idealized case; CMT’s performance
gain over a practical AppStripe implementation would be even
larger since a practical implementation has to optimally stripe
data across paths that have different and changing delays and
loss rates. Such striping may require information from the trans-
port layer (such as current cwnd and RTT), that may not be
readily available to the application.

CMT performs better than AppStripe for two reasons. First,
and most significant, CMT is more resilient to reverse path loss
than AppStripe. CMT uses a single sequence space (TSN space,
used for congestion control and loss detection and recovery)
across an association’s multiple paths, whereas AppStripe by
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Fig. 11. Path 1 loss rate = 1%, performance of AppStripe versus CMT with different policies, under (a) equal path delays (Path 1 = 45ms, Path 2 = 45ms) and
(b) unequal path delays (Path 1 = 45 ms, Path 2 = 90 ms).

design uses an independent sequence space per path. Since acks
are cumulative, sharing of sequence spaces across paths helps a
CMT sender receive ack info on either of the return paths. Thus,
CMT effectively uses both return paths for communicating ack
info to the sender, whereas each association in AppStripe cannot
help the other “ack-wise.” These results demonstrate the signif-
icant result that CMT’s sharing of sequence space across paths
is an inherent benefit that performing load sharing at the trans-
port layer has over performing it at the application layer.

We emphasize that ack loss can cause throughput degrada-
tion, especially at higher loss rates. Ack loss can delay fast
retransmissions by one or more RTTs, thus delaying cwnd
increase. Increased ack loss can also increase the number of
timeout retransmissions when the window is small (say during
the initial part of an association, or after timeout recovery).
These performance penalties add up over the lifetime of an
association. (See Figs. 6 and 7(a) in [24] for a demonstration of
throughput degradation due to ack loss.)

Second, CMT gets faster overall cwnd growth than AppStripe
in slow start (see Section III-C). As loss increases, the number
of timeouts increases, and since slow start follows a timeout, the
sender spends more time overall in slow start.

Extensive simulations with unequal path delays (results not
included), show that unequal path delays do not impact the rela-
tive performance of AppStripe and CMT with the different poli-
cies. Fig. 11(b) demonstrates this consistent behavior with un-
equal path delays of 45 ms on Path 1 and 90 ms on Path 2. Note
that these results are consistent with Fig. 11(a) which has equal
delays of 45 ms on both paths.

E. Performance of Different Retransmission Policies for CMT

Of the retransmission policies for CMT in Fig. 11(a) and (b),
RTX-SAME performs marginally but consistently worse
than RTX-ASAP , which in turn performs as well as the loss
rate based policies—RTX-SSTHRESH , RTX-CWND ,
and RTX-LOSSRATE . While the performance difference
between the retransmission policies in Fig. 11 is not significant,
these results use an 8-MB receiver’s buffer (rbuf) that does not

constrain the sender—an unrealistic assumption which we will
now drop [26].

Fig. 12(a) shows the time taken for a CMT sender to transfer
an 8-MB file when the rbuf is set to 64KB, using the five re-
transmission policies. RTX-SAME is the simplest to implement,
but performs worst. The performance difference between RTX-
SAME and other policies increases as the loss rate on Path 2
increases. RTX-ASAP performs better than RTX-SAME, but
still worse than RTX-LOSSRATE, RTX-SSTHRESH and RTX-
CWND. The three loss rate based policies perform equally.

Fig. 12(b) shows the number of retransmission timeouts ex-
perienced when using the different policies. This figure shows
that performance improvement in using RTX-LOSSRATE,
RTX-CWND, and RTX-SSTHRESH is due to the reduced
number of timeouts. A lost transmission may be recovered via
a fast retransmission, but a lost retransmission can be recovered
only through a timeout. RTX-SAME does not consider loss
rate in choosing a retransmission destination and consequently
experiences the largest number of timeouts due to increased
loss of retransmissions.

RTX-ASAP does not consider loss rate and performs
better than RTX-SAME. This improved performance with
RTX-ASAP is attributed to cwnd space availability on
both destinations most of the times a retransmission is trig-
gered—(1) one retransmission is normally allowed to be sent
to the destination that has just suffered loss and (2) the ack that
triggers a retransmission (in case of fast retransmission) may
have created cwnd space for the other destination. From (1)
and (2), RTX-ASAP has cwnd space availability on both des-
tinations to send a retransmission. Consequently, RTX-ASAP
randomly chooses a destination causing a reduction in timeouts
over RTX-SAME which pins its TSNs to the same destination.
The three loss rate based policies effectively choose the better
destination to redirect retransmissions to, and thus show fewer
timeouts than RTX-ASAP.

Fig. 13(a) and (b) shows performance of the retransmission
policies with rbuf sizes of 32 and 128 kB, respectively. To-
gether with Fig. 12(a), we can see that the smaller the rbuf, the
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Fig. 12. rbuf = 64 kB and Path 1 loss rate = 1%. (a) CMT time to transfer 8-MB file. (b) Retransmission timeouts for CMT with different policies.

Fig. 13. Path 1 loss rate = 1%, CMT time to transfer 8-MB file using (a) rbuf = 32 kB; (b) rbuf = 128 kB.

more important the choice of retransmission policy. These re-
sults show that a retransmission policy that considers loss out-
performs policies that do not, particularly in the practical re-
ality where rbuf is constrained.

Figs. 12 and 13 show that rbuf size has a strong impact on
CMT performance. When CMT is used over paths with different
loss rates, a constrained rbuf that is shared within an association
causes performance degradation due to rbuf blocking. Degrada-
tion increases with a reduction in rbuf size and/or an increase in
the number of timeouts [26], [27]. Using loss rate-based policies
alleviates rbuf blocking since the number of timeouts is reduced.
From Figs. 12(a) and 13, as rbuf size decreases, rbuf blocking in-
creases, and loss rate based policies perform increasingly better
than the other policies. (See [26] and [27] for an extensive dis-
cussion of rbuf blocking.)

Figs. 12 and 13 suggest that any retransmission policy that
takes loss rate into account will likely improve load distribu-
tion for both new transmissions and retransmissions. Retrans-
missions will be redirected to a lower loss rate path, avoiding
inactive timeout recovery periods, and allowing new transmis-

sions to be sent on the higher loss rate path, thus maintaining a
flow of data on both paths. Policies that take loss rate into ac-
count avoid repeated retransmissions and timeouts—thus also
improving the timeliness of data.

Of three loss-rate-based policies, the practical ones to im-
plement are RTX-CWND and RTX-SSTHRESH. Both perform
equally under all conditions considered. We therefore choose
both RTX-SSTHRESH and RTX-CWND as the recommended
retransmission policies for CMT.

V. SUMMARY AND DISCUSSION

We identified three negative side-effects of introducing CMT
with SCTP, and proposed algorithms to avoid these side-ef-
fects. We compared CMT against AppStripe, an idealized data
striping application and showed that a shared sequence space in
CMT improves performance and increases resilience to reverse
path loss. We also presented and evaluated five retransmission
policies for CMT. Our results reveal that a retransmission policy
that considers loss rate performs better than one that does not,
particularly in the practical reality where rbuf is constrained. We
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recommend both RTX-SSTHRESH and RTX-CWND retrans-
mission policies for CMT.

CMT also inherently adds to SCTP’s fault tolerance, which
is a major motivation for and benefit of multihoming. An SCTP
sender gathers information about paths to alternate destination
addresses through explicit probes. Since explicit probes are in-
frequent, a sender has inadequate information and consequently,
is unable to make an informed decision about which destina-
tion to use when the primary destination becomes unreachable.
A CMT sender avoids this problem because data sent concur-
rently on all paths act as frequent implicit probes, reflecting cur-
rent conditions of paths to all destinations. This information will
better assist a CMT sender in detecting and responding to net-
work failures.

A. Alternative Design

Another approach to accomplishing CMT would be to define
a separate sequence space per destination. This solution simpli-
fies some issues, but also introduces its own complications.

• What sequence number is used for a packet that is retrans-
mitted to a destination other than the original? What hap-
pens to the sequence number used for the original desti-
nation (is it reused, or is it discarded thereby introducing
a gap?) Any solution will likely require additional reliable
signaling between sender and receiver.

• During association closure, the final sequence number
must be agreed upon by sender and receiver to ensure
complete reliable transfer. Introducing multiple sequence
number spaces complicates this issue.

• Several mechanisms are understood with a single sequence
space, for example, reneging. Managing per destination se-
quence numbering for these mechanisms requires careful
examination.

• Separating sequence spaces causes separation of ack info
per path. This separation cannot provide CMT’s increased
resilience to reverse path loss and reverse path failure as
shown in Section IV-D.

We believe that the complexities introduced by such a design
outweigh the benefits.

B. CMT in Other Environments

1) Small file transfers: Small file transfers (web transfers)
suffer from the problem that they are more prone to timeouts be-
cause the number of packets in the transfer may be insufficient to
trigger a fast retransmission. We have not tested CMT behavior
with small files, but note the following. Spreading a small file
transfer over multiple paths further decreases the ability to have
fast retransmit, and thus will decrease expected throughput. At
the same time, using the aggregated bandwidth of multiple paths
should tend to increase throughput. We suspect that the perfor-
mance degradation due to timeouts may dominate with small
file transfers using CMT.

2) Failure scenarios: SCTP uses consecutive timeouts
as an indication of failure (recommended value of is 6 [2]).
CMT’s failure detection/response mechanisms and latency are
currently the same as those of SCTP. In the presence of failure,
we observed that CMT’s behavior is the same as that of SCTP
with a failed primary path (brief transmission periods followed

by long silence periods). We believe that further optimization
is possible to improve CMT performance during failures, and
is part of our future work.

C. Future Work

Several items can be pursued in the future. First, our as-
sumption of independent paths is a strong one. To drop this
assumption, we plan to employ an end-to-end bottleneck detec-
tion technique in CMT [8]–[11]. Second, since CMT sends data
to all receiver destinations, a CMT sender has more accurate
information about paths to a receiver than SCTP does. We
believe this information can be leveraged for improving failure
detection and response latency. Third, CMT may increase
the end-to-end delay seen by an application due to increased
reordering at a sender. We plan to study CMT’s impact on
this delay, and mechanisms to mitigate it. Fourth, TCP-aware
load balancers at the network layer, which make sure that
packets belonging to one connection take the same path, are
commonplace. A performance comparison of CMT against
such load balancing would be interesting. Finally, with the
RTX-SSTHRESH or RTX-CWND policy, retransmissions are
all sent to the lower loss rate path. It would be interesting to
investigate if these policies create oscillatory behavior, as the
extra retransmissions may increase the loss rate of the lower
loss rate path.

VI. RELATED WORK

A. Load Balancing at the Application Layer

Several applications [28], [29] use multiple TCP connections
to increase throughput in high bandwidth networks. These ap-
plications load balance over the same path to a receiver, whereas
CMT distributes data over multiple independent paths.

Content Networks [30] provide an infrastructure for connec-
tion-level load balancing at the granularity of TCP connections.
Connection level load balancing is useful for short TCP connec-
tions such as web requests and responses, but can be suboptimal
for long bulk data transfers, where the server is constrained to
a single path throughout the transfer. CMT provides load bal-
ancing within a transport connection.

B. Load Balancing at the Transport Layer

Load balancing is desirable at the transport layer since it has
the most accurate information about end-to-end path(s). CMT
uses loss and delay information for redirection of retransmis-
sions—such decisions are best made in the transport layer. We
believe that load balancing at the application layer increases
code redundancy and room for error by requiring independent
implementations in each application.

Hsieh et al. [31] propose pTCP (parallel TCP) which pro-
vides an infrastructure for data striping within the transport
layer. pTCP has two components—Striped connection Man-
ager (SM) and TCP-virtual (TCP-v). The TCP-v’s are separate
connections that are managed by the SM. TCP-v probes the path
and performs congestion control and loss detection/recovery,
while the SM decides which data is sent on which TCP-v. This
decoupling of functionality avoids some pitfalls of application
layer approaches, and allows for intelligent scheduling of
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transmissions and retransmissions. A significant issue with
pTCP is its complexity. As the authors note, maintenance of
multiple Transmission Control Blocks at a sender can be a re-
source sink [31]. Implementation is also complex, since pTCP
replicates transport layer functionality such as connection
establishment/teardown and checksum calculations. Further,
pTCP has several unresolved issues. If both sender and receiver
are multihomed with two IP addresses each, pTCP does not
address how a sender decides on which sender-receiver pairs
to establish TCP connections—which is a complex problem.
Plugging transport protocols into pTCP also requires nontrivial
modifications to the transport protocols themselves. CMT, on
the other hand, modifies SCTP, a transport protocol which has
built-in mechanisms for multihoming.

mTCP [32], an effort that is parallel with ours, implements
a transport layer solution to aggregate bandwidth across mul-
tiple end-to-end paths. mTCP, like CMT, uses a single sequence
space across paths. mTCP significantly modifies TCP to use
multiple paths provided by an overlay network (RON [33]) and
employs mechanisms to handle reordering side-effects. mTCP
also uses a shared bottleneck detection mechanism to detect and
respond to shared bottlenecks, but [32] lacks extensive testing of
the proposed method. RON is assumed as the underlying routing
layer, and is required for obtaining multiple paths; that is, mTCP
cannot be used on an arbitrary IP network. On the other hand,
CMT leverages SCTP’s multihoming mechanisms and can be
used on any IP network. mTCP also uses a single reverse path for
ack traffic, thereby requiring additional mechanisms to detect
failure of the single ack path, and causing performance degra-
dation during failure.

Al et al. [34] suggest ideas for load sharing that requires
additional metadata in the SCTP PDUs. We believe that the
SCTP (and TCP-SACK) PDUs already contain sufficient in-
formation for the data sender to infer the per-path ordering
information that [34] explicitly codes as metadata. [34] fails to
suggest modified procedures for mechanisms which are imme-
diately affected, such as initialization of the per-path sequence
numbers, association initialization and shutdown procedures
with multiple sequence numbering schemes, and response to
reneging by a receiver. We have also seen that sharing sequence
number space across paths improves performance whereas
[34] uses a separate sequence number space per path and will
therefore not see CMT’s performance benefits. Further, [34]
assumes that the rbuf does not constrain a sender which is
unrealistic in practice.

Argyriou et al. [35] provide techniques for bandwidth aggre-
gation with SCTP, but do not present and analyze their protocol
modifications to SCTP. The modified fast retransmission algo-
rithm is simplistic and assumes information that is not avail-
able to an SCTP receiver. For instance, the implicit assumption
that a receiver will be able to differentiate a packet loss from re-
ordering is unrealistic. [35] also ignores the impact of a bounded
rbuf.

C. Load Balancing at the Network Layer

Phatak and Goff [36] propose distributing data at the net-
work layer transparent to the higher layers using IP-in-IP
encapsulation. The authors identify conditions under which

this mechanism avoids incorrect retransmission timeouts. The
proposed solutions assume end-to-end delays are dominated
by fixed transmission delay, and do not apply to propagation
delay dominated paths, or paths with dynamically changing
bandwidths and delays. CMT’s algorithms do not require such
assumptions and will operate under dynamic and propagation
delay dominated conditions.

Several proposals exist for multipath routing—routing
packets from a source to a destination network over multiple
paths. However, different paths are likely to exhibit different
RTTs, thus introducing packet reordering. TCP’s performance
degrades in the presence of increased reordering. To enable
optimal load balancing at intermediate routers without affecting
end-to-end TCP performance, modifications to TCP have also
been proposed [15], [16], [17], [37]. These proposals augment
and/or modify TCP’s congestion control mechanisms to cope
with reordering introduced by network layer load balancing;
the burden of actually using multiple paths in the network is
left to the intermediate routers.

In the Internet, the end user has knowledge of, and control
over, only the multihomed end hosts, not the intermediate
routers. In such cases the end host cannot dictate or govern use
of multiple paths in the network. However, the end host can
use multiple end-to-end paths available to the host [38], thus
motivating CMT at the transport layer.
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