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Abstract—We formulate a notion of local stabilization, by which
a system self-stabilizes in time proportional to the size of any per-
turbation that changes the network topology or the state of nodes.
The notion implies that the part of the network involved in the
stabilization includes at most the nodes whose distance from the
perturbed nodes is proportional to the perturbation size. Also, we
present LSRP, a protocol for local stabilization in shortest path
routing. LSRP achieves local stabilization via two techniques. First,
it layers system computation into three diffusing waves each having
a different propagation speed, i.e., “stabilization wave” with the
lowest speed, “containment wave” with intermediate speed, and
“super-containment wave” with the highest speed. The contain-
ment wave contains the mistakenly initiated stabilization wave, the
super-containment wave contains the mistakenly initiated contain-
ment wave, and the super-containment wave self-stabilizes itself
locally. Second, LSRP avoids forming loops during stabilization,
and it removes all transient loops within small constant time. To
the best of our knowledge, LSRP is the first protocol that achieves
local stabilization in shortest path routing.

Index Terms—Containment region, local stabilization, perturba-
tion size, range of contamination, shortest path routing.

I. INTRODUCTION

AWELL-KNOWN ideal in networking is the ability to with-
stand failure or compromise of one or more regions in a

network without impacting a large part of the network. Yet, in
many instances, we find that even a small fault-perturbed region
impacts a large part of the network, as the effects of the faults
propagate to and contaminate far away nodes. An example is
inter-domain routing in the Internet by the Border Gateway Pro-
tocol (BGP), where faults at some edge routers can propagate
across the whole Internet [1], [2].

Unbounded fault propagation decreases not only the There-
fore, in large-scale networks such as the Internet and the
emerging wireless sensor networks [2]–[4], it is desirable that
faults be contained locally around the regions where they have
occurred, and that the time taken for a system to stabilize
is a function of the size of the fault-perturbed regions in-
stead of the size of the system. We call this property -local
stabilization.

Local Stabilization in Routing: One problem where -local
stabilization is critical but remains unsolved is the basic problem
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of shortest path routing in networks. Generally speaking, there
are two categories of routing protocols: linkstate and distance-
vector. In link-state protocols, each node maintains the topo-
logical information of a whole network, and -local stabiliza-
tion is impossible, since every single change in the network
topology has to be propagated to every node in the network.
In distance-vector protocols, each node only maintains the dis-
tance of and the next-hop on its shortest path to each destination
in the network. Thus, -local stabilization is conceivable in dis-
tance-vector protocols.

Distance-vector (and its variant, path-vector) protocols for
the Internet, such as Routing Information Protocol (RIP) and
BGP, have long been studied [5]. Distance-vector protocols for
mobile ad hoc networks, such as Destination Sequenced Dis-
tance-Vector (DSDV) and Ad hoc On-Demand Distance-Vector
(AODV), have also been proposed [6]. In designing these
protocols, researchers have typically concentrated on how to
avoid routing loops and the count-to-infinity problem. Local
stabilization is not guaranteed: small-scale local perturbations
(such as memory overflow) can propagate globally across a
whole network, due to the diffusing nature of these protocols
[2], and result in severe instability [2], [7]. Moreover, the
fault model has been typically limited to node and link faults
such as crash, repair, and congestion; state corruption is not
considered. However, several kinds of state corruption do arise
as a result of misconfiguration and faulty software, and are
known to be major causes for routing instability [1], [2], [8].
And theoretically speaking, even simple faults such as node
crash and message loss, can drive a network into arbitrary states
[9]. Therefore, -local stabilization is desirable, and not only
in the presence of node/link crash, repair, and congestion but
also in the presence of state corruption.

Related Work: The concept of fault containment is proposed
in [10], [11], and [3]. Nevertheless, [10] and [11] only consider
fault containment for the major part of system states, which is
not strict enough to guarantee that the amount of work (for ex-
ample, the number of protocol actions executed) needed for a
system to stabilize is a function of the perturbation size; [3]
only considers the case where the impact of every fault is within
constant distance from where it occurs, which is too strict to be
applied to problems such as routing, where the locality of the
problem1 is not constant.

A locally stabilizing protocol, GS , is proposed in [4] for
clustering as well as shortest path routing in wireless sensor
networks where nodes are densely distributed. To achieve local
stabilization, GS takes advantage of the high node distribution
density and the geographic information on node distribution; the
sensor network model assumed by GS makes it inapplicable to

1We regard the locality of a problem as the maximum minimum distance be-
tween any two nodes that have to be involved in the definition of the problem.
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other general networks such as the Internet. In [10], algorithms
are proposed to contain a single state-corruption during stabi-
lization of a spanning tree, but these algorithms do not deal with
multiple faults and the fail-stop of nodes.

In [11], a broadcast protocol is proposed to contain externally
observable variables in the presence of state corruptions, but the
protocol allows for global propagation of internal variables. In
[12], a fault-containing self-stabilizing algorithm is proposed
for a consensus problem, but it only considers linear network
topologies and the distance faults propagate can be exponential
in the perturbation size; and the algorithm does not apply to the
problem of shortest path routing.

Loop-free distance-vector protocols DUAL [13] and LPA
[14] are proposed for Internet routing. Nonetheless, neither
DUAL nor LPA guarantees local stabilization: faults can prop-
agate globally in DUAL as well as in LPA when local transient
perturbations, such as congestion and state corruption, occur.
This phenomenon becomes worse when networks are under
stress, with transient faults happening more frequently for some
period of time [2]. Furthermore, the time taken to break a loop
which has already formed (e.g., due to state corruption) is not
constant in DUAL and LPA; instead it is proportional to the
length of the loop.

Contributions of the Paper: To characterize the properties of
locally stabilizing systems, we formulate the concepts of pertur-
bation size, -local stabilization, and range of contamination.
These concepts take into account the minimum amount of work
required for systems to stabilize and are generically applicable
to networking as well as distributed computing problems.

We also design LSRP (for Locally Stabilizing shortest path
Routing Protocol). Upon starting at an arbitrary state where the
perturbation size is , LSRP stabilizes to yield shortest path
routes within time, and the nodes affected by the perturba-
tion are within distance from the perturbed regions. Given
two (or more) perturbed regions, LSRP stabilizes each region
independently of and concurrently with the other(s) if the half
distance between the regions is , where is the size of the
largest perturbed region. Moreover, LSRP not only guarantees
loop-freedom during stabilization, it also removes any existing
loop (which is created by a fault) within constant time irrespec-
tive of the loop length.

We also discuss the impact of network topology on local sta-
bilization in LSRP. We observe that higher edge density is ben-
eficial in the sense that it can reduce the perturbation size, the
range of contamination, and the stabilization time.

Organization of the Paper: In Section II, we present the
system, fault, and computation model. In Section III, we de-
fine local stabilization, and analyze the properties of locally
stabilizing systems. We present our LSRP protocol that solves
the problem of local stabilization in shortest path routing
in Section IV, and analyze its properties in Section V. In
Section VI, we discuss the impact of network topology on local
stabilization. We also discuss issues related to the application
of LSRP. We make concluding remarks in Section VII.

II. PRELIMINARIES

In this section, we present the system model, protocol nota-
tion, fault model, and computation model adopted in our work.

System Model: A system is a connected undirected graph
, where and are the set of nodes and the set of

edges in the system respectively, and is a positive function
that defines the weight of each edge in . ( is also called the
weight function hereafter.) Each node in the system has a unique
ID. If nodes and can communicate with each other directly,
then edge is in . For each edge , its weight is
denoted by .

There is a clock at each node. The ratio of clock speeds be-
tween any two neighboring nodes in the system is bounded from
above by , but no extra constraint on the absolute values of
clocks is enforced.

Message transmission between nodes is reliable, and message
passing delay along an edge is bounded from above and from
below by and respectively.

Protocol Notation: We write protocols using a variant of the
Abstract Protocol notation [15]. At each node, the protocol con-
sists of a finite set of variables and actions. Each action consists
of three parts: guard, guard hold-time, and statement. For con-
venience, we associate a unique name with each action. Thus,
an action has the following form:

The guard is either a boolean expression over the protocol vari-
ables of the node or a message reception operation, is the guard
hold-time , and the statement updates zero or more pro-
tocol variables of the node and/or sends out some message(s).
If , we write the action in the following form:

For an action whose guard is a message reception operation, its
guard hold-time must be 0.

For an action named , its guard hold-time is denoted by .
An action is enabled at time if the guard of evaluates to
true at . An action is executed at time only if is continu-
ously enabled from time to . To execute an action, its
statement is executed atomically.

Fault Model: A node or an edge is up if it functions correctly,
and it is down if it fail-stops. In a system, nodes and edges that
are up can fail-stop, nodes and edges that are down can become
up and join the system, the state of a node, i.e., the values of
all the variables of the node, can be corrupted, and the weight
function can change.

The protocol actions of a node cannot be corrupted.
Computation Model: The topology of a system is the sub-

graph of such that
and

. Due to faults, the system topology
may change in the sense that the set of up nodes or the set of
up edges changes over time. For example, node is removed
from when node fail-stops. To reflect changes in system
topology as well as weight function, we regard the state of
as the union of the current system topology, the current weight
function, the state of all the up nodes, and the message(s) in the
up edges (i.e., the messages that are sent but not yet received). At
a system state , the system topology, the weight function, and
the state of an up node are denoted as , , and
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respectively. Given a system topology and
a problem specification, there exist a set of legitimate system
states, denoted as .

A system computation is either a finite sequence
, or an infinite sequence

, of alter-
nating system states (i.e., ) and protocol actions (i.e.,

), where (i) for every , , and each
state transition means that the execution of
action at time changes the system state from to ;
and (ii) for any two pairs and in ,
if and are actions of the same node, then (i.e.,
at most one action can be executed at a node at any time).
is a finite sequence only if it ends with a state , and there
is no enabled action at . A subsequence of is called a
computation segment if starts and ends with a state.

A system computation can also be regarded as a sequence
of rounds. A round is a minimal computation segment that
starts at a state and, in , (i) every up node that has
an action continuously enabled from some time to ,
where and , executes at least one action,
and (ii) if a message is sent to a node , the action that receives
the message must be executed at . (We assume is the time
when starts.)

III. LOCAL STABILIZATION: CONCEPTS AND PROPERTIES

In this section, we first define concepts related to local stabi-
lization, which are generic for networking and distributed com-
puting problems, and then we present some notable properties
of -local stabilizing systems.

A. Concepts Related to Local Stabilization

In a distributed system, the variables that each node needs to
maintain depend both on the problem and on the protocol being
used; some are inherent in the problem itself and independent of
the protocol being used, while others are dependent on the pro-
tocol. In the problem of shortest path routing, for instance, every
node has to maintain the distance and the next-hop on its chosen
shortest path to each destination: maintaining the distance is
necessary for a node to coordinate with others to find its shortest
path to the destination, and maintaining the next-hop is neces-
sary for a node to forward packets to the destination. Therefore,
the variables used to record the distance and the next-hop are in-
herent in the problem of shortest path routing. We call variables
that are inherent in the problem problem-specific variables. At a
system state , the value of the set of problem-specific variables
at a node is denoted as .

Dependency Among Nodes and Edges: Given a problem,
a node may depend on another node or edge in a distributed
system, because, when faults occur to the latter, the former may
have to change the values of its problem-specific variables in
order for the system to converge to a legitimate state (i.e., to
stabilize), no matter which protocol is used. For example, in
the problem of shortest path routing, every node whose only
shortest path to a destination goes through a node or an edge
depends on or because it would have to change the next-hop
on its shortest path to the destination if or fail-stopped.

In general, if some up nodes in a system have to adapt the
values of their problem-specific variables in order for the system
to stabilize (irrespective of the state to which the system stabi-
lizes) after a set of nodes and edges fail-stop while the system is
at a legitimate state, we regard these up nodes as dependent upon
the fail-stopped nodes and edges. Similarly, if some existing
nodes in a system have to adapt the values of their problem-spe-
cific variables after a set of nodes and edges newly join the
system while it is at a legitimate state, we regard these existing
nodes as dependent upon the newly-joining nodes and edges;
for convenience, we also regard the newly-joining nodes as de-
pendent on themselves, since they need to adapt the values of
their problem-specific variables too.

Formally, given a set of nodes , a set of edges , and a
legitimate state , we define the dependent set of and at
, denoted by , as

where is the system topology after and have fail-
stopped, and is the system topology after and newly
join the system, i.e., ,

.2 By definition, the dependent set
denotes the minimum set of nodes that are affected when the
set of nodes and the set of edges fail-stop or newly join
the system while it is at state . (Note that the definition also
applies to changes in link weight, since the weight change at
a link can be regarded as the fail-stop of the link with the old
weight followed by the join of the link with the new weight.)

Considering the problem of shortest path routing, for ex-
ample, Fig. 1 represents a legitimate state . If node
and edge fail-stop at , all the other nodes ex-
cept for in the system need to invalidate their distance
values as well as their next-hops on their paths to , since
there exists no route from any node to any more. Thus,

. Similarly,
if the edge joins at , node and the nodes in the
subtree rooted at need to change their distance values.3 Thus,

.
Perturbation Size: Therefore, a node can be affected by

a fault in two ways irrespective of the protocols used: is di-
rectly affected by a state corruption which occurs to itself, and

is indirectly affected by a non-state-corruption fault (such as
fail-stop) which occurs to a node or an edge that depends on.
Then, corresponding to each set of faults that leads a system
to an illegitimate state , there is a set of nodes in that
are affected either directly or indirectly by the faults, and the
number of affected nodes denotes the degree of perturbation
by the faults. Given an illegitimate state , it could have been
reached in different ways (i.e., from different legitimate states
by different sets of faults), thus the number of affected nodes
at depends on how the system reaches by certain faults. To
characterize the minimum amount of work required to recover

2The node set V and edge set E should be such that G and G are valid
graphs.

3Note that nodes v and v also need to change their next-hops.
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Fig. 1. A legitimate system state.

from the perturbation at , we define the perturbation size at
as the minimum number of affected nodes at considering all
the possible ways could have been reached. Formally,

Definition 1 (Perturbation Size): The perturbation size at a
system state , denoted as , is where

If is reached from a legitimate state by some faults,
in the above definition denotes the set of nodes where state
corruption occurred, and denotes the set of nodes that de-
pend on some other nodes where certain non-state-corruption
faults occurred. Intuitively, the perturbation size at equals to
the minimum number of nodes in whose states either have
been corrupted by some transient faults or the values of whose
problem-specific variables have to be changed in order for the
system to stabilize. Thus, it also reflects the minimum amount
of work needed to correct a perturbation.

Given an illegitimate state , there may exist two legitimate
states and such that .
Consider a consensus problem where all the nodes in a system
need to take the same value, for instance, at a state where one
half of the nodes in the system take 3 and the other half take
4, there exist two legitimate states and such that every
node takes 3 at , every node takes 4 at , and

, where is the number of nodes in
the system. To reflect the above situation, we define the set of
potentially perturbed sets of nodes at state , denoted by ,
as .

To illustrate the concept of perturbation size for the problem
of shortest path routing, let us consider scenarios when different
faults occur while a system is at a legitimate state as shown
in Fig. 1:

• If a state corruption occurs to node , then the perturbation
size at the state after the corruption is 1 and the set of
potentially perturbed set of node is , since only
needs to change its state in order for the system to stabilize
to the legitimate state, and at least one node in the system
needs to change its state in order for the system to stabilize.

• If node fail-stops, then the perturbation size is 3 and the
set of potentially perturbed set of nodes is ,
since nodes , , and have to change their next-hop
on their shortest paths to , while all the other nodes in
the system do not need to.

Local Stabilization: Based on the protocol-independent con-
cept of perturbation size which reflects the minimum amount of
work required for a system to stabilize from a state, we define
the concept of -local stabilization which reflects the properties
of protocols in the presence of faults.

Definition 2 ( -Local Stabilization): A system is -local
stabilizing if and only if

Starting at an arbitrary state , every computation of
reaches a legitimate state within time, where
is a function and is the perturbation size at state .

If a system is -local stabilizing and is a linear function,
we say that the system is locally stabilizing (for simplicity).

Given an -local stabilizing system and a system computa-
tion that starts at a state and reaches a legitimate state , the
perturbed set of nodes at , denoted as , is defined as the
maximal set of nodes that are in the same potentially perturbed
set of nodes at and that change state from to . Formally,

, where
and

.
A node is perturbed at if , otherwise, it is

healthy at . A node is contaminated if it is healthy at and if the
node executes at least one protocol action during stabilization.
Then, the range of contamination, denoted by , is defined
as the the maximum hop-distance from the set of contaminated
nodes to the perturbed set of nodes . That is,

where

By definition, the range of contamination denotes the
distance to which the perturbation at propagates during stabi-
lization, thus should be 0 ideally or be a function of the
perturbation size at in practice.

B. Properties of -Local Stabilizing Systems

A set of nodes are contiguous at a system state if
and the subgraph of on is connected, i.e.,

the graph is connected, where and



524 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 3, JUNE 2006

. A maximal set of
perturbed nodes that are contiguous is called a perturbed re-
gion. Then the following properties hold for a -local stabi-
lizing system :

• Starting at an arbitrary state , the maximum distance
that faults can propagate outward from the perturbed
regions is , i.e., the range of contamination is

. Therefore, every node that is
hops away from the perturbed regions at state will not
be contaminated by the perturbation. (This claim comes
from the observation that the time taken for a distributed
algorithm to stabilize is at least proportional to the distance
information propagates in the algorithm.)

• Starting at an arbitrary state where the perturbed regions
are hops away from one another, the stabiliza-
tion of one perturbed region is independent of and concur-
rent with that of the other perturbed regions, and the time
taken for the system to stabilize only depends on the size
of the largest perturbed region.

• The availability of an -local stabilizing system is high
in the sense that it stabilizes quickly after perturbations
and the impact of perturbations is contained locally around
where they occur.

IV. PROTOCOL LSRP

In this section, we first specify the problem of local stabiliza-
tion in shortest path routing. Then we explain the limitations
of existing distance-vector routing protocols, present the pro-
tocol concepts underlying LSRP, and finally present the design
of LSRP.

A. Problem Statement

The problem is to design a protocol that, given a system
and a destination node , constructs and

maintains a spanning tree (called shortest path tree) of
that meets the following requirements:

• Node is the root of the shortest path tree ;
• , where

and are the minimum distance
between nodes and in and , respectively; (that is,
the path from every node to in is a shortest path
between and in .)

• The system is -local stabilizing.

B. Fault Propagation in Existing Distance-Vector Protocols

Existing distance-vector routing protocols are based on the
distributed Bellman–Ford algorithm [5], [16]. In these proto-
cols, each node maintains the distance, denoted as , of and
the next-hop, denoted as , on its shortest path to each des-
tination. For a destination , if node is a neighbor of and

, will choose as the
next hop on its shortest path to (i.e., set to ) and set
to . However, in these protocols, faults cannot be
contained around where they have occurred, and -local stabi-
lization is not guaranteed, which results in routing instability.

One example is shown in Fig. 2. For the same system in Fig. 1,
Fig. 2(a) represents a system state where the state of node is
corrupted such that . Ideally, should correct its state

Fig. 2. Example of fault propagation in existing distance-vector routing
protocols.

such that , and all the other nodes in the system remain
unaffected by the state corruption at . However, in existing
distance-vector routing protocols, it is possible that nodes
and detect the change of before corrects its state.
Then both and will change their state correspondingly
such that . And the same happens at
nodes , , , and . Therefore, the fault at propagates
to nodes , , etc., and the perturbed system state after the
fault propagation from is shown in Fig. 2(b). Even though
the system will stabilize to a legitimate state later, nodes far
away from , such as and , have been contaminated by
the state corruption at , and the time taken for the system to
stabilize depends on the diameter of the system instead of the
perturbation size. Furthermore, node has changed its route to
destination because of the fault propagation, which leads to
route flapping, a severe kind of routing instability.

C. Protocol Concepts

In the example shown in Fig. 2, the state corruption at can
propagate far away until it reaches the leaves of the shortest path
tree, and the time taken for the system to stabilize depends on
its diameter instead of the perturbation size. The reasons for
the unbounded fault propagation and slow stabilization are as
follows:

• First, the distance value of (i.e., ) is corrupted to be
smaller than it should be at any legitimate state.

• Second, before corrects its corrupted state, as well as
detects that decreases. Because neither nor

knows that the new state of is a corrupted one, both
and update their state according to the corrupted state of

, and the state corruption at propagates to its neighbors
and . Then, the same thing that has happened to and
happens to the neighboring nodes of and , and so

on.
• Third, after detecting that its state has been corrupted,

corrects its state (i.e., sets to 3). Then, its neighbors
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Fig. 3. Layering of diffusing waves in shortest path routing.

and correct their corrupted states, and so on. However,
this “correction” action is unable to catch up with the “fault
propagation” action that propagates the initial corruption at

. Therefore, the initial corruption at is propagated far
away until it reaches the leaves of the shortest path tree,
hence the time taken for the system to stabilize depends on
the system diameter instead of the perturbation size at the
initial state.

In short, the reason why faults propagate and local stabiliza-
tion is violated is that the “correction” action always lags behind
the “fault propagation” action. Therefore, one approach to con-
tain faults locally and achieve local stabilization is to guarantee
that the node that is the source of fault propagation (for example,
node ) will detect the existence of fault propagation, and ini-
tiate a “containment” action that can catch up with and stop the
“fault propagation” action before faults propagate far away. We
develop this approach as follows.

Layering of Diffusing Waves: In shortest path routing, the
system computation is a diffusing computation by which nodes
in the system learn their routes to a destination gradually. To
achieve local stabilization, we design our protocol LSRP by lay-
ering the diffusing computation into three diffusing waves: the
stabilization wave, the containment wave, and the supercontain-
ment wave (see Fig. 3). Faults in a stabilization wave are con-
tained by a containment wave, faults in a containment wave
are contained by a super-containment wave, and each super-
containment wave self-contains. To enable the above fault con-
tainment, containment waves propagate faster than stabilization
waves, and super-containment waves propagate faster than con-
tainment waves.

The stabilization wave is a diffusing computation that imple-
ments the basic distributed Bellman-Ford algorithm with some
changes to cooperate with the containment wave. A stabiliza-
tion wave can propagate the “correction” action that enables a
system to converge to a legitimate state, but a mistakenly ini-
tiated stabilization wave can propagate faults far away from
where they initially occurred, as shown in Fig. 2. To prevent a
mistakenly initiated stabilization wave from propagating faults
unboundedly, the containment wave is introduced.

Containing the Stabilization Wave: To enable fault contain-
ment and local stabilization, the source of fault propagation
should detect the existence of the propagation and initiate a con-
tainment wave to stop it. In shortest path routing, each node
chooses as its next-hop the neighbor that offers the least distance
to the destination. Therefore, only “small distance value” prop-
agates in distance-vector routing: if the distance value of a node
is corrupted to be less than it could have been (via the distance

value offered by the neighbors of the node), it is highly likely
that a neighboring node will propagate the corrupted value by
choosing the corrupted node as its next-hop; in contrast, if the
distance value of a node is corrupted to be greater than it could
have been, it is less likely that a neighboring node will propa-
gate the corrupted value.

Therefore, we regard a node as a “potential source of fault
propagation” (simply called source of fault propagation here-
after) if its distance value is less than what its neighboring nodes
could have provided. Formally, a node is a source of fault prop-
agation if, for every neighboring node of that is not involved
in any containment wave, holds, and either
is not the destination node, or is not equal to 0. For example,
node in Fig. 2(a) is a source of fault propagation.

Whenever a node detects itself being a source of fault propa-
gation, the node initiates a containment wave to stop the stabi-
lization wave, if any, which has propagated the corrupted state
of the node. The containment wave propagates along the same
path as that by the stabilization wave. Since the containment
wave propagates faster than the stabilization wave, it is able to
catch up with and stop the stabilization wave.

Nevertheless, a containment wave can be mistakenly initiated
due to state corruption. For example, in Fig. 1, if the state of

is corrupted such that , node will become a
source of fault propagation and a containment wave will be initi-
ated by . To prevent a mistakenly initiated containment wave
from propagating unboundedly, the super-containment wave is
introduced.

Fault Tolerance of the Containment Wave: A node that
has mistakenly initiated a containment wave will detect that
it should not have initiated the containment wave after the
perturbed regions have stabilized. Then it will initiate a
super-containment wave that propagates along the same paths
as those by the mistakenly initiated containment wave. Since
the super-containment wave propagates faster than the contain-
ment wave, the super-containment wave will catch up with and
stop the containment wave.

For the above wave-layering approach to work, the super-con-
tainment wave must self-stabilize itself locally upon perturba-
tions; otherwise, there would be no end to the layering proce-
dure. This is achieved by ensuring that the super-containment
wave only uses variables defined for the stabilization wave and
containment wave, and no extra variable is introduced for the
super-containment wave.

Loop Freedom: In the basic distributed Bellman-Ford algo-
rithm, loops can form during stabilization, which leads to the
bouncing effect and count-to-infinity problem [5] that delay the
stabilization of a system and violate the time constraint of local
stabilization. Therefore, in order to circumvent these two prob-
lems, our protocol avoids forming loops during stabilization,
which, together with local fault containment, guarantees that the
stabilization time is a function of the perturbation size in the
worst case. Interestingly, loops can be avoided during stabiliza-
tion just via the containment wave. The intuition is that a node
that can select one of its descendants as its new parent (i.e., its
next-hop) in the basic distributed Bellman-Ford algorithm be-
comes a source of fault propagation according to our definition.
Therefore, a containment wave will be initiated at such a node,
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Fig. 4. LSRP: local stabilization in shortest path routing.

which guarantees loop freedom because no loop is formed in
any containment wave.

D. The Design of LSRP

The protocol LSRP (Locally Stabilizing shortest path
Routing Protocol) is shown in Fig. 4, where the constants,
variables, and protocol actions for each node in a system are
presented.

Constants: LSRP uses five constants: , , , , and .
is the ID of the destination node in a system to which all the

other nodes in the system need to find the shortest path; ,

, and are used to control the propagation speed of the
stabilization wave, containment wave, and super-containment
wave respectively; and is used to control the frequency of
information update between neighboring nodes.

Variables: As in existing distance-vector routing protocols,
each node maintains the two variables and , where
records the distance from to , and records the next-hop on
the shortest path from to (i.e., the parent of in the shortest
path tree rooted at ). (Note that, by definition, and are
the only problem-specific variables for a node in LSRP.) To
achieve local stabilization, each node also maintains a boolean
variable . is if node is being involved in
a containment wave.

To enable inter-node coordination, maintains “mirror” vari-
ables , , and for each neighbor , which de-
note ’s knowledge of the latest values of , , and
respectively. (For convenience in presentation, we also regard

as , as , and as .) To control the
frequency of information update between neighboring nodes,
variable is used to denote the time when broadcasts the
values of , , and last time.

For clarity of presentation, we let be the set of neigh-
boring nodes of , we let be the clock value of , and we
let be (i.e., there is no self-loop). A dummy variable
is also used.

Protocol Actions: As discussed in Section IV-C, the diffusing
computation in LSRP consists of three diffusing waves: the sta-
bilization wave, the containment wave, and the super-contain-
ment wave. These diffusing waves are implemented in LSRP as
follows:

• Actions and implement the stabilization wave. More
specifically, implements the distributed Bellman-Ford
algorithm; guarantees that the next-hop of a node (i.e.,

) is consistent with the information within its neighbor-
hood (i.e., is introduced to guarantee self-stabilization).

• Actions and implement the containment wave. To
enable a super-containment wave to trace a mistakenly ini-
tiated containment wave by the parent-child relationship
between neighboring nodes, each containment wave is a
round procedure consisting of a phase of propagating out-
ward and a phase of shrinking back. Action implements
the phase of propagating outward which is to stop the cor-
responding stabilization wave, and action implements
the phase of shrinking back after the stabilization wave has
been stopped.

• Action implements the super-containment wave. The
super-containment wave propagates along the path signi-
fied by the parent-child relationship maintained in the cor-
responding containment wave.

The propagation speed of a diffusing wave is controlled by the
guard hold-time of the actions implementing the wave. To guar-
antee that containment waves propagate faster than stabilization
waves and that super-containment waves propagate faster than
containment waves in the presence of clock drift as well as mes-
sage passing delay, the guard hold-time , , and used in
LSRP should be such that , ,
and . (For clarity of presentation, we relegate the de-
tailed reasoning to [17].)
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To update information between neighboring nodes, actions
and are used.

We further elaborate on the protocol actions as follows.
Stabilization Wave: By implementing the distributed

Bellman-Ford algorithm with some changes to cooperate with
containment wave, the stabilization wave guarantees that a
system eventually stabilizes to a legitimate state.

Action : if node is a minimal point (i.e., )
but , it sets to . Then, sets to its current clock
value, and broadcasts the new value of to its neighbors.

is defined as

That is, a node is a minimal point if it is the destination node
and , or if it has initiated a containment wave that has
not finished.

Action : if node should propagate a stabilization wave
from node (i.e., ) that is not being involved in
any containment wave, and this condition continuously held in
the past time, then sets as its parent, and sets ,
to , respectively. Also, sets to its cur-
rent clock value, and broadcasts the new values of , , and

to its neighbors.
is defined as

That is, node should propagate a stabilization wave from node
if
• is the neighbor of via which the distance value of is

the smallest; and
• if is not the current parent of , then the distance value of

via is less than that via unless is not a neighbor
of or is involved in a containment wave; if is the current
parent of , then the distance value of is not equal to that
of plus .

However, node should not propagate any stabilization wave
from if is being involved in a containment wave, since
the state of any node being involved in a containment wave is
corrupted.

Containment Wave: The containment wave prevents a stabi-
lization wave from propagating faults far away from where they
have occurred.

Action : if node is not being involved in any containment
wave (i.e., ), but it is either a source of fault
propagation (i.e., ) or it should propagate a contain-
ment wave from its parent (i.e., ), and this condi-
tion continuously held in the past time, then sets to

in order to initiate or propagate a containment wave. More-
over, if is a source of fault propagation, it sets to .4 Then,
sets to its current clock value, and broadcasts the new values
of and to its neighbors.

is defined as

That is, a node is a source of fault propagation if none of its
neighbors that are not involved in any containment wave can
offer a distance value that is no greater than what currently
has, and either is not the destination node and its distance value
is not consistent with that of its parent, or is the destination
node and its distance value is not 0.

is defined as

That is, a node should propagate a containment wave from its
parent if is a neighbor of and is involved in a contain-
ment wave, has copied the corrupted distance value of (i.e.,

), and does not have a neighbor
that is not involved in any containment wave and can offer a
distance value smaller than what currently has.

Action : if node is involved in a containment wave, but
has no child that is perturbed due to the state corruption at
(i.e., and ), then sets to

, and
• if is the destination node, then sets and to 0 and

respectively;
• if is not the destination node, then sets and to

and respectively, if there exists a parent
substitute of (i.e., ); otherwise, sets ,
and to and respectively to guarantee loop freedom
during stabilization.

is defined as

That is, node is a parent substitute of if is not a child
of , and, among all the neighbors of that are not involved
in any containment wave, offers the smallest distance
value that is no greater than what currently has.

Also, sets to its current clock value, and broadcasts the new
values of , , and to its neighbors.

Action guarantees that a containment wave will shrink
back to its initiator after the containment wave has caught up

4Conceptually, when i is a source of fault propagation, it is a local minimum
in terms of distance values and no neighbor can act as its next-hop by providing
a smaller distance to the destination. Therefore, i sets p:i to i. By this design,
the destination node r can “stabilize” p:r to r when d:r 6= 0; a node i that is in
a loop (e.g., due to state corruption) can break the loop within constant time by
setting p:i to itself.
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with and stopped the stabilization wave that propagates the
faults which initially occurred at the initiator of the containment
wave.

Super-Containment Wave: The super-containment wave pre-
vents a mistakenly initiated containment wave from propagating
unbounded, and corrects faults in the containment wave.

Action : if node is involved in a containment wave (i.e.,
), but it should initiate or propagate a super-con-

tainment wave from its parent (i.e., ), and this
condition continuously held in the past time, then sets

to . Moreover, if has set to itself because it
was a source of fault propagation, recovers its parent immedi-
ately. Then, sets to its current clock value, and broadcasts
the new value of to its neighbors.

is defined as

That is, should initiate or propagate a super-containment wave
if

• it is the destination node and ; or
• it is not the destination node, and neither is it a source of

fault propagation nor is its parent involved in any contain-
ment wave.

Information Update: Actions and guarantee
that the values of mirror variables , , and
at node stabilize to those of , , and for every
neighbor of .

Action : if did not broadcast the values of , ,
and in the past time (i.e., ) or
if variable is corrupted to be greater than the current clock
value of , sets to its current clock value, and broadcasts the
values of , , and to its neighbors.

Action : when receives the latest values of , ,
and/or , from its neighbor , records the values to vari-
ables , , and/or , respectively.

E. Examples Revisited

To illustrate how LSRP behaves in the presence of faults, we
reconsider the examples discussed in previous sections. For sim-
plicity of presentation, we assume that , link delay is a
constant , processing delay is negligible, containment waves
propagate twice as fast as stabilization waves (i.e, ),
and super-containment waves propagate four times as fast as
containment waves (i.e., ).

We first study the case where is corrupted to 1 and nodes
and have learned the corrupted value when the system is at

the state as shown in Fig. 1. The system behavior after the state
corruption at is shown by the space-time diagram in Fig. 5:

• First, the guard for action evaluates to true at (be-
cause is a source of fault propagation, by definition),
and the guard for action evaluates to true at and .
Therefore, becomes enabled at and becomes en-
abled at and . For convenience, we regard this moment
as time 0.

• remains enabled at until time , when executes
. After the execution of , becomes enabled at

Fig. 5. System behavior after d:v is corrupted to 1.

Fig. 6. System behavior after d:v is corrupted to 2.

and is executed immediately, since the guard hold-time for
is zero. The execution of corrects to 3.

• remains enabled at and until time , when
and receive messages from reflecting its new state.
Therefore, action is executed twice (processing the
two messages from ) at and at time , which
disables at and . At this moment, the system
reaches a legitimate state.

In the above process, only actions and are executed at ,
and no action is executed elsewhere. Therefore, no other nodes
in the system is affected by the state corruption at , which is
the ideal result achievable.

Faults may not be ideally contained in all cases, but they are
always contained locally around where they occur in LSRP. To
illustrate this, we consider the case where is corrupted to
2 and has learned the corrupted value when the system is at
the state as shown in Fig. 1. The system behavior after the state
corruption at is shown in Fig. 6:

• First, action becomes enabled at , and action
becomes enabled at . For convenience, we regard this
moment as time 0.

• At time , executes and sends its new state to
(by which the containment wave propagates from to

).
• The new state of reaches at time , when action

is enabled and executed immediately at . As a
result, action becomes enabled at at time .

• Then, executes and executes at time .
time later, and receive the new state of , and
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learns the new state of . Consequently, becomes
enabled at and , and becomes enabled at .

• At time , executes and sends its cor-
rected state to (by which the super-containment wave
propagates from to ). As a result, becomes en-
abled at at time .

• time later, executes and sends its new state to
and (by which the super-containment wave propagates
to and ).

• At time , action becomes enabled
and is executed immediately at and , which in turn
disables at and . As a result, the system reaches its
legitimate state.

In the above process, only nodes , , and execute one
or more protocol actions, while the rest of the system remain
unaffected. Therefore, the impact of the state corruption at
is contained locally (i.e., within 2 hops in the above case).

V. PROTOCOL ANALYSIS

In this section, we present the property of local stabilization
in a system where LSRP is used. We also present the proper-
ties of loop freedom during stabilization and quick loop removal
in LSRP, which are not only necessary for local stabilization in
routing, but also critical for improving network resource utiliza-
tion and quality of communication. (For clarity of presentation,
we relegate the proofs of all the theorems and lemmas in the
paper to [17].)

A. Property of Local Stabilization

Given a system topology , we define predicate
as

where is defined as

Then, every state in is a legitimate system state where the
shortest path tree rooted at the destination node is formed (by
variable at every node in the system), and every node has
learned the distance and the next-hop on its shortest path to .
For LSRP, we have

Theorem 1 (Self-Stabilization): Starting at an arbitrary state,
every computation of a system where LSRP is used is guaran-
teed to reach a state in .

From Theorems 1, we know that LSRP guarantees the for-
mation of the shortest path tree in a system when it starts at an
arbitrary state.

Furthermore, local stabilization is guaranteed in LSRP. The
analysis is as follows.

When there is only one perturbed region at the initial state,
we have

Lemma 1: Starting at an arbitrary state where there is only
one perturbed region, every system computation reaches a state
in within time, and the range of contamination is

.
When the set of perturbed nodes are not contiguous, there are

multiple perturbed regions (denoted as , )
in the system. For each perturbed region , we define its con-
tainment region as the union of and the set of nodes that
are contaminated during stabilization because of the existence
of . Two containment regions and are disjoint if
there do not exist any two neighboring nodes and such that

and , otherwise, they are adjoining. Mul-
tiple containment regions are
disjoint if there do not exist any two containment regions
and that are adjoining. Then, we have:

Lemma 2: Starting at an arbitrary state where the per-
turbed regions are and their containment re-
gions are disjoint, every system computation reaches a state in

within time, and the range of contamina-
tion is .

Given any two perturbed regions and at a
state , the half-distance between and is half of the min-
imum distance from a node in to another node in , that is,

, where de-
notes the minimum distance between node and in graph

. Then, Lemma 2 implies:
Corollary 1: Starting at an arbitrary state where the

perturbed regions are and the half-distance
between any two of them is , every system
computation reaches a state in within
time, and the range of contamination is .

Multiple containment regions
are adjoining if, for any two containment regions and

, either and are adjoining or there exist a
sequence of containment region such
that are adjoining with , are adjoining with

, and are adjoining with .
Then, we have:

Lemma 3: Starting at an arbitrary state where the per-
turbed regions are and their containment regions
are adjoining, every system computation reaches a state in
within time, but the range of contamination is
still .

Lemmas 2 and 3 imply:
Corollary 2: Starting at an arbitrary state where the per-

turbed regions are every system computation
reaches a state in within time, and the range of
contamination is (which is ).

Lemma 1 and Corollary 2 imply:
Theorem 2 (Local Stabilization): Starting at an arbitrary

state , every system computation reaches a state in within
time, and the range of contamination is ,

where MAXP denotes the number of nodes in the largest
perturbed region at and is . That is, the system is

-local stabilizing, where is a linear function.
By Theorem 2, we see that LSRP solves the shortest path

routing problem in a linear-local stabilizing manner.
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B. Properties of Loop Freedom and Quick Loop Removal

Theorem 3 (Loop Freedom): Starting at an arbitrary state
where there is no loop, every system computation reaches a state
in and there is no loop at any state along the computation.

From Theorem 3, we see that there is no loop in the system
during stabilization if the only possible fault in a system is node
fail-stop, because no loop can be formed just by node fail-stop,
and there is no loop at any initial state of a system computation
if the only fault is node fail-stop.

Theorem 4 (1-Round Loop Breakage): Starting at an arbitrary
state where there exists at least one loop, every system compu-
tation reaches a state where there is no loop after at most one
round of computation.

Theorems 3 and 4 imply:
Corollary 3: Starting at an arbitrary state where there exists at

least one loop, every system computation reaches a state where
there is no loop after at most time.

VI. DISCUSSION

In this section, we discuss the impact of network topology on
local stabilization, and we discuss issues related to the applica-
tion of LSRP.

Impact of Network Topology on Local Stabilization: For the
problem of shortest path routing, the network topology of a
system can affect the perturbation size, the range of contami-
nation, and the self-stabilization time in the sense that higher
edge density is conducive to local stabilization.

Given a system topology at state , if we
add some edges to and obtain another system topology

at state with denser edges (i.e.,
), then for every node that is both in and in ,

the number of different shortest paths to the destination node in
will be no more than that in . Then, if the same node

fail-stops in both and , and , transit to ,
respectively, the number of nodes that are perturbed due to

the fail-stop of in will be no less than that in . More
generally, if the same faults occur when the system is at and at

, and the system reaches and respectively after the faults,
the perturbation size at state will be no less than that at .
Moreover, even if the perturbation sizes at and are the same,
a mistakenly initiated containment wave, if any, will propagate
no farther in than in Therefore, the time taken for the
system to stabilize from and the range of contamination during
stabilization are no less than that with respect to . Formally,

Proposition 1: Given a system and two system states
and such that , and

then , , and the time
taken for to stabilize from is no less than that with respect
to .

(We give an example where higher edge density helps in local
stabilization in [17].)

In wireless networks, especially in wireless sensor networks
[4], the edges tend to be dense because of dense node distri-
bution and wireless transmission property (i.e., nodes within

transmission range of one another are connected with one an-
other). Our conclusion, therefore, is that wireless (sensor) net-
works with higher edge density are likely to contain faults more
tightly and to stabilize faster.

Speed of Diffusing Waves: In LSRP, parameters ,
and control the propagation speed of stabilization waves,
containment waves, and super-containment waves respectively.
Therefore, the relationship between these three parameters
determines the degree of fault containment in the presence
of faults. Especially, we need to choose and carefully:
on one hand, the larger the ratio is, the more tightly
a mistakenly initiated stabilization wave is contained; on the
other hand, the smaller the ratio is, the more tightly a
mistakenly initiated containment wave tends to be contained
(since the corresponding super-containment wave will not be
initiated until certain stabilization wave is executed, as shown
in Fig. 6). In practice, we should consider the probabilities of
stabilization or containment waves being mistakenly initiated
and the degree of fault containment we expect in choosing the
parameters.

Control Overhead: The impact of faults is locally contained
in LSRP, therefore the control overhead (e.g., the number of
control messages) is also a function of the perturbation size, in-
stead of the system size. Consequently, LSRP asymptotically re-
duces the control overhead when compared with non-locallysta-
bilizing protocols such as DUAL and LPA.

Moreover, the diffusing computation involved in stabilization
and containment waves of LSRP also (implicitly) exists in other
routing protocols (such as DUAL and LPA) to guarantee con-
vergence as well as loop freedom. Therefore, stabilization and
containment waves in LSRP do not introduce much more over-
head except for the bit used to encode the variable . Of
course, the overhead associated with super-containment waves
exists only in LSRP and not in other protocols; but this over-
head is low because it only needs one bit to encode the variable

, and it is local in the sense that it is bounded from above
by a function of the perturbation size.

VII. CONCLUDING REMARKS

To formally characterize properties of local stabilization in
networked and distributed systems, we formulated the 12 con-
cepts of perturbation size, -local stabilization, and range of
contamination. These concepts are generically applicable to net-
worked and distributed systems, and are thus interesting in their
own right.

For the problem of local stabilization in shortest path routing,
we designed LSRP. LSRP guarantees both local stabilization
and loop freedom during stabilization. In LSRP, we introduced
delays in action execution to control the propagation speeds of
diffusing waves. This does not slow down the convergence of
a system, because the stabilization time is only a linear func-
tion of the perturbation size instead of the system size, which
is especially desirable in large-scale systems where faults gen-
erally occur only at a small part of the system. Moreover, the
method of introducing delays in action execution is also com-
monly used in Internet routing in order to reduce control over-
head and routing flaps. For example, timer MinRouteAdvertise-
mentInterval is used in BGP to control the frequency of route
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exchange between BGP peers. The timer is similar to the delay
introduced for the stabilization wave in LSRP. In implementing
LSRP, we only need to introduce smaller timers for the contain-
ment wave and supercontainment wave.

We observed that higher edge density in a system can reduce
the perturbation size, the range of contamination, and the self-
stabilization time. This leads to the interesting question of how
to design or self-configure a network such that the perturbation
size, the range of contamination, and the self-stabilization time
are minimized.

In the literature of network routing protocol design [5], for-
mation of routing loops is regarded as problematic, and a variety
of schemes have been proposed to avoid forming loops, such as
those used in EIGRP, OSPF, and BGP. However, fault propa-
gation and routing instability remain as problems in OSPF and
BGP. The root cause appears to be that these protocols are not
designed to tolerate such faults as misconfiguration and persis-
tent congestion, which are special cases of state corruption. In
LSRP, state corruption is dealt with by way of local stabilization.
As a result, looping is implicitly avoided by taking loop-forma-
tion as a kind of state corruption, without introducing special
mechanisms to deal with potential loops. By local stabilization,
LSRP prevents faults from propagating far away and increases
the stability as well as availability of a system. Therefore, the
question of whether we should take various kinds of faults as
state corruption and deal with them by way of (local) stabiliza-
tion deserves further exploration.
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