IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 2, APRIL 2007

387

Maximum Availability Server Selection Policy for
Efficient and Reliable Session Control Systems

Marjan Bozinovski, Hans P. Schwefel, and Ramjee Prasad, Senior Member, IEEE

Abstract—There has been a rapid growth of services based on
session control. Session-based services comprise multimedia con-
ferences, Internet telephone calls, instant messaging, and similar
applications consisting of one or more media types such as audio
and video. Deployment examples include session control services
as part of the IP multimedia subsystem (IMS), in the third-gener-
ation mobile networks. High service dependability in session con-
trol systems is achieved by introducing redundancy, e.g., through
reliable server pooling (RSerPool) or clustering. Namely, session
control servers are multiplied in server sets. Performance of such
replicated session control servers is quantified by transaction con-
trol time. Thus, reducing transaction control time enhances perfor-
mance. Server selection policies (SSP) are crucial in achieving this
goal. The maximum availability (MA) SSP is proposed to improve
session control performance in scenarios with server and commu-
nication failures. Based on a status vector, MA aims at maximizing
the probability of successful transaction with the current transmis-
sion, thereby minimizing the average number of attempted servers
until success. MA is applicable in a broad range of IP-based sys-
tems and services, and it is independent of the fault-tolerant plat-
form. A simple protocol extension is proposed in order to integrate
MA into the RSerPool fault-tolerant architecture. In addition, an
analytic model is derived based on certain system model assump-
tions. Analytic and simulation results show that transaction control
time is considerably reduced with MA as opposed to when using
traditional round robin.

Index Terms—Fault-tolerance, performance, server selection
policies (SSP), session control.

I. INTRODUCTION

ECENTLY, Internet services based on the session notion

have grown in number and popularity. Examples of such
services are multimedia conferences, IP telephony, instant mes-
saging, and similar multimedia applications. Deployment sce-
narios include session control services within the IP multimedia
subsystem (IMS), in the third-generation mobile networks [1].
In the IMS, the call session control function (CSCF) servers per-
form session management, based on the session initiation pro-
tocol (SIP) [2]. Session control protocols such as SIP are trans-
actional protocols. In general, a transaction consists of a single
request, any intermediate provisional response, and a final re-
sponse to that request.

Manuscript received August 19, 2004; revised October 31, 2005; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor H. Schulzrinne. This
work was supported by Siemens, Munich, Germany.

M. Bozinovski was with the Center for Teleinfrastruktur, Aalborg Univer-
sity, 9100 Aalborg, Denmark. He is now with AD Makedonski Telekomunikacii,
1000 Skopje, Macedonia (e-mail: marjan.bozinovski @mt.com.mk).

H. P. Schwefel and R. Prasadis are with the Center for Teleinfrastruktur,
Aalborg University, 9100 Aalborg, Denmark (e-mail: hps@kom.aau.dk;
prasad @kom.aau.dk).

Digital Object Identifier 10.1109/TNET.2007.892875

Set of servers

TN

1 dashed lines are client requests
sent to the server before its failure

2 state update propagation

3 server failure and failure detection

4 solid lines are the fail -overs to
other “healthy” servers

Fig. 1. Fault-tolerant replicated session control system.

Fault-tolerance in session control systems is achieved by
introducing redundancy, e.g., through reliable server pooling
(RSerPool) [3] or clustering [4]. Namely, session control
servers are multiplied in server sets (Fig. 1). Session control
is a time-critical application. Performance of session control
is quantified by transaction control time. Transaction control
time is defined as the mean time between the moment of
request sending and the moment of final response receipt at the
transaction initiator (including possible multiple fail overs to
different servers). One important challenge in such replicated
session control systems is how to enhance performance, i.e.,
how to reduce transaction control time. The SSPs are crucial in
reducing transaction control time.

The main problem addressed in this paper is maximizing the
probability of a successful transaction with the current trans-
mission, thereby minimizing the average number of attempted
servers until success. The ultimate achievement is reduced trans-
action control time.

The algorithm proposed in [5] solves the problem by ex-
ploiting the dynamically obtained information on the last server
access moments and the corresponding activity status of servers
in a server set. The algorithm selects the server with the largest
last known up time, if any. If there is no such server, the scheme
selects the server with the smallest last known down time. This
paper extends the work presented in [5] in the following aspects:
1) it proposes a protocol extension that integrates the devel-
oped server selection algorithm into RSerPool; 2) it develops en-
hanced system model assumptions resulting in more advanced
simulation programs; and 3) it provides more comprehensive
numerical evaluation and analysis of the proposed methods.

The proposed method is most useful in cases of frequent inter-
action between the client and the same server set (e.g., in mes-
saging sessions utilizing SIP servers) as the status for a given
server set stored in the client is in that case always maintained

1063-6692/$25.00 © 2007 IEEE

388

up-to-date. Note, however, that depending on the SIP architec-
ture and the deployed fault-tolerance mechanisms, it is very
well possible that the role of the client is taken by a proxy
server, e.g., the P-CSCF in 3GPP IMS, that as a consequence
may interact very frequently with the deployed replicated server
set; in case of 3GPP IMS the latter could correspond to the
S-CSCEF. Second, the scheme requires adaptations to the clients,
but large parts of those can be implemented in standardized pro-
tocol layers, see, e.g., the approach in Section I'V.

It is worth pointing out that the method is not limited to only
session stateful servers, i.e., stateless servers multiplied in a
server pool for fault-tolerance reasons (higher availability/relia-
bility) also benefit from this method. This means that the servers
in the same server pool do not necessarily need to maintain and
replicate session states. Thus, the method is applicable to both
stateless server sets and session stateful server sets.

This paper is organized as follows. The existing server selec-
tion policies are discussed in Section II. In Section III, a formal
description of the proposed MA server selection algorithm as
well as its implementation details are presented. Furthermore,
alternatives of the proposed MA SSP are outlined. The protocol
extension to integrate MA into the RSerPool architecture is pro-
posed in Section IV. The system model assumptions used for
derivation of analytic expressions and simulation programs are
described in Section V. The definitions of the evaluation met-
rics, the actual derivation of the analytic model, and the descrip-
tion of the event-driven simulation programs are presented in
Section VI. Evaluation of the novel MA SSP and discussion of
numerical results obtained via analytic expressions and simu-
lations are performed in Section VII. Concluding remarks and
directions for future work are presented in Section VIIL

II. RELATED WORK

Server selection policies have been extensively studied in
the literature. Some currently existing static and dynamic
algorithms are outlined in this section. Existing static server
selection policies use predefined schemes for selecting servers.
Examples of static SSPs are as follows.

Round robin (RR) is a cyclic policy, where servers are se-
lected sequentially in cycle [6].

Weighted RR is a simple extension of round robin. It assigns a
certain weight to each server. The weight indicates the server’s
processing capacity. This SSP may also be dynamic if it can
evaluate individual servers’ capacities and their loads occasion-
ally [6].

The unawareness of dynamic system states leads to low com-
plexity, however, at the expense of potentially degrading per-
formance and service dependability. Dynamic (adaptive) SSPs
make decisions based on changes in the system state and dy-
namic estimation of the best server. Examples of dynamic SSPs
are as follows.

Least used SSP [6]. In this SSP, each server’s load is moni-
tored by a central monitoring entity or by the client itself. Based
on monitoring the loads of the servers, each server is assigned
the so-called policy value, which is proportional to the server’s
load. According to the least used SSP, the server with the lowest
policy value is selected as the receiver of the current message.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 2, APRIL 2007

It is important to note that this SSP implies that the same server
is always selected until the policy values of the servers are up-
dated and changed.

Least used with degradation SSP [6] is the same as the least
used SSP with one exception. Namely, each time the server with
the lowest policy value is selected from the server set, its policy
value is incremented. Thus, this server may no longer have the
lowest policy value in the server set and the policy may over
time converge towards RR. Every update of the servers’ policy
values brings the SSP back to least used with degradation.

The effectiveness of a dynamic SSP critically depends on the
metric that is used to evaluate the best server. The research on
SSPs has been mainly focused on the replicated Web server sys-
tems. In such systems, the typical metrics are based on server
proximity including geographic distance, number of hops to
each server, round trip time (RTT), and HTTP response times
[7]1-19]. The main objective of SSPs in Web systems is pro-
viding small service latency and high throughput (i.e., success-
fully transmitted data volumes in short time periods). These
metrics are particularly important as the Web service is based
on downloading files from Web servers over the Internet. Down-
loads can take substantial amounts of time if server responsive-
ness and link bandwidth are not optimized.

While SSPs in Web systems aim to provide high throughput
and small service latency, session control protocols such as SIP
deal with messages being rather small in size (500 bytes on av-
erage [10]). Thus, throughput as measured in data volumes per
time unit is not as significant a metric as in the Web systems.
However, service latency remains an important performance pa-
rameter. To the best of the authors’ knowledge, SSPs have not
been extensively investigated in the context of replicated session
control systems.

III. MAXIMUM AVAILABILITY SERVER SELECTION POLICY

Distributing SIP transactions among replicated servers
is an increasingly significant issue. In particular, a SIP
transaction consists of a single request, any intermediate
provisional response, and a final response. The transaction
definition is thus given as SIP transaction = (Request =
(Provisional Responses) = Final Response).

N servers are assumed in the replicated server set. A SIP
server is declared failed if the SIP client has not received a final
response to a request within 77 s. Upon failure detection, the
fail-over mechanism resends the SIP request to the new server
selected according to an SSP. This may potentially be repeated
until all servers have been attempted.

The goal of the proposed algorithm is to reduce transaction
control time. The algorithm is based on maximizing the proba-
bility of successful transaction with the nth request retransmis-
sion, under the condition that (n — 1) attempts have been un-
successful. This leads to minimizing the number of attempted
servers until success, which is shown to impact the transaction
control time (see Section VI). The algorithm is referred to as
MA SSP and it is developed here in the setting of server nodes
that are homogeneous in the sense that they are subject to the
same failure and repair model; furthermore, the failure and re-
pair model has to fulfil some monotony requirements which

BOZINOVSKI et al.: MAXIMUM AVAILABILITY SERVER SELECTION POLICY FOR EFFICIENT AND RELIABLE SESSION CONTROL SYSTEMS

hold for a large set of candidate failure models, including in par-
ticular exponential ON/OFF models. See the end of the Section
III-A for details.

A. Description of the MA Algorithm

The MA SSP makes use of the assumption that the server
whose last known up time is closest to the actual time, is most
likely to be up at the actual time. The algorithm dynamically
obtains information on the last server access moments and the
corresponding activity status of servers in the server set, and
selects the server with the largest last known up time, if any. If
there is no such server, the MA SSP selects the server with the
smallest last known down time. Thus, the MA algorithm aims
at maximizing the probability of successful transaction with the
current transmission.

We observe the mechanism for handling request transmis-
sions/retransmissions at an SIP client [11]. In the case of trans-
action failure with one server, the client retransmits to another
server and for one transaction this procedure may be repeated
until the client has attempted all servers. Let us make the as-
sumption that by some means (abstracted for the time being), at
any moment a request is to be transmitted or retransmitted, the
client is provided the so-called server up status (SUS) vector and
server down status (SDS) vector. The SUS and SDS vectors are
denoted by u and d, respectively, and are defined as follows:

u = [U1(tn ,U,Q(tn) U,N(tn)] (1)
[di(tn), do(tn), - -, dn (tn)] @
where n(n = 1,...,N) is the index of the nth transmission

of the SIP request in a given transaction (n > 1 is a retrans-
mission); ¢,, is the moment at which the request arrives at the
selected server; u;(t,) is the last status moment of server S;
known to be up (available); d;(¢,) is the last status moment of
server S; known to be down (unavailable). It should be noted
that the inequality u;(t,) # d;(t,)(Vi = 1,...,N) always
holds because a server cannot be in ON and OFF state at the same
time.

Let the vector f;, represent the servers, which failed while
starting or completing the transaction in any of the first (n — 1)
attempts

£, = [W%fé"%...,fﬁ}”] 3)

where f;") = 1 if the transaction failed with the server j in one
of the first (n — 1) attempts, and f;") = 0 if the transaction was
not sent to the server j in any of the first (n — 1) attempts. Thus,
immediately before the nth attempt, f,, has (N —n+1) elements
with value 0, and (n — 1) elements with value 1. Since it gives

information on which servers have not been attempted yet, f;, is

389

referred to as the remaining servers (RS) vector. Every transac-
tion is associated with its own RS vector, which is maintained
until the (successful or unsuccessful) transaction completion. It
is deleted once a transaction finishes (successfully or unsuccess-
fully).

We define the conditional transaction dependability with the
attempt n as the probability of successful transaction with the
nth request (re)transmission, under the condition that (n—1) at-
tempts were unsuccessful. The crucial question to pose is: How
to select a server with the nth attempt, which will maximize the
conditional transaction dependability?

Let us denote the conditional transaction dependability with
the attempt n by P,.(7T,,|T,.—1), where T,, represents the event
“transaction is successful with the nth attempt,” and T,,_1 is the
event “transaction was unsuccessful with the (n— 1)th attempt.”
For clarification, 7,1 naturally implies that all the attempts up
to and including the (n — 1)th attempt were unsuccessful. If
n = 1,T,,_1 does not exist as an event.

Let us find the expression of P,.(T}, | T;,_1) when making the
decision for the nth attempt. Let u and d be assumed to be
known with certain values of their elements. It should be noted
that only (N — n + 1) servers are still available for attempt.
We will denote them by indexes j € {jn,...,Jn}. Thus, the
possible values of P,.(T}, | T,,_1) are given as follows:

e (PO @ | Tom0), o PO T})
PO, | T, 73)
_ {Pj<tn> P (bl (80), s (tn) > ()
Pi(tn) - p5 (taldj (), wi(t) < dj(ta)
J € {jn,---int (5

where PY)(T,, | T,_;) is the conditional transaction depend-
ability with the attempt n provided that server j is chosen;
pSl(t (tn | uj(t,)) is the probability of finding server j in state ON
at t,, provided that it was in state ON at u; (¢,); pon (n|dj(tn))
is the probability of finding server j in state ON at ¢, prov1ded
that it was in state OFF at d;(t,,); P;(t,) is the probability that
the transaction is successful provided that the server is in ON
state at £,,

Loglcally, P. ST | T _1)
the maximal P (T, |Tn 1) is selected. However, nothing is
knownaboutp53<n|u]<n>> PR (b | dj () and Py(t,). In
order to illustrate the analysis, let us assume that each server’s
activity follow a Markov ON/OFF process [12], [13]. Let the
mean ON interval 1/),, and the mean OFF interval 1/\.g
be identical with all servers. By applying the Markov model
[14], (5) turns into (6) shown at the bottom of the page, where
P; = cforeach j € {j,,...,in};p = Aot/ (Aof + Aon) and

is maximized if the server with

; _— c- + q - exp|—(t,
- (2

- uj(tn)) “(Aon + Aost)]},
- dj(tn)) : ()‘on +)‘oﬂ)]}v

uj(tn) > dj(tn)
uj(tn) < dj(tn)

Je{Jn77JN} (6)

390

ON R
[T, for u(t,)>d(t,)

fpzcu/(.wk)

OFF o
PO, T,) for u(t,) >d,(t,)

[t u ()] (for ON)

[’n: dt)] (for OFF)

Fig. 2. Conditional transaction dependability as a function of the up/down
status moments.

q = 1 — p. The general shape of this function is depicted in
Fig. 2. The selection decision is thus formulated as follows:

select Jmax such that:
Pr(Tn | Tn—l) = stmx)(Tn | Tn—l)

= max {P}J’n>(Tn \Th), ..., PY)(T, |—Tn_1)}
jmaxe{jn;~-~7jN}§nE{17...,N}. 7

From (7), it is clear that the server maximizing P,.(T, | T,,_1)
is the ome, which has the largest wu;, . (t,) such that
Ujax (tn) > dj.. (t,). In the case that for all servers
J € {ns---sJn}sdj(tn) > uj(ts), then the server jmax with
smallest d;__ (t,) is selected. Hence, the decision making

Jmax

procedure at the nth attempt is formalized as follows:

construct the vector p such that

pi = wi(tn) - s(ui(tn) — di(tn)) — di(tn) - s(di(tn) — ui(tn))

ie{l,...,N}
select jmax such that:
Djmax = Max(p) such that f! =0
where
Jmax € {Jns--sinkine{1,...,N} ®)

where p is referred to as the status vector consisting of N ele-
ments and p; is its ith element; s(x) is the unit step function of
the scalar argument x; max(p) is the maximum element of p.

The MA SSP is based on the assumption that the server whose
last known up time is closest to the actual time is most likely to
be up at the actual time. The class of ON/OFF models that justify
this assumption ensure that prY (T, | T,,_1) is a monotonously
decreasing function, independent of the current moment ¢,, and
identical for all servers in the set. The Markov ON/OFF model is
such an example. In the cases of, e.g., periodic (deterministic)
ON/OFF models, the MA algorithm would need to be modified.
However, the Markov ON/OFF model is the most common as-
sumption in the literature for modeling up time and down time
[12], [13].

To summarize, the MA algorithm maximizes the probability
of a successful transaction with the current transmission. The
drawing that summarizes the basic principle of MA is shown in
Fig. 3.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 2, APRIL 2007

Latest ON Sty
status S, t;
moments
Latest OFF S -t
status Sl ch Client
4 & -1y
moments

Fig. 3. Client makes a decision on which server is to be selected. In this ex-
ample, S> has the largest (positive) time stamp, while S has the smallest (neg-
ative) time stamp. Hence, S5 is selected for serving the current transaction.

B. Implementation Details

It is important to note that the MA algorithm does not need to
use three vectors (i.e., u,d, and f,,) for its operation. Namely,
the vector f,, is transaction associated! and is mandatory as one
has to know which servers have already been unsuccessfully
attempted out of the whole set. Nevertheless, instead of keeping
the status vectors u and d each with dimension NN, the status
vector p of dimension N [as defined in (8)] can initially be
created and then dynamically be updated. The status vector is
updated when a transaction or a heartbeat (HB) sent to a given
server is successfully completed or failed. A transaction (or an
HB) is failed if the client has not received a response to the SIP
request (or the HB request) within a time interval defined by a
timeout. Whenever a new status moment ¢; associated to server
S;, is obtained (when a transaction or HB having been sent to
a given server is successfully completed or failed), the entry
associated to server \S; in the vector p is updated as follows:

. t’i:
pi= _t’b

Thereby, the vector p in (8) is maintained, while keeping two
separate vectors for up and down status moments is avoided.
The same algorithm in (8) is used with the exception for the p
calculation, which is dynamically done by applying (9).

server is reported to be up at #;
server is reported to be down at ¢;

ie{l,....,N}. (9

C. Alternative Server Selection Policies

The following other SSPs that are related to the MA SSP are

also proposed.

* Smart RR (SRR): In this SSP, a new request is sent to a
server by applying RR on the current subset of servers that
have been reported to be alive. If no server has been re-
ported to be alive, RR is applied to the whole server set. The
major advantage of this SSP is that it combines the good
features of RR and MA SSP. Namely, due to RR, there is a
fair load balancing in the system, whereas requests are sent
to servers that are reported to be alive, thus increasing the
instantaneous probability of successful transaction.

!Generalizations taking into account knowledge from concurrent transactions
are possible but not considered further in this paper.

BOZINOVSKI et al.: MAXIMUM AVAILABILITY SERVER SELECTION POLICY FOR EFFICIENT AND RELIABLE SESSION CONTROL SYSTEMS 391

* SRR per Session (SRR-S): This is a variant of SRR, which
is only applied to select a server for INVITE requests (new
sessions) and for midsession requests that need to fail over
due to a missing final response. Once a server is selected,
all the next requests within the session are sent to the same
server until the session ends or a request failure is detected.
SRR-S aims to provide fair load balancing in a long run
(due to RR on a session level), however, there is no load
balancing within a session. It also aims at increasing the
probability of successful transaction with the current trans-
mission by sending the next request to the same server that
successfully completed the previous transaction.

IV. PROTOCOL EXTENSION FOR INTEGRATING
MA INTO RSERPOOL

The problem addressed in this section is the integration of
MA into the RSerPool [3] fault-tolerant platform, which is being
defined in the IETF. The solution to this problem is an RSer-
Pool protocol extension. An overview of RSerPool is given in
Section I'V-A.

A. RSerPool Fault-Tolerant Platform

The RSerPool architecture is being standardized within the
IETF RSerPool working group [3]. RSerPool defines three of
the following types of elements:

* Pool Elements (PEs): servers that provide the same service

within a pool;

e Pool Users (PUs): clients served by PEs;

* Name Servers (NSs): servers that provide the translation

service to the PUs and monitor the health of PEs.

In RSerPool, pool elements are grouped in a pool. A pool is
identified by a unique pool name. To access a pool, the pool
user consults a name server. RSerPool consists of two proto-
cols, namely, the aggregate server access protocol (ASAP) and
the endpoint name resolution protocol (ENRP). ASAP uses a
name-based addressing model which isolates a logical commu-
nication endpoint from its IP address(es). The name servers use
ENRP for communication with each other to exchange informa-
tion and updates about the server pools (note that name servers
are also called ENRP servers). The instance of ASAP (or ENRP)
running at a given entity is referred to as ASAP (or ENRP) end-
point of that entity. For example, the ASAP instance running at
a PU is called the PU’s ASAP endpoint.

Each time a PU sends a message to a pool that contains more
than one PEs, the PU’s ASAP endpoint must select one of the
PEs in the pool as the receiver of the current message. The se-
lection is done according to the current server selection policy.
The example in Fig. 4 illustrates the event sequence when the
PU’s ASAP endpoint does a cache population [6] for a given
pool name. Cache population (update) is updating of the local
name cache with the latest name-to-address mapping data as re-
trieved by the ENRP server.

B. RSerPool Extension for Cache Population

We define an extension of the RSerPool architecture that sup-
ports the novel MA SSP. Here, the failure-detection intelligence
is distributed in the pool user and the name server. The pool user

Pool ENRP
User server
E 1 :
IEEEEEEER R >,

: 4=

1

) 3 Lol

R R Rtk :
1-t-g :
4] :
I-T"]

')

Fig. 4. Cache population as currently defined in [6]. The steps are explained as
follows. 1) The ASAP endpoint of the PU sends a NAME RESOLUTION query
to the ENRP server asking for all information about the given pool name. 2) The
ENRP server receives the query, and locates the database entry for the partic-
ular pool name. The ENRP server extracts the transport addresses information
from the database entry. The ENRP server creates a NAME RESOLUTION RE-
SPONSE in which the transport addresses of the PEs are inserted. 3) The ENRP
server sends the NAME RESOLUTION RESPONSE to the PU. 4) The ASAP
endpoint of the PU populates (updates) its local name cache with the transport
addresses information on the pool name.

makes use of the application layer and transport layer timers to
detect transport failure, while name servers provide the keep-
alive mechanism to periodically monitor PE’s health. In the
further text, the terms keep-alive and heartbeat are used inter-
changeably.

The PU’s ASAP endpoint accomplishes the updating of its
status vector denoted as p(*). The extension is rather simple
and easy to introduce in RSerPool. It affects the communication
between the ENRP server’s and the PU’s ASAP endpoint. It is
assumed that both the functionality of the PU and the ENRP
servers is extended to support the MA algorithm. The extended
functionality in the ENRP server creates a status vector for a
given server pool. This status vector is updated periodically by
using the existing ASAP’s keep-alive mechanism [6]. The name
server’s status vector is denoted as p(®). The p®) vector for
a given pool is stored in the same database entry in the name
server reserved for that pool.

Steps 1)-4) (with reference to Fig. 4) for cache population
with the MA RSerPool extension are defined as follows.

The ASAP endpoint of the PU sends a NAME RESOLU-
TION query to the ENRP server asking for all information about
the given pool name.

The ENRP server receives the query, and locates the database
entry for the particular pool name. The ENRP server extracts
from the database entry the transport addresses information as
well as the p(®) vector. The ENRP server creates a NAME RES-
OLUTION RESPONSE in which the transport addresses of the
PEs and the p®) vector are inserted.

The ENRP server sends the NAME RESOLUTION RE-
SPONSE to the PU.

The ASAP endpoint of the PU populates (updates) its local
name cache with the transport addresses information on the pool
name. The PU’s ASAP endpoint applies the following simple
procedure in order to update the status vector p(*"):

P,

",]pi” ‘ <

’pﬁs)‘ > |p"

pgu) _

ie{l,...,N}. (10)

Pt

It should be noted that this works well under the condition
of synchronized time clocks in pool users and name servers.

392

Server set

Client A Client B

Fig. 5. General considered system.

Employing the network time protocol (NTP) provides accept-
able levels of synchronization (maximum 20-50 ms clock drift
if the NTP server is reached via WAN and less than 10 ms if the
NTP clients and servers are part of the same LAN [15]). Note,
however, that the MA algorithm does not really use the distance
between time stamps, but only their (total) ordering. Hence,
the synchronization requirements really reduce to monotony re-
quirements for time stamps. The investigations whether the par-
tial ordering as introduced by, e.g., logical clocks (see [16]), may
be sufficient to achieve substantial performance improvement
are outside the scope of this paper.

In Section V, system model assumptions used for developing
the analytic model and simulation programs are presented.

V. SYSTEM MODEL ASSUMPTIONS

The general system considered is based on RSerPool as the
underlying fault-tolerant platform shown in Fig. 5. The system
model assumptions are presented in the following subsections.

A. Server Model Assumptions

Failures of hosts and networks follow certain failure/repair
models. A random variable that accounts for system reliability
is the time to failure (TTF). In reversible systems, where the
system can be repaired after failure, another random variable
is defined, i.e., time to repair (TTR). When the TTF and
the TTR follow exponential distributions with mean time to
failure (MTTF) and mean time to repair (MTTR), respectively,
the overall reversible failure/repair process is referred to as
two-state Markov ON/OFF model [14], which is used in the
context of this paper.

There are N servers in the pool and this number is referred
to as pool size. Each server is denoted by S,(n = 1,...,N).
MTTF and MTTR of S,, are denoted as 1/\,, (ON) and 1/,
(OFF), respectively. Note that the MA SSP has been developed
for homogenous server sets, however, the simulation experi-
ments also investigate the case of nonhomogenous server sets
(see Section VII).

There is a FIFO queue of size (),, for incoming messages (i.e.,
the extreme case is: (),, — 1 SIP messages are in the queue, and
one SIP message is being processed). We will assume that .S,
can only process one SIP message at a time. Once a SIP message
is accepted for processing, it occupies the server’s processor for
a certain fixed period of time denoted by 7,, (PSIP). Once the
server finishes processing a SIP message, another SIP message,
if any, is pulled from the queue for processing. An incoming SIP
message is dropped if the current number of SIP messages in the
server is equal to Q.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 2, APRIL 2007

Logical server

Client
C

Fig. 6. Network links in an RserPool-based session control system.

When S, fails, the SIP message that is currently being pro-
cessed is dropped. Also, all the SIP messages that are currently
in the server are dropped.

B. Network Model Assumptions

The different links present in the RSerPool-based session
control system are depicted in Fig. 6. They interconnect clients
and servers. SIP messages are sent and received over these
links.

SIP is assumed to run over SCTP. Each host is dual-homed
(i.e., it has access to two different networks) and a message is
by default sent via the primary path, which is set to be the faster
link. The timeout expires after the round trip time of the primary
path. The RTT of the primary path is considered constant and its
value is the doubled value of the message propagation time of
the primary path. If a message is not acknowledged within the
RTT of the primary path, it is retransmitted over the secondary
path. The timeout being equal to RTT is a very tight assumption.
However, it is justified taking into account that if the message
delivery is successful, the acknowledgment arrives exactly in
RTT time units.

There are M clients in total. From the RSerPool point-of-
view, as shown in Fig. 6, clients represent PUs and servers repre-
sent PEs. For PU-to-PE links, the delivery time of a SIP message
over the primary link under the condition of successful delivery
is denoted as Z;;,. For PE-to-ENRP links, the delivery time of
an ASAP message over the primary link under the condition of
successful delivery is denoted as ¢;,.. For PU-to-ENRP links, the
delivery time of an ASAP message over the primary link under
the condition of successful delivery is denoted as ;,,. Each link
is also assigned fixed packet loss probability pjogs-

Note that in the parameter settings of the simulation experi-
ments, the SIP timeout is much larger than the SCTP timeout,
consequently, in case of a host failure, an unsuccessful SCTP
retransmission on the secondary link will happen first, but the
SCTP retransmission mechanism is not performance relevant
for the host failure case. Only in scenarios of packet loss the
SCTP retransmission is beneficial.

C. Traffic Model Assumptions

SIP sessions arrive following a Poisson process with inter-
session arrival rate A;. This assumption is expected to be very
accurate (according to the central limit theorems for stochastic
processes) if the sessions are created by a large population of
independent users as it would be the case if the “client” is the

BOZINOVSKI et al.: MAXIMUM AVAILABILITY SERVER SELECTION POLICY FOR EFFICIENT AND RELIABLE SESSION CONTROL SYSTEMS 393

P-CSCF in a 3GPP IMS system. The number of transactions in a
session is assumed to be uniformly distributed within the integer
set {2,...,2K; + 2} (the simplest session consists of an IN-
VITE and BYE transaction, e.g., a basic telephony call), where
K, is the mean number of non-INVITE and non-BYE transac-
tions per session. A session proceeds with the next transaction
even if the current transaction has not been successfully com-
pleted, unless the current transaction is the INVITE transaction.
The inter-transaction time (i.e., the interval between two sub-
sequent SIP requests) is exponentially distributed? with mean
value 1/A. A non-INVITE transaction consists of a request and
a final response, while an INVITE transaction consists of IN-
VITE, 2000K, and ACK. The requests between INVITE and
BYE are assumed to represent the MESSAGE method used for
instant messaging (IM) application [17]. Thus, the transactions
between INVITE and BYE are referred to as IM transactions.

The RSerPool architecture allocates an ENRP server (or a
set of replicated ENRP servers) to a given operation scope. In
this model, the operation scope comprises a single server pool
(server set). The ENRP server employs the ASAP keep-alive
messages to periodically monitor the availability status of all
the pool elements, or a subset of them, in the server pool. A new
keep-alive request is sent once the previous one has been either
acknowledged by each server or timed out for each server due
to a missing keep-alive response.

When a keep-alive request arrives at a server, it is immedi-
ately processed if the server’s buffer size is not exceeded. A HB
request is dropped if the current number of SIP messages in the
server is equal to the server buffer size.

The RSerPool extension proposed in Section IV is assumed.
Furthermore, each pool user periodically initiates cache update,
i.e., name resolution with the ENRP server. The following are
the summarized quantitative traffic assumptions for the RSer-
Pool-based system:

* keep-alive period in the ENRP server is denoted as Tjy,;

 timeout per keep-alive request is denoted as 7j;

» processing time of a keep-alive request in a pool element

is fixed and is denoted by Ty,p;

* cache update period is denoted as T.;

 timeout per cache update is Tj (identical as the timeout per

keep-alive request);

* processing time of a name resolution request in the ENRP

server is fixed and is denoted by T},,,;.
The previous time parameters are illustrated in Fig. 7.

D. Timeouts and Server Selection Policies

The SIP server is declared failed if the SIP client has not re-
ceived a final SIP response to a SIP request within 77 seconds.
Upon failure detection, the fail-over mechanism resends the SIP
request to the new server selected according to the SSP. The re-
quest is not retransmitted to the currently failed server because
the server is assumed to remain failed for a longer period of time.

A number of SSPs are employed at a client. The following
SSPs are used in the evaluation: 1) RR; 2) SRR-S; 3) MA.

2This assumption is made for the ease of modeling. Although the results in
Section VII give a first indication of the impact of different types of inter-trans-
action time processes, detailed investigations need to be performed in future
work.

ENRP server PE PU ENRP server
) \) \
1 KN] KN
T 0 : I T, phb T 0: I T pr
) /) /
Tw! _y el o
\ \

Fig. 7. Time parameters: (a) HB and (b) cache update.

VI. ANALYTIC AND SIMULATION MODELS

In this section, analytic expressions are derived for selected
metrics and certain assumptions, and simulation programs are
presented. First, the evaluation metrics are defined. Second, the
analytic expressions for transaction dependability and transac-
tion control time are determined. Third, the simulation programs
developed for the evaluation purpose are briefly explained.

A. Evaluation Metrics

The set of evaluation metrics are transaction dependability
and transaction control time. The transaction dependability is a
service dependability metric, while transaction control time is a
performance metric.

Transaction dependability at a client is defined as the proba-
bility that the transaction is successfully completed as seen by
the SIP client that initiates it. One distinguishes between IN-
VITE transaction dependability, IM transaction dependability,
and BYE transaction dependability.

Transaction control time at a client is defined as the average
duration of the interval between the moment of sending the re-
quest and the moment of receiving either a final response (200
OK) in case of IM and BYE, or the moment when ACK is re-
ceived by the destination client in case of INVITE. One distin-
guishes between INVITE transaction control time, IM transac-
tion control time, and BYE transaction control time.

B. Transaction Dependability Expression

An expression for transaction dependability is derived for a
general transaction, which is then adapted to a particular trans-
action. A general transaction is used to term any transaction.
The derivation is conducted for the maximum availability SSP.
The system model assumptions from Section V and certain re-
strictions to them are adopted for the derivation. Note that these
restrictions are only valid for the derivation and the simulations
to validate the following analytic results.

Ao — oy and MO —)\ o for each n = 1,...,N,ie.,
all the servers follow identical Markov ON/OFF process (where
Aons Aoff_are fixed constants).

TiPsip) Tpsip for each n = 1,..., N. However, it is as-
sumed that no queuing takes place at a server, i.e., messages are
processed immediately once they enter the server.

There is only one session with infinite number of transac-
tions arriving so that inter-transaction time is approximated as
the interval from the last response receipt (in case of successful
transaction) or timeout expiration (in the case of unsuccessful
transaction) until the next transaction request. This assumption
is made to simplify the derivation of the analytic model and its

394

validation through simulation. Also, there is only one client that
starts transactions and one client that receives transactions.
Network redundancy is not used, i.e., messages can only be
sent over a single link.
The general expression for the transaction dependability in a
stationary system state at a client is given as follows:

D= lim D(i)

1—>00

(i=1,2,... (11)

,00)

where D(1) is the dependability of a transaction with sequence
number ¢ at a client and is found as follows:

N
D)= Y D(ni) (i=1,2,...,00)

ni:1

12)

where D(n;) is the probability that transaction 4 is successful
with the n; attempt. The expression of D(n;) is given as follows:

N
D) = P (TV) = > P (T, 767D)
n;_1=0

(n;=1,...,N) (13)
where T,SL) [T,Sljll)] is the event: “transaction i [i — 1] is success-
Sully completed with the n;[n; 1] attempt and there have been
unsuccessful attempts with n; — 1[n;_1 — 1] servers;” There is
an exception, namely, To(i’_l) represents the event: “transaction
(i —1) is not successfully completed because of unsuccessful at-
tempts with all the N servers;” The following notation is used:
P.(U) is the probability of the event U, P.(U, V) is the prob-
ability of the joint event (U, V'), and P,.(U | V') is the proba-
bility of the conditional event U | V. The expression (13) can be
rewritten as

N

D(n) = 3 P (T 12D) - Dnica)
n;1=1
+ P, (T,ﬁ? Téi‘”) P, (Tél_l))

(14)

One should note that according to (12), P, (Toi_ 2) represents
4 N
P, (TO("”) =1-D(i-1)=1- Y D(ni_1). (15
ni_1=1

For more compact analysis, let us introduce the following ma-
trix notation. Let the N x 1 vector d(*) be defined as

d® = [D(1) D(n;) D(N)". (6
Let the N x 1 vector pgi) be defined as
i i) i1 i) |-\
py) = [(T V) e (0T
a7

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 2, APRIL 2007

Let the N x N matrix P() be defined as

P, (Tf"') Tfi‘l)) P, (Tf“ T}V’L"”)
PO = : :
P, (T}V") |-) P (T}V“ | g=»)

(18)

Thus, combining (14)—(18), the following matrix form of (14)
is obtained:

4@ — [Pu) —pW .u} -d@D 4 p® (19)
where u = [1,...,1] isa unit 1 X N vector. According to (11)
d= lim d® py= lim p(()i) P= lim P® (20)
1—>00 1—>00 1—>00
Letting ¢« — oo in (19), one obtains
d=[I-P+po-u~"po 21)

where I is an N x N identity matrix, and A1 is the inverse
matrix of the square matrix A.

Finally, the dependability of a transaction in a stationary
system state at a client is given as follows:

D=u-d. (22)

It should be noted that (21) and (22) are the general expres-
sions that are further used as the basis to develop the expressions
for particular application scenarios. The derivation is completed
when all the elements of py and P are analytically determined.
Thus, the total number of elements to determine in one scenario
is N + N2.

The determination of pg and P elements has been conducted
for MA without HB mechanism (see [5, App.] for detailed
derivation). The status vector turns out to have the crucial im-
pact on the derivation. Two cases are considered: deterministic
and exponentially distributed random inter-transaction time.
The special case when N = 2 is analyzed and the exact ex-
pressions obtained for deterministic inter-transaction time are
also used for the case of exponential inter-transaction time. The
actual determination of the expressions of these elements was
presented in detail in [5, App.]. The derivation for other SSPs
with HB support will be conducted in some future studies.

C. Transaction Control Time Expression

The transaction control time is computed only for success-
fully completed transactions. The expression for the transaction
control time is found in terms of the probability that a transac-
tion is successfully completed with the nth attempt after unsuc-
cessful attempts with (n — 1) servers. This probability is intro-
duced in (13) and here it is denoted as D(n). Ultimately, the

BOZINOVSKI et al.: MAXIMUM AVAILABILITY SERVER SELECTION POLICY FOR EFFICIENT AND RELIABLE SESSION CONTROL SYSTEMS 395

transaction control time is determined using the following ex-
pressions:
N
TIPYe = 9T, + Aty + T+ Y (n — 1)D(n)

n=1

(23)

where D(n) in (23) is computed for IM and BYE transactions.
The expression for INVITE transactions may be obtained as a
simple modification of (23). As opposed to IM and BYE transac-
tion, which consist of one request and one response, the INVITE
transaction is made up of the first request (INVITE), a response
(200 OK), and another request (ACK), hence, three messages
in total. The INVITE transaction control time is determined as
follows:

N
Tc(inv) _ 3Tpsip + Gtsip + T - Z (’n, — I)D(TL)

n=1

(24)

Note that the sum term in (23) is proportional to the mean
number of servers attempted until successful transaction. The
ideal SSP provides D(n) = 0 for n > 1 thus the sum term
becomes zero.

D. Event-Driven Simulation Programs

The following simulation programs were developed within
this paper.

* Simulation program (referred to as Simulation Model 1)
to validate the analytic expressions for transaction de-
pendability and transaction control time. It is based on the
system model presented in Section V and their restrictions
presented in Section VI.

e Simulation program (referred to as Simulation Model 2) to
investigate transaction dependability and transaction con-
trol time. It is entirely based on the system model presented
in Section V.

The probability estimates are computed using the standard
definition of relative frequency (also known as proportion).
Thus, the probability of an event in a given simulation run is
calculated as the ratio of the number of event occurrences and
the total number of trials. Simulation probability estimates can
be considered statistically significant as the number of trials
in each simulation run for each estimate was in the order of
magnitude of 108. Furthermore, the number of occurrences of
the less probable event (out of two complementary events) in a
simulation run was at least 10%.

A transaction control time estimate for a given transaction is
computed as an average value of all transaction control times
measured for that type of transaction during a single run.

VII. NUMERICAL RESULTS AND DISCUSSIONS

The scenarios considered can be classified into the following
categories: 1) Analytic model validation (results based on ana-
lytic expressions in Section VI, and results based on Simulation
Model 1) and 2) investigations on dependability/performance
(results based on Simulation Model 2).

A. Analytic Model Validation

Within this section, the analytic model is validated through a
detailed quantitative comparison between results based on ex-

TABLE 1
INPUT PARAMETERS

N TP Lsip, pu and /4,07 vaer T,
pe.
2 0.0ls 50 ms 4750's 250s I's
100
- RR simulation
<99.95 —o— MA simulation ||
z —— MA analytic
3
= 99.9 o
2
2
£99.85 |
2
£
g 99.8 .
z
Lo T Y4 S "
99.7 ' L .
0 2 4
10 10 10

Inter-transaction time (s)

(a)
100 T

RR simulation
—<— MA simulation

E 99.95/" —*— MA analytic
=
S
g5 99.9 4
=l
g
$ 99.85
g
= 99.8 1
=
=

99.75 g -

99.7 Y = >
10 10 10

Inter-transaction time (s)

(b)
Fig. 8. (a) INVITE dependability. (b) IM and BYE dependability versus deter-
ministic inter-transaction time.

pressions in Section VI, and results based on Simulation Model
1. The input parameters are presented in Table 1.

Figs. 8 and 9 present the transaction dependability and trans-
action control time as functions of the inter-transaction time, re-
spectively. The inter-transaction time is a deterministic variable
in this scenario. The numerical results are obtained via simula-
tion (for RR and MA) and through the analytic expression de-
rived for MA with deterministic inter-transaction time. The fol-
lowing important conclusions are drawn.

1) In Fig. 8, it is interesting to note that the transaction de-
pendability metrics achieve the maximum when the inter-
transaction time approaches zero. In general, this is valid
for such a model because the effective inter-request time
is always lower-bounded to N'T'; when all the servers are
in the OFF interval. On the other hand, there is no lower
bound on the effective inter-transaction time when there is
at least one server in the ON interval. Thus, shorter effective
inter-transaction time implies that the percentage of trans-

396
0.42 :
RR simulation
; . —c— MA simulation
0.4~ *— MA analytic
038
= 036
g
£
Z 034
»
£
0.32 ! : :
10° 10° 10"
Inter-transaction time (s)
(a)
0.31 :
RR simulation
0.3- —o— MA simulation
029 —— MA analytic
0.28h oo ",:".. .. T J
0.27 :

IM/BYE transaction time (s)

024
0.23

0.26 :
0.5 i

2
10
Inter-transaction time (s)

(b)

Fig. 9. (a) INVITE transaction time. (b) IM and BYE transaction time versus
deterministic inter-transaction time.

2)

3)

4)

actions that arrive in an ON interval is growing as opposed
to the percentage of transactions that arrive in OFF inter-
vals.

The transaction dependability metrics converge towards
the limit probability of 0.9975, which is obtained as 1 —
(1 — p)? when the inter-transaction time infinitely grows
(Fig. 8); where p is the a priori availability of each partic-
ular server (i.e., 0.95 in this particular scenario). For ex-
tremely large inter-transaction times, the correlation be-
tween two subsequent transactions is negligible.

The curves of the transaction dependability metrics for ei-
ther SSP are very close to each other (Fig. 8). This is intu-
itively expected, as the sequence order in which the servers
are accessed only has a small impact on the probability of
transaction success for the considered scenarios that the
time scales of the failure/repair model are much larger than
the time scales of an individual transaction. The MA SSP is
slightly more efficient as it attempts to maximize the prob-
ability of successful transaction with every transmission.
The INVITE transaction time is generally longer than the
IM/BYE transaction times due to the larger number of

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 2, APRIL 2007

100 T T ‘
RR simulation
S —o— MA simulation
=g99.95f —— MA analytic
E
< 99.9-
=
2
3
£ 99.85+
151
3
g 99.8-
s
=
> 99.75r
&
99.7 : . s
10° 10° 10*
Mean inter-transaction time (s)
(a)
100 T
—_ —— MA simulation
£ 99.951 3 —— MA analytic
< 99.9-
g
o
3
m 99.85-
>
a
= 99.8-
99.75+-
99.7 ‘ ‘ ‘
10° 10° 10°
Mean inter-transaction time (s)
(b)

Fig. 10. (a) INVITE dependability. (b) IM and BYE dependability versus mean
inter-transaction time (which is exponentially distributed random variable).

5)

6)

messages to be exchanged within the INVITE transaction
(Fig. 9). Fig. 9 evidently shows that for inter-transaction
times up to 1000 s, MA outperforms RR with respect to
transaction control time. This is due to the inherent capa-
bility of MA to minimize the number of servers to attempt
until success. Recall that MA always sends the next request
to the server that was last known to be alive, thereby max-
imizing the instantaneous probability of success. For ex-
tremely large inter-transaction times, the transaction con-
trol times converge towards a certain limit for both MA
and RR. For this range, MA performs as well as RR be-
cause there is not up-to-date information about the servers’
status at the client.

The analytic numerical results (both transaction depend-
ability and transaction control time) for MA are almost per-
fectly matching those obtained via simulations. Thus, the
analytic model has been validated.

Fig. 10 presents the transaction dependability metrics as
functions of the mean inter-transaction time, respectively.
In this scenario, the inter-transaction time is an exponen-
tially distributed random variable. The element P,.{ A1}
of the matrix P is approximated with the expression for the

BOZINOVSKI et al.: MAXIMUM AVAILABILITY SERVER SELECTION POLICY FOR EFFICIENT AND RELIABLE SESSION CONTROL SYSTEMS 397

TABLE II
INPUT PARAMETERS AND NOTATION

N 2
0, 1000
Senver AT 1/} (47505, 49005)
(1/A,°9 1/3,%9} {2505,1005s)}
{ 7,77 7,7y {10 ms, 50 ms}
Lsips tp,{ and t,, of 50 ms
Network primary link
model Lsins Ly, and £, of
gec%ndaryplink 200 ms
Ploss 1 0-4
Traffic M 10
model A 015"
K, 10
Thb 30s
) 7. 30s
Time T, 1s
constants Ty 10 pis
Tonr 10 ps
T, 7 1s
MA Maximum Availability SSP
RR Round Robin
Notation RR SMART SES Smart Round Robin per

Session SSP
results obtained via

simulation . .
simulations
analytic _ analytic results
w/o without

same element when the inter-transaction time is determin-
istic (see [5, App.]). There are no significant differences
between the exponential and deterministic results therefore
transaction control time plots for the exponential case are
not shown.

The previously mentioned Points 1)-5) apply here as well.
The transaction dependability metrics for the exponential case
are nevertheless shown to point out that the analytically ob-
tained dependability metrics do not perfectly match those from
the simulations (see Fig. 10). This is due to the approximate
expression for P.{Az |1} in P. Nevertheless, the analytic and
simulation curves are quite close to each other, which is satis-
factorily acceptable.

B. Investigations on Dependability/Performance

The following simulation scenarios are based on Simula-
tion Model 2. The goal of these scenarios is to evaluate how
servers with nonhomogenous characteristics impact transac-
tion dependability and transaction control time. The input
parameters are listed in Table II. The output parameters are
plotted as functions of normalized session arrival rate (defined
as MA,T"P)). Results are discussed for different server
selection policies. The plots are shown in Figs. 11 and 12.

In this scenario, the server set assumed consists of two servers
with nonidentical hardware and software characteristics. One of
the servers has higher processor speed as well as faster SIP soft-
ware, while its ON/OFF model is such that the resulting avail-
ability is lower than that of the other server. HB requests are
sent regularly every 30 s. With RSerPool, cache updates are also

100 r . .
—— RR
995} —»— MA with HB .
< —a— MA w/o HB
Z2 —w— RR SMART SES
s 99| J
9
[
@
Q
(]
o
2 985 4
98 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 .
Normalized session arrival rate x 10
Fig. 11. INVITE transaction dependability versus normalized session arrival
rate.
AR T T T T T
05 MA with HB 4
. MA w/o HB
L RR SMART SES
o
é 0.45
o
9
B
Q
g 0.4
8 .
z
035} i

1 2 3 4 5 6 7 8 9
Normalized session arrival rate

x10®

Fig. 12. INVITE transaction time versus normalized session arrival rate.

regularly done every 30 s. One can note the following results by
observing Figs. 11 and 12.

1) We define the pool capacity as the value of the normal-
ized session arrival rate up to which the transaction depend-
ability is not dropping more than 0.05% below the max-
imum. As shown in Fig. 11, the pool capacity is roughly
about 0.005 or 0.006 depending on the server selection
policy. Further, transaction dependability goes smoothly
down.

2) MA with and without HB gives the best transaction de-
pendability (see Fig. 11). SRR-S performs better than
RR regarding the INVITE transaction dependability. RR
provides worst transaction dependability among the four
schemes because it always sends the requests in a cyclic
fashion regardless of the server’s processing performance
and the current availability server status. For higher ses-
sion arrival rates, the probability of overloading the slower
server becomes considerable. Despite its generally higher
availability, the slower server easily gets congested and a
certain percentage of the incoming SIP messages cannot
be queued and must be dropped. Based on monitoring
the up-to-date status (by HB requests as well as SIP mes-
sages) MA possesses the inherent capability to choose
the instantaneously most available server from within the
server set. Higher session arrival rates cause more frequent
failures of the slower server, and thus, effectively decrease

398

its overall instantaneous availability. This information in
turn dynamically maps into the clients’ status vectors and
it implies selecting the instantaneously more available
server. This suggests that the server processing speed has
an inevitable impact on the equivalent server instantaneous
availability. Dynamic monitoring of the servers’ status
enables clients to make the proper selection decision as to
increasing the instantaneous transaction dependability.

3) The same conclusions apply to SRR-S (see Fig. 11). Con-
sequently, in some fractions of time the slower server is
selected, which may not be quite an appropriate decision
particularly in heavy traffic conditions. The effect is worse
transaction dependability as well as worse performance.

4) Analyzing the transaction control time reveals one particu-
larly interesting and important result (see Fig. 12). Surpris-
ingly, MA without HB support generally shows the best
performance. The critical observation is that MA without
HB support performs even better than MA supported by
a HB mechanism! This outcome can be explained by the
following reasoning. For lower to medium session arrival
rates, both servers are not overloaded, and these condi-
tions imply that MA ensures relatively equal load distribu-
tion amongst the two servers. Further load growth gets the
slow server overloaded more frequently than the fast one.
Directing the transactions over the both servers according
to their up status, as suggested by the regular HB health
check, degrades the transaction times because the slower
server is more often forced to drop incoming messages.

When MA is deployed without HB support, the servers’ status
is discovered solely by the SIP messages. Thus, once a single
transaction is successful with the slow server, the MA algorithm
is forwarding the next transactions to this server. Since the traffic
load is rather heavy, the slow server rapidly goes into saturation
and causes transaction failures. Consequently, the client is more
often suggested to direct transactions to the fast server. Thus, the
fast server proceeds the servicing until it fails. This leads us to
the conclusion that the MA algorithm has a naturally embedded
ability to detect the faster servers. In fact, the HB mechanism
does not help the MA SSP discover the faster server. Indeed, the
HB requests do not indicate the server speed instead they rather
collect the availability status of the servers, which does not al-
ways tell about the server processing power. For this reason,
deploying the HB mechanism for medium to heavy traffic loads
deteriorates performance because a large fraction of transac-
tions are directed to the slow server thereby increasing the trans-
action times. The misleading information provided by the HB
health checks causes even more serious overloaded conditions at
the slow server resulting in noticeably longer transaction times.
There are certain maximums in the transaction time as seen in
Fig. 12.

These results suggest that a HB mechanism is recommended
to couple the MA SSP only for light traffic loads in order to
minimize the transaction times. For medium to heavy traffic
load conditions, the HB mechanism is not desired because it
indirectly deteriorates performance. Thus, the HB mechanism
is proven to be a helpful technique only with light traffic con-
ditions in the network. Note that these conclusions are valid for
the specific model where HB requests do not get into server’s

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 2, APRIL 2007

queue and are rather processed immediately by a separate soft-
ware entity.

VIII. CONCLUSION

A novel dynamic SSP referred to as MA SSP is proposed
along with a simple RSerPool protocol extension. MA is appli-
cable in a broad range of IP-based systems and services, even
though in this paper it was only considered in session control
systems. The proposed MA SSP is a dynamic and adaptive al-
gorithm that aims at maximizing the probability of successful
transaction with the current transmission. Decisions are made
using a simple status vector maintained at a client. MA has a low
implementation complexity; a client should only keep a status
vector with as many elements as servers in the server set.

An analytic model was developed and expressions of the
selected evaluation metrics were derived. Also, based on the
system model assumptions, event-driven simulation programs
were developed. By comparing the results obtained from the
expressions and simulations, the analytic model was validated.
Numerical results show that MA significantly outperforms RR.
Moreover, for the considered system model, MA without a heart
beat mechanism support gives the best service dependability
and performance in nonhomogenous server sets.

In order to integrate MA into RSerPool, a simple RSerPool
extension was proposed, where a name resolution response is
added an extra field containing the status vector. Nevertheless,
MA is not restricted to RSerPool, and it may be used with any
other fault-tolerant platform such as clusters.

In the future work, dynamic SSPs based on other metrics will
be devised. For instance, in order to further enhance perfor-
mance, application response time (or the round trip time) from
each server can be measured to assess each server’s processing
power. In this paper uptime and downtime were assumed ex-
ponentially distributed. It would be interesting to also consider
other failure/repair models as well as other traffic models. The
performance of MA may differ for distributions other than ex-
ponential. The current analytic model was derived only for MA.
In the future studies, we aim at extending it to other SSPs with
or without HB support.

Comparison of the SSP to a standard setup with more realistic
parameter settings (e.g., SCTP HB mechanism with appropriate
parameters) for telephony signaling will be performed in the
future work.

Finally, assuming synchronized time (between PU and
ENRP servers) may be an unreasonable constraint. The impact
of varying clock skew on the SSP, and the possible mechanisms
that could alleviate the clock skew breakage will be investigated
and evaluated in the future studies.

ACKNOWLEDGMENT

The authors would like to thank R. Seidl, Siemens, Munich,
for his valuable comments. This work was carried out within the
joint Siemens-CTIF research project.

REFERENCES

[1] IP Multimedia (IM) Subsystem-Stage 2, 3GPP TS 23.228, Sep. 2003,
Tech. Specification.
[2] J. Rosenberg, “SIP: Session initiation protocol,” RFC 3261, Jun. 2002.

BOZINOVSKI et al.: MAXIMUM AVAILABILITY SERVER SELECTION POLICY FOR EFFICIENT AND RELIABLE SESSION CONTROL SYSTEMS 399

[3] M. Tuexen, “Architecture for reliable server pooling,” Oct. 12, 2003,
draft-ietf-rserpool-arch-07.txt.

[4] “Resilient Telco platform, V2.0 for Linux and Solaris: RTP Overview
and Programmer’s Guide,” Fujitsu Siemens Computers, 2002.

[5] M. Bozinovski, H.-P. Schwefel, and R. Prasad, “Maximum availability
server selection policy for session control systems based on 3GPP
SIP,” in Proc. 7th Int. Symp. Wireless Personal Multimedia Commun.
(WPMC’04), 2004, pp. 276-281.

[6] R. Stewart, “Aggregate server access protocol (ASAP),” 2004, draft-
ietf-rserpool-asap-09.txt.

[7]1 M. E. Crovella and R. L. Carter, “Dynamic server selection in the In-
ternet,” in Proc. 3rd IEEE Workshop Arch. Implementation High Per-
formance Commun. Subsyst. (HPCS), 1995, pp. 158-162.

[8] M. Sayal, “Selection algorithms for replicated web servers,” in Proc.
Performance Evaluation Rev.—Workshop Internet Server Perfor-
mance, 1998, pp. 44-50.

[9] K. Obraczka and F. Silvia, “Network latency metrics for server prox-
imity,” in Proc. IEEE Globecom, 2000, pp. 421-427.

[10] G.Camarillo, R. Kantola, and H. Schulzrinne, “Evaluation of transport
protocols for the session initiation protocol,” IEEE Network, vol. 17,
no. 5, pp. 4046, Sep. 2003.

[11] M. Bozinovski, L. Gavrilovska, and R. Prasad, “Fault-tolerant SIP-
based call control system,” Electron. Lett., vol. 39, no. 2, pp. 254-256,
Jan. 2003.

[12] A.Helal, A. Heddaya, and B. Bhargava, Replication Techniques in Dis-
tributed Systems. Norwell, MA: Kluwer, 1996.

[13] H. Schioeler, “Towards reliable integrated services for dependable sys-
tems,” presented at the Workshop on Real Time LANs Internet Age
(RTLIA), Porto, Portugal, 2003.

[14] C.G. Cassandras and S. Lafortune, Introduction to Discrete Event Sys-
tems. Norwell, MA: Kluwer, 1999.

[15] M. Mauve, “Consistency in replicated continuous interactive media,”
in Proc. ACM CSCW, 2000, pp. 181-190.

[16] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558-565, Jul. 1978.

[17] B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema, and D. Gurle,
“Session initiation protocol extension for instant messaging,” RFC
3428, Dec. 2002.

Marjan Bozinovski was born in Skopje, Macedonia,
in 1974. He received the Dipl. Engineer degree in
electronics and telecommunications and the M.Sc.
degree in telecommunications from the University of
Skopje, Macedonia, in 1997 and 2000, respectively,
and the Ph.D. degree in wireless communications
from Aalborg University, Aalborg, Denmark, in
2004.

His current position is Senior Specialist at
the Research and Development Department, AD
Makedonski Telekomunikacii, Macedonia, the

largest telecom operator in Macedonia. He worked as a Research Assistant
at Aalborg University, where he became an Assistant Professor. He worked
on a Siemens-funded research project that resulted in generating two patent

applications. He is author of a number of peer-reviewed journal papers and
international conference papers. His research interests include the area of

dependability/fault-tolerant platforms in next generation network, optimization
techniques in stateful wireless/wired IP-based systems and services, and
dynamic server selection policies in IP-based server systems.

Hans-Peter Schwefel received the Doctoral degree
in IP traffic and performance modeling from the
Technical University in Munich, Germany, in 2000.
He is an Associate Professor and head of the IP
Labs at Aalborg University, Aalborg, Denmark. His
research focuses on IP-based wireless networks with
a main interest in performance, security, and relia-
bility aspects. Before he joined Aalborg University,
he was a project manager at Siemens Information
and Communication Mobile, supervising research
projects and responsible for the development of tech-
nical concepts for next generation mobile networks. For his research activities,
he also spent extended periods of time at the University of Connecticut, Storrs,
and at AT&T Labs, Middletown, NJ. He is coordinating multiple research
projects, among them the Targeted Research Project “Highly Dependable
IP-based Networks and Services (HIDENETS)” (http://www.hidenets.aau.dk),
contributing to the European Commission Sixth Framework Program.

Ramjee Prasad (SM’90) was born in Babhnaur
(Gaya), Bihar, India, on July 1, 1946. He is now a
Dutch Citizen. He received the B.Sc. (Eng.) degree
from Bihar Institute of Technology, Sindri, India, in
1968, and the M.Sc. (Eng.) and Ph.D. degrees from
Birla Institute of Technology (BIT), Ranchi, India,
1970 and 1979, respectively.

Since 1999, he has been with Aalborg University,
Aalborg, Denmark, where he is currently Director of
the Center for Teleinfrastruktur (CTIF), and holds the
chair of wireless information and multimedia com-
munications. He is a coordinator of the European Commission Sixth Framework
Integrated Project My personal Adaptive Global NET (MAGNET). He was in-
volved in the European ACTS project Future Radio Wideband Multiple Access
Systems (FRAMES) as a DUT project leader. He is a project leader of several
international, industrially funded projects. He has published over 500 technical
papers, contributed to several books, and has authored, coauthored, or edited 16
books. He has served as a member of advisory and program committees of sev-
eral IEEE international conferences. In addition, he is the coordinating Editor
and Editor-In-Chief of the Springer International Journal on Wireless Personal
Communications and a member of the editorial board of other international jour-
nals. He is also the founding chairman of the European Center of Excellence in
Telecommunications, known as HERMES, and he is now Honorary Chair.

Dr. Prasad has received several international awards; the latest being the Te-
lenor Nordic 2005 Research Prize (website: http://www.telenor.no/om/). He is
a Fellow of the Institution of Electrical Engineers, a Fellow of IETE, a member
of The Netherlands Electronics and Radio Society (NERG), and a member of
IDA (Engineering Society in Denmark). He is an advisor to several multina-
tional companies.

