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Comparative Study of Various TCP Versions Over a
Wireless Link With Correlated Losses
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Abstract—In this paper, we investigate the behavior of the
various Transmission Control Protocol (TCP) algorithms over
wireless links with correlated packet losses. For such a scenario,
we show that the performance of NewReno is worse than the
performance of Tahoe in many situations and even OldTahoe in
a few situations because of the inefficient fast recovery method
of NewReno. We also show that random loss leads to significant
throughput deterioration when either the product of the square
of the bandwidth-delay ratio and the loss probability when in the
good state exceeds one, or the product of the bandwidth-delay
ratio and the packet success probability when in the bad state is
less than two. The performance of Sack is always seen to be the
best and the most robust, thereby arguing for the implementation
of TCP Sack over the wireless channel. We also show that under
certain conditions the performance depends not only on the
bandwidth-delay product but also on the nature of timeout,
coarse or fine. We have also investigated the effects of reducing
the fast retransmit threshold.

Index Terms—Correlated losses, packet train model, perfor-
mance analysis, TCP algorithm, TCP over wireless.

I. INTRODUCTION

T RANSMISSION Control Protocol (TCP) is the transport
protocol used by many internet-based applications,

including http, ftp, telnet, etc. TCP is a reliable end-to-end
window-based transport protocol designed for the wireline
networks characterized by negligible random packet losses.
The way that TCP works is that it keeps increasing the sending
rate of packets as long as no packets are lost. When packet
losses occur, e.g., due to the network becoming congested, TCP
decreases the sending rate. Thus, TCP infers that every packet
loss is due to congestion and, hence, backs off in the form of
reducing the send window. Extending TCP as used over the
wireline links to the wireless links may not be an efficient
solution due to the different characteristics of the wireline
and the wireless links. This is because wireless networks are
characterized by bursty and high channel error rates, unlike
the wireline networks. Due to this, the throughput of a TCP
connection over a wireless link suffers. In spite of this, the
TCP protocol is still used to transfer data over the wireless
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link, though a lot of attention is currently being given to the
design of a better protocol over wireless links [2]–[4], [7], [15],
[19]. Because of the difficulty of modeling the TCP protocol
analytically, many of these studies have been simulation based.
On the other hand, it is not possible to obtain insight into
the effects of particular parameters on the behavior of TCP
using simulations of specific settings. Further, investigations to
improve TCP or design a better transport protocol can become
less cumbersome given a simple and accurate analytical model
for TCP.

The first step toward the design of a better transport pro-
tocol for wireless networks has to be a better understanding of
the way TCP works over wireless links. This would reveal the
reasons for the inefficiency of TCP over wireless links. There
have been several efforts recently on the analytical study of TCP
over wireline [12] as well as over wireless links [9]–[11], [20].
Two classes of random losses have been considered, indepen-
dent identically distributed (i.i.d.) and correlated. The effect of
i.i.d. packet losses on TCP performance is studied in [9]. They
address the TCP versions Tahoe, Reno, and NewReno, but only
in the context of a local network scenario. They also evaluate
the various protocol features such as fast retransmit and fast re-
covery. Unlike in this paper, the packet transmission times are
assumed to be exponentially distributed, as is the transmission
time of the packet on the lossy link. Further, they also model
the congestion avoidance phase probabilistically in which each
acknowledgment (ack) causes the window to be incremented by
one with a certain probability. Note that both these assumptions
have to be resorted to in this approach so as to carry out the
mean cycle time analysis. In this study, the authors also consider
the less frequent case where the size of the receiver window
is the constraint on the sender’s window increase and not the
bandwidth delay product of the link. Thus, this study precludes
the study of the basic TCP mechanism whereby the window
size is increased until there is a loss due to congestion. This
loss is caused on account of the bandwidth delay constraint. In
[13], Mishraet al.consider only OldTahoe over a link with i.i.d.
losses. Lakshman and Madhow [11] consider Tahoe and Reno in
a regime where the bandwidth-delay product of the network is
high compared to the buffering in the network. They show using
approximate analysis that random independent packet loss leads
to significant throughput deterioration when the product of the
loss probability and the square of the bandwidth-delay product
is larger than one.

In [10], Kumar and Holtzman consider the behavior of TCP
Tahoe and OldTahoe in the presence of correlated packet losses.
The results obtained are applicable only in case of very low
bandwidth wireless links. More emphasis is placed on analyzing
a link layer solution, of hiding the losses from the transport layer
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by link layer retransmissions, to the problem faced by TCP over
the wireless link. The approach used is also similar to the ap-
proach used in [9] and, hence, suffers from the drawbacks noted
earlier. Zorzi and Rao [20] study TCP OldTahoe assuming a
correlated loss model. The approach followed by them requires
enumerating the transmission time, acknowledgment time, and
timeout time of every packet in a cycle. This is computation-
ally cumbersome in the case of analysis of links with large
bandwidth delay products, since in this case large numbers of
packets have to be accounted for. Further, this approach cannot
be taken to model the fast retransmit and fast recovery mech-
anisms present in the newer TCP versions like Tahoe, Reno,
NewReno, and Sack.

Simulation-based studies evaluating the performance of dif-
ferent TCP algorithms have also been reported. In [5], Chock-
alingamet al. deal with a simulation study of TCP NewReno
under the effect of correlated errors on the wireless link. They
consider only a 1.5-Mb/s wireless link characterized by a very
low delay-bandwidth product.

In this paper, we analyze the behavior of the different TCP
algorithms OldTahoe, Tahoe, NewReno, and Sack under con-
ditions whereby the wireless channel is subjected to the more
realistic case of correlated packet losses. Since the main aim of
this study is to address the behavior of the different TCP ver-
sions under different conditions of the wireless channel, we do
not consider the effects of multiple flows at all. This, in fact,
could be a subject for future work. We show that in certain cir-
cumstances characterized by bursty loss conditions, the perfor-
mance of NewReno can lag behind the performance of Tahoe.
This performance gap can worsen against NewReno as the band-
width-delay product increases. We also show that the perfor-
mance of Sack is the best under all conditions, though at loss
rates characterized by very small durations of good periods, the
performance of the different versions is equally bad. We also
derive conditions under which significant throughput deteriora-
tion occurs under correlated loss conditions. Investigations into
the effects of reducing the fast retransmit threshold as well as
using finer timeout intervals are also carried out and we show
that these incremental changes to the TCP versions are effective
only in case of lossy conditions.

This paper is organized as follows. In Section II, we specify
the correlated loss model in detail. In Section III, we explain
the approach that we take in order to study the behavior of
the different TCP versions under different wireless channel
conditions. In Section IV, we characterize the throughput of
the different TCP algorithms as a function of the wireless
channel parameters. Section V deals with the numerical study
of the performance of the different TCP versions. Finally,
conclusions are presented in Section VI. We would like to
point out that due to lack of space, we do not describe the
different TCP algorithms here. Readers requiring details can
refer to [6], [9], and [17].

II. L OSSMODELS

It is well known that mobile radio channels in an actual phys-
ical environment are subject to multipath fading. The multipath
fading process in a mobile environment follows a Rayleigh dis-
tribution [8]. In order to model a correlated Rayleigh fading

channel using a Markov chain, we consider a simple two-state
Markov chain called the Gilbert–Eliot model as in [10], from
which the description next is adapted. The two states that we
consider are the “Good” state and the “Bad” state. We assume
that the packet succeeds with probability 1 while in the good
state and is lost with probability 1 while in the bad state. The
transition probability matrix of the simple two-state Markov
chain is then given by

(1)

The chain is assumed to be embedded at the beginnings of
packet transmissions. Thus, if a number of packets are being
transmitted back to back, and if the channel is in a Good state
when a packet is about to be transmitted, then this packet
will be successful and the next packet will be successful or
unsuccessful with probabilities and , respectively.
This model which is commonly adopted in wireless fading
channels [5], [10], [20] tracks fading but excludes impairments
such as path loss and shadowing which vary on a much longer
time scale. These phenomena are assumed to be taken care of
by power control mechanisms and hence are not considered.
Thus, given and , the channel properties are completely
characterized. Further, the steady-state properties of the chain
are then given by and which symbolize the steady-state
probability that the channel is in the good state and bad state,
respectively. These are given by

(2)

Note that the average duration of the bad state is given by
while the average duration of the good state is given by
slots or packets since we assume that each slot corresponds to
the transmission time of a packet.

III. A PPROACH

The behavior of the different TCP algorithms is analyzed
based on the concept of packet trains which we introduce
next. For ease of explanation, we consider TCP NewReno. A
NewReno sender when sending new data is either in the slow
start phase or the congestion avoidance phase. The loss of a
packet in either of these phases is subsequently followed by
mechanisms to recover the lost packet(s). A NewReno sender
uses the fast retransmit mechanism whereby the arrival of a
certain number of duplicate acks signals a packet loss. If not
enough duplicate acks (as required by the fast retransmit mech-
anism) arrive back at the sender, then a timeout, which is the
nonarrival of the ack of a packet within a certain time interval,
is taken as an indication of packet loss. Following the detection
of a packet loss through the fast retransmit mechanism the
NewReno transmitter resorts to the fast recovery mechanism
whereby the window size is reduced by half and the sender uses
additional incoming acks to clock outgoing packets. The fast
recovery mechanism concludes successfully when all the lost
packets have been recovered and is followed by the congestion
avoidance mechanism. If a retransmit timeout has to be resorted
to, then the sender always starts in the slow start phase after the
timeout interval.
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In the model described, we ignore the fact that on succes-
sive timeouts the actual value of the timeout is increased expo-
nentially. Further, for the purpose of simplifying the analysis,
we also assume that packets retransmitted during fast recovery
are not dropped. As a result, it is to be kept in mind that our
analysis is less conservative and, hence, gives optimistic values
compared to the actual implementations during regimes of high
loss probability. We would also like to remark that it is very
much possible using our approach to give up these assumptions
at the cost of higher complexity. Since these assumptions af-
fect the performance only in the region of high loss probability
where the efficiency is already very low, we choose to reduce
complexity by making these assumptions. Note also that these
approximations done to simplify the analysis in no way affect
the results that we obtain in this paper. As done in case of the
other studies, we assume that acks are not lost. This is justified
because of the fact that ack packets have a very small loss proba-
bility due to the small size of the packets. Further because of the
cumulative nature of acks, the only consequence of ack losses
is increased burstiness on the forward path [18].

We consider the operation of a NewReno transmitter in terms
of cycles. A cycle begins with either the slow start phase or the
congestion avoidance phase following the detection of a packet
loss. The cycle ends either with the successful conclusion of
the fast recovery mechanism or on the basis of the retransmit
timeout mechanism. This timeout can occur due to the absence
of the fast recovery mechanism. The fast recovery mechanism
may be absent because of the lack of adequate duplicate acks
to infer packet loss, thereby causing the fast retransmit mech-
anism to fail. A typical cycle in case of NewReno can start in
the congestion avoidance phase, have the fast recovery phase,
and end on the conclusion of the fast recovery phase, because
all the packets transmitted during the fast recovery stage have
been successful in reaching the receiver.

Thus, every cycle can be considered to have three stages. In
the first stage, the sender is either in the slow start or the conges-
tion avoidance phase. The fast recovery mechanism which con-
stitutes the second stage follows the detection of a packet loss.
During this stage, the window size is reduced and the packets
inferred to be lost are retransmitted. The third stage consists of
the retransmit timeout interval. While the first stage is present
in every cycle, the second and the third stages may or may not
be present depending on the packet loss(es).

In order to explain the working of these algorithms we define
the th minicycle of the first stage ofth cycle to be the time
taken to transfer theth window of packets during the first stage
of the th cycle. Hence, the first minicycle corresponds to the
first window of packets on the start of a new cycle. Thus, every
cycle of NewReno begins with one packet being transmitted in
the first minicycle if it is in the slow start phase. If it is in the
congestion avoidance phase, then the number of packets trans-
mitted in the first minicycle depends on the window size when
the packet drop was detected in the previous cycle. In every suc-
cessive minicycle, the number of packets transferred is double
the number of packets transferred during the present minicycle
as long as the sender is in the slow start phase. During the con-
gestion avoidance phase, the number of packets transferred in
each minicycle is one more than the number of packets trans-

ferred during the previous minicycle.1 This goes on until there
are one or more packet drops in a particular cycle, causing the
ack cycle to either dry up or generate enough duplicate acks
resulting in the end of the first stage of the cycle. The end of
the first stage can lead to the second stage. Since a NewReno
sender recovers only one lost packet per round-trip time (RTT)
during the fast recovery stage, we consider that each minicycle
during the second stage carries a single packet which is being
retransmitted. In practice, there may also be some new packets
transmitted during this phase. We do not take these new packets
into consideration. On the other hand, practical implementations
have a bound on the number of packets which can be transmitted
once the fast recovery stage is finished. We do not consider such
bounds and, hence, both these effects should cancel out each
other in our analysis, thereby having the analytical model follow
the practical TCP implementations closely.

We assume that all the packets in a minicycle travel in atrain.
Thus, there is a packet train in every minicycle and the size of
the packet train in theth minicycle depends on the size
of the packet train in the previous minicycle and the phase of the
NewReno sender. A new packet train starts once the ack for the
first successful packet of the previous packet train comes back.
This train ends when the packets corresponding to the last ack of
the previous train have been transmitted by the sender or a cer-
tain number of duplicate acks reach the sender, thus giving some
length to the train. Start of a successful timeout at any point also
terminates a train. The length of the packet train which is the dis-
tance between the first packet of the train and the last packet of
the train keeps on increasing since the number of packets in suc-
cessive trains is an increasing function. This concept of a packet
train is illustrated in Fig. 1. A great convenience offered by the
packet train concept is that it helps to differentiate packets on the
basis of the minicycle that they belong to. This, as we see later,
greatly helps in calculating the throughput of a flow. This is be-
cause once we know the number of trains in a cycle as well as
the window size when the packet drop was detected in the last
cycle, the expected number of packets in the cycle as well as the
mean cycle duration can be easily calculated. As we see later,
this is the approach that we take to characterize the throughput
of a flow. Of course, the expected number of trains in a cycle
as well as the mean loss window depend on the TCP algorithm
followed as well as on the packet loss probability characteristics
of the wireless channel.

We would like to remark here that the concept of packet trains
is not new and has also been considered elsewhere [14]. How-
ever, the details are sufficiently different especially in terms of
the granularity and the assumptions made.

Example: Before proceeding further, we illustrate the above
concepts using an example of a TCP NewReno sender. Consider
the evolution of a TCP NewReno sender as shown in Table I. We
start observation when the ack for packet 14 reaches the sender.
We assume that packets 15–18 are lost. Thus, the first stage of
this cycle ends on account of the fast retransmit feature when
the third duplicate ack reaches the sender since the receiver has
received packet 21. The second stage starts with the transmis-

1For ease of explanation, we are ignoring some constraints like delayed acks,
which though can be easily incorporated into the description.
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Fig. 1. Illustration of packet trains.

sion of packet 15. On the receipt of the ack for packet 15, the
next packet, 16, is retransmitted. This repeats until packet 18
is retransmitted. Thus, all the lost packets are recovered by re-
transmitting only one lost packet per RTT. This cycle ends once
the ack for packet 18 comes back, following which a new cycle
begins.

Since the previous cycle did not have the third stage, the
sender starts in the congestion avoidance phase in the first stage
of the new cycle. Packets 23–26 are transmitted on the start of
the new cycle and these packets constitute the first train. A new
train (second train) starts once the ack for packet 23 reaches the
sender and ends when the packets corresponding to the last ack
of the previous train (for packet 26) have been transmitted. Thus,
the second train starts with packet 27 and ends with packet 31.
We assume that the first packet dropped in this cycle is packet
29, which is in the second train. Packets 30 and 31 are also as-
sumed to be lost.

Since packet 27 is successful, the third train starts (on the
receipt of the ack for packet 27) with the transmission of packet
32. Note that the TCP sender has not yet detected the loss of
packet 29. Packet 33 is sent on the receipt of the ack for packet
28. Since the next three packets (29–31) are lost, no acks arrive
for those packets. This signifies the end of the first stage of this

TABLE I
TCP NEWRENO CYCLE

cycle. At the same time, the timeout clock starts ticking after
the transmission of packet 33. The acks for packets 32 and 33



374 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 3, JUNE 2003

are duplicate acks and, hence, do not result in the transmission
of any packets. Note that if not for the packet losses, then a new
train would have started with the receipt of the ack for packet
32. Because of the lack of enough duplicate acks, this cycle ends
with the third stage of a timeout. In this cycle, we have two
stages: the first stage and the third stage. The next cycle starts
with the retransmission of packet 29 and the process continues.
Note that since the last cycle ended with a timeout, the sender
in the new cycle begins in the slow start phase while in the first
stage.

Now consider the other TCP algorithms. Any TCP sender,
whether OldTahoe, Tahoe, or Sack when sending new data is
generally either in the slow start phase or the congestion avoid-
ance phase. An OldTahoe sender uses timeout as the mechanism
to infer packet losses. A Tahoe sender, on the other hand, can
also use the fast retransmit mechanism. Both of these senders
resort to slow start after the detection of a packet loss by re-
ducing the window size to one. The Sack sender, on the other
hand, uses the fast retransmit mechanism to infer packet losses.
But following the detection of a packet loss, the Sack sender,
like the NewReno sender, resorts to the fast recovery mecha-
nism whereby the window size is reduced to half and the sender
uses additional incoming acks to clock outgoing packets. The
fast recovery mechanism concludes successfully when all the
lost packets have been recovered, and this is followed by the
congestion avoidance mechanism. Of course, if there are not
enough duplicate acks as required by the fast retransmit mecha-
nism, then a retransmit timeout has to be resorted to, following
which the sender always starts in the slow start phase.

Thus, a cycle of a Tahoe or OldTahoe sender starts with the
slow start phase and ends following the detection of a packet loss
either on the basis of the ack-based fast retransmit mechanism
or the timer-based retransmit timeout mechanism. On the other
hand, a cycle of the Sack sender begins with either the slow start
phase or the congestion avoidance phase following the detection
of a packet loss. The cycle ends either with the successful con-
clusion of the fast recovery mechanism or on the basis of the
retransmit timeout mechanism. Thus, the OldTahoe, Tahoe, and
Sack senders always have the first stage in a cycle. An OldTahoe
sender does not have the second stage of fast recovery and al-
ways has the third stage of retransmit timeout. The Tahoe sender
will not have the second stage and may or may not have the
third stage of a timeout depending on whether enough packets
are successful after the lost packet for the fast retransmit mech-
anism to succeed. In contrast, a Sack sender, like the NewReno
sender, can have either the second stage of fast recovery or the
third stage of a retransmit timeout if adequate acks to activate
the fast retransmit mechanism are not present.

We now go back to the analysis. Let the number of trains
in a cycle be denoted by. On the basis of our explanation
above, it is clear that there are two types of trains: type-1 trains
during stage 1 and type-2 trains during stage 2. The first type of
trains are the normal trains constituting the first stage of a cycle.
Let denote the number of such trains. The type-2 trains are
those constituting fast recovery. In the case of NewReno, these
trains have only one packet that has been detected to have been
lost previously. Let denote the number of such trains. Note
also that for Tahoe and OldTahoe. for Sack

if the cycle does not end in a timeout. This is because Tahoe
and OldTahoe do not have fast recovery, while Sack has fast
recovery, but it does not have many of these trains since it is not
constrained to retransmit at most one dropped packet per RTT
as in the case of Reno or NewReno.

As is clear from the above explanation, every cycle of
OldTahoe and Tahoe begins with a slow start. In the case of
NewReno and Sack, a cycle begins in the slow start phase only
after a timeout has occurred. In the sequel, the size of theth
type-1 train in case of such cycles is denoted by. Thus,

denotes the number of packets in theth train. Further,
and, thus, depends on the TCP algorithm

followed. We also let . For the cycles of NewReno and
Sack starting in the congestion avoidance phase, the size of the

th type-1 train is denoted by .
The size of the loss window, i.e., the window size at which

the packet loss is detected by the sender, is denoted by.
denotes the maximum size that the window can grow to, which
by our earlier assumptions is given by , where

denotes the bandwidth of the wireless link, while the RTT of
the link is denoted by . Further, denotes the steady state
probability of a timeout in a cycle. We will introduce further
notation as we go along when necessary.

With this, let us consider the packet trains. The metric that
we consider to evaluate the different TCP algorithms is the
throughput, which we define next. Let the number of packets
transferred during a cycle be denoted byand the duration of
the cycle be denoted by. Note that both and are random
variables. The steady state throughputobtained by the TCP
connection is given as

(3)

To determine the number of packets sent in a cycle, we need
to know not only the number of trains in the cycle but also the
window size in the previous cycle at which a packet loss was
detected. Also, let denote the number of packets sent before
the first dropped packet. denotes the sum of and the number
of packets in the second stage, if present.denotes the number
of packets successfully sent by the source after the packet loss
but before the packet loss is detected by the sender while still in
the first stage. Hence, we have

(4)

and

(5)
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Equation (4) follows from (3) since
. For the derivation above, for simplicity we assume

that .
Remark: In the above, denotes the steady state proba-

bility of the loss window, i.e., the window size in the cycle at
which the first stage ends due to a packet loss which is also
the same as the window size at which the packet loss is de-
tected by the sender. denotes the steady state condi-
tional probability on the number of type-1 trains given the loss
window, while is the steady state conditional prob-
ability on the number of type-2 trains given the loss window and
the number of type-1 trains. denotes the expected
number of packets in stage 1 of a cycle given the loss window
and the number of trains in the first stage.

We next look at the expected cycle time. Let denote the
RTT taken by a packet of theth type-1 train. Then we have

(6)

(7)

(8)

(9)

where denotes the indicator function of the timeout event and
denotes the value of the timeout interval, which is typically a

multiple of 500 ms. refers to OldTahoe, refers to Tahoe,
to NewReno, and to Sack. We would also like to point

out that the summation in the above equations is over
type-1 trains, since a packet lost in theth type-1 train can be
detected by the sender only in the th type-1 train. Further,
the effect of the exponential backoff in case of multiple timeouts
can be incorporated by substituting a random variable denoting
the size of the timeout interval instead of in the equations
above. Taking expectations, assuming , we have

(10)

At this point, we can use (4) and (10) in (3) in order to calcu-
late the throughput of a TCP flow for any of the TCP senders,
namely, OldTahoe, Tahoe, NewReno, or Sack. But in order
to use (4) and (10) for any TCP versions, we need to specify
expressions for and
and . Hence, we next try to evaluate the expressions

and , and ,
calling them as the loss window probability calculation, train
probability calculation, packet count calculation, and timeout

probability calculation, respectively, for the different TCP algo-
rithms. Note that due to the different mechanics of the various
TCP algorithms, the required expressions above would highly
depend on the TCP algorithm being considered. This entire
approach to characterize the throughput of a window-based
protocol is what we call thepacket train model.

Since we are considering the packet train model, the success
or failure of a particular packet depends on the success or
failure of the previous packet as long as both the packets
are in the same train. In the sequel, we assume that the first
packet of every train finds the wireless link in its steady
state. This is realistic as long as the intertrain gap is large
enough which happens when we consider large bandwidth links
under scenarios whereby the window does not grow to the
maximum possible values. In such a case, the duration between
trains is quite large compared to the packet transmission time
and, hence, our assumption does in fact reflect reality. This
assumption is also justified due to the fact that we are interested
in the comparison of different TCP algorithms operating over
a wireless link and, hence, this assumption affects all the
different algorithms to the same extent.

Scenarios whereby the window does grow to the maximum
possible values such that the intertrain gap is low enough can
also be very easily taken care of. This can be done by calcu-
lating the window size until the point at which our assump-
tion holds. This window size is a function of the intertrain
gap which depends on the bandwidth of the link and the packet
size. For window sizes beyond , we consider that the success
or failure of the first packet of a train depends on the success or
failure of the last packet of the previous train, while for window
size less than we use the same approach as above. For sim-
plicity, we do not further pursue this approach here.

IV. THROUGHPUTCHARACTERIZATION

In this section, we proceed to specify expressions for the loss
window probability calculation, train probability calculation,
packet count calculation, and timeout probability calculation.
Due to lack of space, we show these calculations only for
Tahoe. Expressions for the other algorithms follow similarly as
the expressions for Tahoe and are provided in detail in [1]. We
next describe the approach that we take in order to calculate

. Let denote the maximum window size reached in the
th cycle. Thus, denotes the sequence of window sizes

at which packets are dropped in successive cycles. It is obvious
that the loss window sequence forms a Markov chain.
Hence, in order to determine the steady state probability of the
loss window , we seek to characterize
the probability . Given the transition
probability matrix, we can generate the stationary distribution

using any of the standard methods. Thus, during the
window probability calculation we characterize the transition
probability matrix .

Proposition 1: Loss Window Probability Calculation—Tran-
sition Probability: Consider TCP OldTahoe or Tahoe. Let the
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wireless link be governed by the correlated loss model with pa-
rameters and . Then, with as the slow start threshold we
have

(11)

(12)

where

and denotes while denotes
.

Proof: Consider a TCP Tahoe cycle. Every cycle starts
with a window of one and a slow start threshold of. Then
during the slow start phase, the window advances by one for
every successful packet. Hence, to achieve a window of

packets have to be successful. Let denote the
probability of packets successfully reaching the receiver so as
to attain a window size of such that belongs to the slow start
phase, and let denote the probability of a packet loss so as
to have a loss window size of, such that belongs to the slow
start phase. Thus, during the slow start phase, the probability of
having a loss window of in the th cycle, given that the loss
window during the previous cycle is, is given by .
We need to show that

is an integer
is not an integer.

is the drop window size during the cycle of interest.
Since we consider TCP Tahoe during the slow start phase, we
have . The window size and the slow start phase together
imply that packets have been successful while the

th packet has been dropped. The train number corresponding
to packet is . Let not be
an integer which implies that the th packet is not the first
packet of any train. In such a case, the probability of dropping
the th packet is affected by what happened to packet

. But packet has been successful, hence

if is not an integer. (13)

Let be an integer. In such a case, the th
packet is the first packet of a train. Hence, it is not affected
by what happened to the previous packet. The probability of
dropping the th packet is then given by

Prob that channel is inth state

probability of dropping packet

if is an integer. (14)

Now consider the probability of packets being
successful. packets occupy trains.
The channel is in a good state before the start of a new train
with probability . Hence, the first packet of the train in such
a condition is successful with probability . If the channel
is in a bad state before the start of a train, which happens with
probability , then the packet is successful with a probability

. Thus, we have places to fill with either or
in all possible combinations. Hence

(15)

Thus, the expression for the transition probability for the case
, i.e., the slow start phase, follows from (13), (14), and

(15).
Now consider the case , i.e., the congestion avoidance

phase. Let denote the probability of packets successfully
reaching the receiver so as to attain a window size ofsuch
that belongs to the congestion avoidance phase. Further, let

denote the probability of a packet loss so as to have a
loss window size of , such that belongs to the congestion
avoidance phase. Thus, during the congestion avoidance phase
the probability of having a loss window of in the th cycle
given that the loss window during the previous cycle isis given
by . In this case, we need to show that

During the congestion avoidance phase, the window advances
by one packet for every successful window of packets delivered.
For a drop window of during the present cycle, at least
one of the packets has to be unsuccessful. The probability
that not a single packet of a train of size is dropped is
given by . Hence, we have

(16)

while if , then since a packet is
surely dropped.
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The congestion avoidance phase starts after packets are
successful. Hence, to reach a window of , we require

successful
packets. These packets occupy trains.
Hence, using an approach similar to (15), we have

(17)
Thus, the expression for the transition probability for the case

follows from (16) and (17).
Remark: Note that by letting we obtain an i.i.d.

packet loss model. The transition probability for such a case
with is given as

where and .
We next consider the timeout probability calculation. Given

a loss window of , we have

(18)

where is the probability of timeout in a cycle. Hence, we
next proceed to specify the expression for.

We would like to remark here that the starting point for the
channel is the bad state. But we calculate the timeout proba-
bility assuming that all the packets in the loss window belong
to the same train. Note that this is an approximation in the case
whereby a packet is lost from the middle of a train in which case
the entire loss window consists of packets from two different
trains. For such a case, we also have to consider the channel
state that the first packet of the second train encounters. This
could be taken care of at the cost of extra complexity but we
choose not to do so. Further, since this assumption is done for
all the TCP algorithms, it does not affect the results.

Proposition 2: Timeout Probability Calculation:Consider
TCP Tahoe during theth cycle. Let denote the number
of duplicate acks on the receipt of which the sender enters the
fast retransmit phase. Then , the probability of timeout given
that the loss window is , is given by

(19)

Proof: A timeout results if and only if less than dupli-
cate acks arrive at the sender. In a loss window of, one packet
is already lost. Hence, a timeout occurs if and only if the number
of packets lost after the first packet loss is greater than or equal
to . Note that the maximum number of packets which can
be lost at this point is since a packet is already lost
in a window of .

Let us consider the case ofdrops. We remark here that a
timeout results if and only if . Note that if ,
then probability of timeout is given by . Hence, we next
consider . These drops are possible either by having
the channel in a bad state at the beginning of a transmission and
transitioning to the bad state itself, which happens with proba-
bility , or by having the channel in a good state at the be-
ginning of a transmission and transitioning to a bad state, which
happens with probability . Let indicate the number of times
that the channel starts in a good state. Hence, we have the prob-
ability of drops as

(20)

packet drops also imply that the rest of the packets are not
dropped and result in duplicate acks. Again, two scenarios result
here with the channel beginning in a good state or a bad state.
Let denote the number of times that the channel starts in the
bad state. Hence, the probability ofdrops implies that
packets get through which is given by the probability

(21)

The probability of one such way of a timeout occurring is
. denotes

the general form of a trace of packet successes or losses leading
to a timeout with raised to appropriate power occupying
the spaces and raised to appropriate power occupying
the spaces. Hence, we have or , i.e.

Further

(22)

(23)

(24)

Thus, given and , we next look at the number of possible
combinations of a trace leading to a timeout. Consider the pair

and . Note that since we are starting with a lost packet,
the pattern can occur only after has
occurred. Thus, occurs times, while the pattern can
occur times such that precedes the trace. Hence,

’s each raised to power 1, can appear in any order with
repetitions of with no restrictions on consecutive

appearances of . Thus, we are asking for the number of
subpopulations of size in a population of size

, which equals

(25)

Similarly, considering the pattern ofand , we are asking
for the number of subpopulations of size in a population of
size , which equals

(26)

since the first occurrence of can be after has occurred.
Thus, the total number of combinations is given by the product
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of (25) and (26). Hence, the probability of a timeout given
losses , such that , is given by

Thus, the probability of a timeout given a loss window size of
then follows as

It is to be remarked that in case of OldTahoe, every packet
loss is accompanied by a timeout and, hence, .

Proposition 3: Train Probability Calculation:Consider TCP
Tahoe or OldTahoe. Then the probabilities of the different trains
is given as

where

(27)

Proof: For to be , we require that trains experi-
ence no packet loss while there is at least one packet lost in the

th train. Since the number of packets in theth train is given to
be , we have following the remarks made in the proof of the
loss window probability calculation, that

(28)

When , a packet is lost from the th train with proba-
bility 1 and, hence

(29)

Calculating given the above probability distribution
can then be done as

(30)

(31)

Remark: in this case denotes the maximum number of
trains possible in a cycle.

Remark: Note that w.p. 1 in case of Tahoe and Old-
Tahoe.

Proposition 4: Packet Count Calculation:Consider TCP
Tahoe or OldTahoe. The number of packets during a cycle
given the number of trains and the loss window during the
previous cycle is given by

where

where

Proof: Note that every cycle of Tahoe starts with one
packet, i.e., . The packets in a train keep on doubling as
long as the window size is less than the slow start threshold.
Following this, the number of packets in a train increases by
one in each successive train. Let the slow start threshold be
reached in the th train. Hence, and the
maximum size of a train is . With this, the expressions for
the terms given above as well as for are obvious.

V. PERFORMANCESTUDY

Now that the loss window probability, train probability,
packet count, and timeout probability are specified, we use
the expressions in (4) and (10) to calculate the throughput
using (3). Since it is difficult to obtain a closed-form solution
for the throughput, we graph the different expressions given
in order to obtain an understanding of the way TCP versions
work over a wireless link with correlated losses. We consider
all the TCP algorithms, namely, OldTahoe, Tahoe, NewReno,
and Sack, in this section. The different parameters that we
consider while studying the behavior of the TCP versions under
correlated losses are , packet size (bytes), link bandwidth

(Mb/s), timeout value(s) and RTT time(s). In order to validate
our conclusions, we also use simulations. We use the widely
used simulation package ns2 [16]. When using simulations,
we obtain the throughput as an average over two trials, each
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Fig. 2. Behavior of different TCP algorithms with correlated packet loss model
under bursty loss conditions over a link with a bandwidth delay product of 20
packets.

trial lasting for a duration of 50 s. The default values of the
parameters are assumed to be bytes or bytes,
timer granularity of 0.5 s for coarse timeout and 0.05 s for fine
timeout [9] while .

We next investigate the performance of the different TCP al-
gorithms over wireless links using both the packet train model
as well as simulations. Consider Fig. 2 which illustrates the per-
formance of a wireless link with a bandwidth of 2 Mb/s and an
RTT of 0.01 s using the packet train model. We assumed a packet
size of 125 bytes here resulting in a bandwidth delay product of
20 packets. is assumed to be 0.1 whileis varied and shown
on the axis. The throughput normalized to the link bandwidth
is shown on the axis.

An important observation is that for low values of,
NewReno performs worse than Tahoe. This is because of the
nature of NewReno of taking one RTT to recover each lost
packet which leads to a smaller throughput than achievable by
Tahoe. For example, in a window of 10, assuming five bursty
packet losses (that is, five consecutive packets lost) in a loss
window of 9 or more a timeout does not occur since there
are enough successful packets to inform the sender of packet
losses through the duplicate ack mechanism. In this scenario,
NewReno takes five RTTs to recover from these five packet
losses by sending one lost and at most two packets in each RTT.
In contrast, Tahoe, by resorting to slow start, recovers these
packets more efficiently by sending more number of packets
on the average. We show an example of one such possibility
in Tables II and III. As shown, when five consecutive packets
15–19 are lost, Tahoe recovers these packets within three RTTs
while NewReno takes five RTTs to recover these packets,
thereby causing a higher inefficiency in the link utilization. Of
course, the drawback may be that Tahoe had had to retransmit
some packets unneccessarily, yet in terms of throughput the
Tahoe sender is more efficient than the NewReno sender. Thus,
Tahoe is able to send 14 packets not present at the receiver
during these five RTTs while NewReno is able to send only
five packets not present at the receiver during these five RTTs.

TABLE II
EVOLUTION OF TAHOE WHEN PACKETS 15–19 ARE LOST TAKING

THREE RTTsTO RECOVER THELOST PACKETS

TABLE III
FAST RECOVERY FORNEW RENO WHEN PACKETS 15–19 (INCLUSIVE)

ARE LOST TAKING FIVE RTTsTO RECOVER THELOST PACKETS

Of course, Sack, by virtue of the selective ack option, recovers
most efficiently and, hence, exhibits the best performance.
Note also that as the maximum possible window size
grows larger, the performance of NewReno lags behind the
performance of Tahoe by a larger degree. This is because the
size of the bursts may not be enough to cause a timeout due to
the large loss window leading to lost packet recovery through
the inefficient fast recovery method of NewReno. As a corol-
lary, this implies that at higher values of, the performance
of NewReno can be better compared to the performance of
Tahoe since at high values of the maximum possible value
to which the window can grow to is limited, thereby masking
the weakness of NewReno’s fast recovery mechanism. We can
observe this from Fig. 2.

It is to be remarked here that if packet losses were more stag-
gered like in the i.i.d. model, NewReno, while being constrained
to send at most one lost packet per RTT, could also send more
than two packets (the other packets carrying new data) per RTT.
This plus the nature of Tahoe of retransmitting even the packets
successfully received in such a scenario ensures that the perfor-
mance of NewReno is better than the performance of Tahoe in
an i.i.d. loss regime (causing staggered packet losses).

In order to verify this, we simulate a scenario with a 2-Mb/s
link with an RTT of 0.02 s. is assumed to be 0.2 and the
packet size is 500 bytes. The resulting performance of Tahoe,
NewReno, and Sack is shown in Fig. 3. We again see the better
performance of Tahoe as compared to New Reno. Note also the
better performance of all the algorithms for low values ofas
compared to the previous figures. This is due to the higher value
of , low value of the bandwidth-delay product as well as due
to performance of the packet train model being less optimistic
for low values of . We have also verified this behavior in other
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Fig. 3. Illustrating the performance of various TCP algorithms using
simulations.

Fig. 4. Illustrating the performance of various TCP algorithms using
simulations for less deleterious bursty conditions.

scenarios. A similar scenario with is shown in Fig. 4. It
can be seen from these figures that as the value ofincreases,
the performance of the different TCP algorithms improves.

We also see from these figures that asincreases, the perfor-
mance of all the algorithms decreases. Note that the reciprocal
of gives the average number of packets lost while the recip-
rocal of gives the average number of good packets. Hence, as

increases, the probability of timeout decreases and the per-
formance is hence better. At moderate values of, there are
more chances of multiple packet drops in a window while at
high values of around one, generally only single packet drops
occur.

We have also observed that the normalized throughput be-
comes better for low values of as the RTT increases. This is
because of the large bandwidth-delay product link which im-
plies that even with , the chances of an entire window of
packets being dropped for window sizes high enough are quite

Fig. 5. Illustrating that at low values of� the performance depends only on
the bandwidth-delay product when using a fine timeout interval.

Fig. 6. Illustrating that at low values of� the performance depends only on
the bandwidth-delay product when using a fine timeout interval.

low. Further, the timeout duration also becomes a smaller mul-
tiple of the RTT as the RTT increases and, hence, the use of
coarse timeout becomes less significant. Thus, it can be inferred
that at low values of the performance does not depend on just
the bandwidth-delay product but also on the value of the RTT.
This is not the case for high values of. This is because at high

values, Tahoe, NewReno, and Sack experience timeouts very
infrequently, leading to insensitivity to the granularity of the
timeout interval. Thus, it can be expected and it has also been
verified that at relatively high values of, fine timeout does not
make much of a difference compared with the coarse timeout.
(In this case, each tick of the TCP clock is much smaller than
the coarse timeout granularity of 500 ms.)

To show that the performance difference is indeed due to the
coarse timeout granularity for low values of, in Figs. 5 and
6, we consider link bandwidths of 1 and 2 Mb/s, respectively,
while ensuring that the bandwidth delay products remain the
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same at 20 packets by properly choosing the RTT values. For
these two figures, we use the packet train model assuming a
packet size of 125 bytes. Comparing these two figures, it can be
seen that the performance of the different TCP versions is nearly
similar, with the performance becoming identical as the timeout
granularity is decreased further. Another point to be noted is
that as the granularity of the timeout interval becomes finer and
less significant with respect to the RTT, the behavior gap of
Tahoe and OldTahoe decreases and, hence, NewReno exhibits
the worst performance of all the TCP versions, as expected in
this regime.

We next obtain approximate conditions under which random
packet losses lead to significant throughput deterioration. There
are two factors that have to be taken into consideration. The first
is , which governs the maximum window size possible in each
cycle. The second factor is, which governs the probability of
a timeout.

Concentrating on the first factor, every cycle can have at most
trains, which is a function of and . The duration of

each train is seconds, which is the RTT. Hence, for good per-
formance, noting that the duration of each slot equals the trans-
mission time of a packet, we require

(number of packets transmitted per unit time)

(32)

This follows since the reciprocal of denotes the mean number
of successful packets in a cycle, and we desire that the mean
duration of the good period exceed the duration of an entire
cycle. It is quite obvious that by ensuring this, not only does
the window grow to the maximum possible size , but also
the next cycle begins with a high slow start threshold which is
desirable. Now, since is proportional to , approximating

by , we have a necessary condition for good behavior
that

Looking at the second factor next, for good performance a
necessary condition is that

This follows since the reciprocal ofdenotes the mean number
of packets lost in the loss window. If this is comparable to the
size of the loss window, then it will result in a timeout which has
to be avoided for good performance. Hence, we require that this
quantity be smaller than the average window size assuming that
the window can grow to its maximum possible values. It has to
be remarked here that this condition would not be necessary if
the connection were using fine timeout values since in that case
the effect of a timeout is not severe at all.

We verify the above conditions in Fig. 7. This simulation re-
sult considers a 1-Mb/s link with a one-way delay of 0.05 s,

, and 500-byte packets. Thus, this results in a link band-
width delay of 25 packets. Hence, the two necessary conditions
for good performance translate into and .
From the figure, we see that the link utilization is greater than
60% in the regime where these conditions are satisified for all

Fig. 7. Illustrating the applicability of conditions which lead to significant
throughput deterioration.

Fig. 8. Illustrating the effects of varying� for a link with a bandwidth-delay
product of 50 packets.

the TCP algorithms. We also see the performance lag in case of
NewReno as compared with Tahoe.

We next investigate the effects ofwhile keeping constant.
These are shown in Figs. 8 and 9, both of which are based on
the packet train model. For both these figures, we also assume
a packet size of 125 bytes. In Fig. 8, we consider a scenario
with a bandwidth-delay product of 50 packets and a wireless
link bandwidth of 1 Mb/s. At very low values of , timeouts
are the norm and, hence, the performance of all TCP versions is
similar. The robustness of Sack and Tahoe to values ofabove
a threshold, as remarked earlier, is also seen. This is because
Sack and Tahoe recover the same way for single and multiple
packet drops (with Sack resorting to fast recovery in both cases
and Tahoe going through slow start for both scenarios), they ex-
hibit similar behavior for both moderate and high values of.
In contrast, NewReno recovers from multiple packet drops by
retransmitting one lost packet per RTT and, hence, its behavior
improves continually as increases, until at high values ofthe
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Fig. 9. Illustrating the effects of varying� for a link with a bandwidth-delay
product of 100 packets.

Fig. 10. Illustrating the effects of varying� using simulations for a low
bandwidth-delay product link.

performance of NewReno and Sack becomes very similar. From
Fig. 9, which considers a link with a bandwidth delay product
of 100 packets and a link bandwidth of 2 Mb/s, it can be seen
that the minimum robustness threshold decreases as the band-
width-delay product increases. The performance of NewReno,
however, is very sensitive to the value of. It can also be seen
that at high values of the RTT with a corresponding high value
of the bandwidth delay product, the performance of NewReno
is also the worst of all the TCP versions under bursty loss con-
ditions, as mentioned earlier. The performance is also seen to
become better when , since , which are the
two conditions for a link with a bandwidth delay of 100.

In Fig. 10, we use simulations to show the effects ofwhile
keeping constant for a low bandwidth-delay link. The condi-
tions for good link utilization translate to and .
Thus, the minimum robustness threshold increases as the band-
width-delay product decreases. This is also seen by comparing

this figure with the earlier figures. We also see the performance
deterioration of NewReno for low and moderate values of.

VI. CONCLUSION

In this paper, we have looked at the behavior of the different
TCP algorithms over a wireless channel with correlated packet
losses. Like the earlier analytical studies and many of the
simulation studies, we have been concerned with just a single
TCP connection. In addition to modeling of the interaction
between multiple TCP flows being notoriously difficult, the
main reason for this is to develop insight into the interaction
between random packet losses and the TCP dynamic window
adjusting mechanism.

We first provide an analytical model for studying the per-
formance of the different TCP algorithms, namely, OldTahoe,
Tahoe, NewReno, and Sack, operating over a wireless link
with correlated packet losses. We then provide conditions on
the wireless channel satisfaction of which ensures that the
throughput of the TCP algorithm tends to the best possible
throughput. We see that the behavior of Sack is the best in all
regimes. Another important result that we have shown is that
for situations of even moderately bursty losses, the performance
of NewReno is worse than Tahoe with the performance gap
widening with higher values of . This is a serious flaw
in the performance of NewReno, which also argues for the
widespread implementation of Sack. Also, at values of high

, the performance difference between the different versions
decreases with the difference becoming insignificant as the
value of decreases. It is also seen that Sack and Tahoe are
insensitive to the value of as long as is not low enough,
while NewReno’s performance improves continually as
increases. This implies that Sack and Tahoe are less sensitive to
the bursty conditions above a certain threshold.

We have also shown that performance of the different TCP
versions under correlated packet loss depends not only on the
bandwidth delay product but also on the granularity of the
timeout timer for low values of . For high values of , the
performance depends just on the bandwidth delay product.
Further, it is also seen that reducing the granularity of the
timeout interval as also reducing the value of the fast retransmit
threshold makes a difference only in case of very bursty loss
conditions and in scenarios where the window cannot grow to
large sizes for high values of. We have also shown that at
very high bursty loss conditions the performance of all the TCP
versions is similar.
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