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Scalable Packet Classification
Florin Baboescu and George Varghese, Member, IEEE

Abstract—Packet classification is important for applications
such as firewalls, intrusion detection, and differentiated services.
Existing algorithms for packet classification reported in the liter-
ature scale poorly in either time or space as filter databases grow
in size. Hardware solutions such as TCAMs do not scale to large
classifiers. However, even for large classifiers (say, 100 000 rules),
any packet is likely to match a few (say, 10) rules. This paper
seeks to exploit this observation to produce a scalable packet
classification scheme called Aggregated Bit Vector (ABV). It takes
the bit vector search algorithm (BV) described in Lakshman and
Stidialis, 1998 (which takes linear time) and adds two new ideas,
recursive aggregation of bit maps and filter rearrangement, to
create ABV (which can take logarithmic time for many databases).
We show that ABV outperforms BV by an order of magnitude
using simulations on both industrial firewall databases and syn-
thetically generated databases.

I. INTRODUCTION

EVERY Internet router today can forward entering Internet
messages (packets) based on the destination address. The

32-bit IP destination address is looked up in a table which then
determines the output link on which the packet is sent. How-
ever, for a competitive advantage, many routers today choose to
do additional processing for a specific subset of packets. Such
additional processing includes providing differentiated output
scheduling (e.g., Voice over IP packets are routed to a high
priority queue), taking security-related actions (e.g., dropping
packets sent from a certain subnet), load balancing (e.g., routing
packets to different servers) and doing traffic measurement (e.g.,
measuring traffic between subnet pairs).

Although the details of the additional processing can vary
greatly, a common requirement of all the functions above is that
routers be able to classify packets based on packet headers into
equivalence classes called flows. A flow is defined by a rule—for
example the set of packets whose source address starts with
prefix bits , whose destination address is , and which are
sent to the server port for web traffic. Associated with each flow
is an action which defines the additional processing—example
actions include sending to a specific queue, dropping the packet,
making a copy, etc.

Thus, packet classification routers have adatabase of rules, one
for each flow type that the router wants to process differently. The
rules are explicitly ordered by a network manager (or protocol)
that creates the rule database. Thus, when a packet arrives at a
router, the router must find a rule that matches the packet headers;
if more than one match is found, the first matching rule is applied.

Manuscript received August 7, 2002; revised January 2, 2004; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor E. Zegura. The work of
F. Baboescu and G. Varghese was supported by the National Science Foundation
under NSF Grant ANI 0074004.

The authors are with the Department of Computer Science and Engineering,
University of California at San Diego, La Jolla, CA 92093 USA (e-mail:
baboescu@cs.ucsd.edu; varghese@cs.ucsd.edu).

Digital Object Identifier 10.1109/TNET.2004.842232

A. Scalable Packet Classification

This paper is about the problem of performing scalable
packet classification for routers at wire speeds even as rule
databases increase in size. Forwarding at wire speeds requires
forwarding minimum sized packets in the time it takes to
arrive on a link; this is crucial because otherwise one might
drop important traffic before the router has a chance to know
it is important [14]. With Internet usage doubling every six
months, backbone link speeds have increased from OC-48 to
OC-192 (2.4–10 Gb/s), and speeds up to OC-768 (40 Gb/s) are
projected. Even link speeds at the network edge have increased
from Ethernet (10 Mb/s) to Gigabit Ethernet.

Further, rule databases are increasing in size. The initial usage
of packet classification for security and firewalls generally re-
sulted in fairly small databases (e.g., the largest database in a
large number of Cisco rule sets studied by [11] is around 1700).
This makes sense because such rules are often entered by man-
agers. However, in the very popular Differentiated Services [7]
proposal, the idea is to have routers at the edge of the backbone
classify packets into a few distinct classes that are marked by bits
in the TOS field of the IP header. Backbone routers then only look
at the TOS field. If, as seems likely, the DiffServ proposal reaches
fruition, the rule sets for edge routers can grow very large.

Similarly, rulesets for edge routers that do load balancing [5]
can grow very large. Such rulesets can potentially be installed
at routers by a protocol; alternately, a router that handles several
thousand subscribers may need to handle say, 10 rules per sub-
scriber that are manually entered. It may be that such customer
aggregation is the most important reason for creating large clas-
sifiers. Thus, we believe rule databases of up to 100 000 rules
are of practical interest.

II. PREVIOUS WORK

Previous work in packet classification [11], [12], [14], [20],
[21] has shown that the problem is inherently hard. Most
practical solutions use linear time [14] to search through all
rules sequentially, or use a linear amount of parallelism (e.g.,
Ternary-CAMs [15]). Ternary CAMs are Content Addressable
Memories that allow wildcard bits. While Ternary-CAMs are
very common, such CAMs have smaller density than standard
memories, dissipate more power, and require multiple entries
to handle rules that specify ranges. Thus, CAM solutions are
still expensive for very large rule sets of, say, 100 000 rules,
and are not practical for PC-based routers [16]. Solutions based
on caching [22] do not appear to work well in practice because
of poor hit rates and small flow durations [18].

Another practical solution is provided by a seminal paper that
we refer to as the Lucent bit vector scheme [14]. The idea is to
first search for rules that match each relevant field of the packet
header, and to represent the result of the search as a bitmap of
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Fig. 1. Time-memory complexity for algorithmic solutions for the packet
classification problem.

rules that match the packet in field . Then the rules that match
the full header can be found by taking the intersection of the
bitmaps for all relevant fields . While this scheme is still linear
in the size of the rule set, in practice searching through a bitmap
is fast because a large number of bits (up to 1000 in hardware, up
to 128 bits in software) can be retrieved in one memory access.
While the Lucent scheme can scale to around a reasonably large
number of rules (say, 10 000) the inherently linear worst case
scaling makes it difficult to scale up to large rule databases.

From a theoretical standpoint, it has been shown [14] that
in its fullest generality, packet classification requires either

time and linear space, or time and
space, where is the number of rules, and is the number of
header fields used in rules. Thus, it comes as no surprise that
the solutions reported in the literature for either require
large worst case amounts of space (e.g., crossproducting [20],
RFC [11], HiCuts [12])1 or time (e.g., bit vector search [14],
backtracking [20]).

However, the papers by Gupta and McKeown [11], [12] intro-
duced a major new direction into packet classification research.
Since the problem is unsolvable in the worst case, they look in-
stead for heuristics that work well on common rule sets. In par-
ticular, after surveying a large number of rule sets [11], they find
that multiple rule intersection is very rare. In other words, it is
very rare to have a packet that matches multiple rules. Since the
examples that generate the worst case bounds entail multiple
rule sets that intersect, it is natural to wonder whether there are
schemes that are provably better given some such structural as-
sumption on real databases.

Among the papers that report heuristics [11], [12], [21], the
results on real databases are, indeed, better than the worst case
bounds. Fig. 1 shows the time-memory relation for these type
of schemes. As expected RFC occupies a memory space that is

1The tree search structure of the HiCuts [12] algorithm occupies a linear space
in the number of rules. However each leaf node stores a list of rules that are a
possible match. This list needs to be traversed in order to identify the matching
rule of the search. In order to provide a good search throughput each of these lists
must be stored in different memory spaces. As a result the information related to
a rule may get duplicated into multiple lists and therefore increases the overall
memory space.

Fig. 2. Total memory space occupied by the search structures in RFC [11],
HiCuts [12], and the bit vector scheme (BV) [14]. The size is in memory words,
one memory word is 32 bits. The filter databases are described in Fig. 9.

Fig. 3. Total number of memory accesses for a worst case search in RFC [11],
HiCuts [12] and the bit vector scheme (BV) [14]. One memory access is one
word. One word is 32 bits. The filter databases are described in Fig. 9.

exponential in the number of rules. The HiCuts algorithm uses a
memory space that is linear in the number of rules. However, the
size of this space may be multiplied with a large constant in the
case that the lists stored in the leaf nodes has a large number of
duplications. The bit vector search algorithm has also a linear
memory space utilization given by storing the bit vectors that
are used in representing the matching rules associated with each
prefix node in the search structures. The worst case complexity
of the searches is linear in the number of rules in the case of
the bit vector search algorithm. The complexity of the search is
logarithmic in the number of rules in the case of HiCuts. RFC
and crossproducting have a constant search time complexity,
independent on the number of rules. Fig. 2 shows the memory-
time tradeoff for RFC, HiCuts and the bit vector search scheme
in the case of four different real life firewall databases that are
described in Fig. 9.

Finally, there are several algorithms that are specialized for
the case of rules on two fields (e.g., source and destination IP
address only). For this special case, the lower bounds do not
apply (they apply only for ); thus hardly surprisingly, there
are algorithms that take logarithmic time and linear storage.
These include the use of range trees and fractional cascading
[14], grid-of-tries [20], area-based quad-trees [4], and FIS-trees
[8]. While these algorithms are useful for special cases, they do
not solve the general problem. While the FIS trees paper [8]
sketches an extension to and suggests the use of clus-
tering to reduce memory, there is a need to experimentally eval-
uate their idea on real (even small) multidimensional classifiers.

In summary, for the general classification problem on three
or more fields, we find that existing solutions do not scale well
in one of time or storage. Our paper uses the Lucent bit vector
scheme as a point of departure since it already scales to medium
size databases, and is amenable to implementation using either
hardware or software. Our Aggregated Bit Vector (ABV) scheme
adds two new ideas, rule aggregation and rule rearrangement,
to enhance scalability.

A. Previous Work in Efficient Representation of Sparse Sets

Bit vectors are a natural way to represent sparse sets. How-
ever, operations such as set intersection take using bit vec-
tors, where is the size of the universe which is represented.
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Fig. 4. Brigg’s representation for a set made up of four elements {1, 3, 6, 9}.
The total number of elements which may be represented is N .

An efficient sparse set representation for compiler applications
(which allows set intersection in time proportional to the actual
sizes of the sets being intersected) is described in [3].

The sparse set representation used in [3] has three compo-
nents: two vectors, each with the length , and a scalar that
records the number of members in the set. The two vectors are
called sparse and dense. The scalar value identifies the number
of elements in the set as well as the number of elements in the
dense vector. Fig. 4 shows the representation of a set made up
of four elements; the maximum number of elements which may
be represented is . The values in the dense vector point to
members in the sparse vector, which point back into the dense
vector. If an element is a member of the set, it must satisfy
two conditions:

• ;
• .

We call this Brigg’s representation.
The representation provides constant time implementations

for operations like find a member, add a member, or delete a
member. It also provides an asymptotic complexity of
where is the number of members, for operations like copy
a set, compare sets, union, intersection, and difference of sets.
For these operations, bit vector representation takes time
where is the size of the universe.

These results suggest that Brigg’s representation could re-
place the bit vectors in the Lucent bit vector scheme and re-
duce time complexity. However, in Section VI we show that
our ABV scheme can do much better than the Briggs scheme
without being much worse in the worst case.

III. PROBLEM STATEMENT

Assume that information relevant to lookup is contained in
distinct packet header fields, denoted by ,

where each field is a bit string. For instance, the relevant fields
for an IPv4 packet could be the Destination Address (32 bits),
the Source Address (32 bits), the Protocol Field (8 bits), the Des-
tination Port (16 bits), the Source Port (16 bits), and TCP flags
(8 bits). Thus, the combination ( , , TCP-ACK, 80, 2500),
denotes the header of an IP packet with destination , source

, protocol TCP, destination port 80, source port 2500, and the
ACK bit set. Note that many rule databases allow the use of other
header fields besides TCP/IP such as MAC addresses, and even
Application (e.g., http) headers.

The rule database of a router consists of a finite sequence of
rules, . Each rule is a combination of values,
one for each header field. Each field in a rule is allowed three

kinds of matches: exact match, prefix match, or range match.
In an exact match, the header field of the packet should exactly
match the rule field, for instance, this is useful for protocol and
flag fields. In a prefix match, the rule field should be a prefix of
the header field; this is useful for blocking access from a certain
subnetwork. In a range match, the header values should lie in
the range specified by the rule; this is useful for specifying port
number ranges.

Each rule has an associated action , which specifies
how to forward the packet matching this rule. The action spec-
ifies if the packet should be blocked. If the packet is to be for-
warded, it specifies the outgoing link to which the packet is sent,
and perhaps also a queue within that link if the message belongs
to a flow with bandwidth guarantees.

We say that a packet matches a rule if each field of
matches the corresponding field of —the match type

is implicit in the specification of the field. For instance, let
be a rule, with

. Then, a packet with header ( ,
, TCP, 1050, 3) matches , and is therefore

dropped. The packet ( , , TCP, 80,
3), on the other hand, does not match . Since a packet may
match multiple rules, we define the matching rule to be the
earliest matching rule in the sequence of rules2.

We wish to do packet classification at wire speed for min-
imum sized packets and thus speed is the dominant metric. Be-
cause both modern hardware and software architectures are lim-
ited by memory bandwidth, it makes sense to measure speed in
terms of memory accesses. It is also important to reduce the size
of the data structure that is used to allow it to fit into the high
speed memory. The time to add or delete rules is often ignored,
but it is important for dynamic rule sets, that can occur in real
firewalls. Our scheme can also be modified to handle fast up-
dates at the cost of slightly increased search time.

IV. TOWARDS A NEW SCHEME

We introduce the ideas behind our scheme by first describing
the Lucent bit vector scheme as our point of departure. Then,
using an example rule database, we show our two main ideas:
aggregation and rule rearrangement. In the next section, we for-
mally describe our new scheme.

A. Bit Vector Linear Search

The Lucent bit vector scheme is a form of divide-and-conquer
which divides the packet classification problem into subprob-
lems, and then combines the results. To do so, we first build
one-dimensional tries associated with each dimension (field) in
the original database. We assume that ranges are either handled
using a range tree instead of a trie, or by converting ranges to
tries as shown in [20], [21]. An -bit vector is associated with
each node of the trie corresponding to a valid prefix. (Recall that

is the total number of rules).
Fig. 6 illustrates the construction for the simple two-dimen-

sional example database in Fig. 5. For example, in Fig. 5, the
second rule has 00* in the first field. Thus, the leftmost node

2Sometimes we refer to the lowest cost rule instead of the first matching rule.
The two definitions are equivalent if the cost of a rule is its position in the se-
quence of rules
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Fig. 5. A simple example with 11 rules on two fields.

Fig. 6. Two tries associated with each of the fields in the database of Fig. 5,
together with both the bit vectors (boxed) and the aggregate vectors (bolded)
associated with nodes that correspond to valid prefixes. The aggregate bit vector
has 3 bits using an aggregation size of 4. Bits are numbered from left to right.

in the trie for the first field, corresponds to 00*. Similarly, the
Field 1 trie contains a node for all distinct prefixes in Field 1 of
Fig. 5 such as 00*, 10*, 11*, 1*, and 0*.

Each node in the trie for a field is labeled with a -bit vector.
Bit in the vector is set if the prefix corresponding to rule
in the database matches the prefix corresponding to the node. In
Fig. 5, notice that the prefix 00* in Field 1 is matched by the
values 00* and 0*, which correspond to values in rules 0, 1, 4,
5 and 6. Thus, the 11-bit vector shown behind the leftmost leaf
node in the top most trie of Fig. 6 is 11001110000. For now,
only consider the boxed bit vectors and ignore the smaller bit
vectors below each boxed bit vector.

When a packet header arrives with fields , we do
a longest matching prefix lookup (or narrowest range lookup)
in each field to get matches and read off the resulting bit
vectors from the tries for each field . We then take the in-
tersection of for all , and find the lowest cost element of
the intersection set. If rules are arranged in nondecreasing order
of cost, all we need to do is to find the index of the first bit set in
the intersected bit vector. However, these vectors have bits in
length; computing the intersection requires operations. If

is the size of a word of memory than these bit operations are
responsible for memory accesses in the worst case.
Note that the worst case occurs very commonly when a packet
header does not match a single rule in the database.

B. Reducing Accesses by Aggregation

Recall that we are targeting the high cost in memory accesses
which essentially scales linearly ( ) except that the con-
stant factor is scaled down by the word size of the implementa-
tion. With a word size of up to 1000 in hardware, such a “con-
stant” factor improvement is a big gain in practice. However, we
want to do better by at least one order of magnitude, and remove
the linear dependence on . To this end, we introduce the idea
of aggregation.

The main motivating idea is as follows. We hope that if we
consider the bit vectors produced by each field, the set bits will
be very sparse. For example, for a 100 000 rule database, if there
are only 5 bits set in a bit vector of size 100 000, it seems a waste
to read 100 000 bits. Why do we believe that bit vectors will be
sparse? We have the following arguments:

• Experience: In the databases we have seen, every packet
matches at most four rules. Similar small numbers have
been seen in [12] for a large collection of databases up to
1700 rules.

• Extension: How will large databases be built? If they are
based on aggregating several small classifiers for a large
number of classifiers, it seems likely that each classifier
will be disjoint. If they are based on a routing protocol that
distributed classifiers based on prefix tables, then prefix
containment is quite rare in the backbone table and is lim-
ited to at most six [21]. Again, if a packet matches a large
number of rules, it is difficult to make sense of the or-
dering rules that give one rule priority over others.

The fact that a given packet matches only a few rules does not
imply that the packet cannot match a large number of rules in
all dimensions (because only a few matches could align properly
in all dimensions). However, assume for now there is some di-
mension whose bit vector is sparse.3 To exploit the existence
of such a sparse vector, our modified scheme, appends the bit
vector for each field in each trie with an aggregate bit vector.
First, we fix an aggregate size . is a constant that can be
tuned to optimize the performance of the aggregate scheme;
a convenient value for is the word size. Next, a bit
is set in the aggregate vector if there is at least one bit set,

. In other words, we simply aggregate
each group of bits in the Lucent bit vector into a single bit
(which represents the OR of the aggregated bits) in the aggre-
gate bit vector.

Clearly, we can repeat the aggregation process at multiple
levels, forming a tree whose leaves are the bits in the original
Lucent bit vector for a field. This can be useful for large enough

. However, since we deal with aggregate sizes that are at least
32, two levels of hierarchy can handle rules.
Using larger aggregate sizes will increase the that can be han-
dled further. Thus, for much of this paper, we will focus on one
level (i.e., a single aggregate bit vector) or two levels (for a few
synthetically generated large databases). We note that the only
reason our results for synthetic databases are limited to 20 000
rules is because our current testing methodology (to check the
worst case search time for all packet header combinations) does
not scale.

3If this is not the case, as is common, then our second technique of rearrange-
ments can make this assumption more applicable.
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Fig. 7. Example of a database with two-dimensional rules for which the
aggregation technique without rearrangement behaves poorly. The size of the
aggregate A = 2.

Why does aggregation help? The goal is to efficiently con-
struct the bit map intersection of all fields without examining
all the leaf bit map values for each field. For example, suppose
that a given packet header matches only a small constant number
of rules in each field. This can be determined in constant time,
even for large , by examining the top level aggregate bit maps;
we then only examine the leaf bit map values for which the ag-
gregate bits are set. Thus, intuitively, we only have to examine
a constant number of memory words per field to determine the
intersection because the aggregate vectors allow us to quickly
filter out bit positions where there is no match. The goal is to
have a scheme that comes close to taking memory
accesses, even for large .

Fig. 6 illustrates the construction for the example database in
Fig. 5 using an aggregate size . Let us consider a packet
with Field 1 starting with bits 0010 and Field 2 starting with bits
0100. From Fig. 6 one can see that the longest prefix match is
00 for the first field and 01 for the second one. The associated
bit vectors are: 11001110000 and 01000011110 while the ag-
gregate ones (shown in bold below the regular bit vectors) are:
110 and 111. The AND operation on the two aggregate vectors
yields 110, showing that a possible matching rule must be lo-
cated only in the first 8 bits. Thus, it is not necessary to retrieve
the remaining 4 bits for each field.

Notice that in this small example, the cost savings (assuming
a word size of 4) is only two memory accesses, and this reduc-
tion is offset by the two memory accesses required to retrieve
the bit maps. Larger examples show much bigger gains. Also,
note that we have shown the memory accesses for one partic-
ular packet header. We need to efficiently compute the worst
case number of memory accesses across all packet headers.

While aggregation does often reduce the number of memory
accesses, in some cases a phenomenon known as false matches
can increase the number of memory accesses to being slightly
higher (because of the time to retrieve the aggregates for each
field) than even the normal Lucent bit vector search technique.

Consider the database in Fig. 7 and an aggregation size
. are all prefixes having the first five bits different

from the first five bits of two IP addresses and . Assume the
arrival of a packet from source to destination . Thus, the bit
vector associated with the longest matching prefix in the Field 1
(source) trie is 1010101 101 and the corresponding bit vector
in the Field 2 (destination) trie is 0101010 011. The aggre-
gate bit vectors for both fields both using are 111 1.

However, notice that for all the ones in the aggregate bit vector
(except the last one) the algorithm wrongly assumes that there
might be a matching rule in the corresponding bit positions.

This is because of what we call a false match, a situation in
which the result of an AND operation on an aggregate bit returns
a one but there is no valid match in the group of rules identified
by the aggregate. This can clearly happen because an aggregate
bit set for field 1 corresponding to positions only
means that some bit in those positions (e.g., , ) has a
bit set. Similarly, an aggregate bit set for field 2 corresponding
to positions only means that some bit in those
positions (e.g., , ) has a bit set. Thus, a false match
occurs when the two aggregate bits are set for the two fields but

. The worst case occurs when a false match occurs for
every aggregate bit position.

For this particular example there are 30 false matches which
makes our algorithm read 31 2 bits more than the Lucent bit
vector linear search algorithm. We have used an aggregation
size in our toy example, while in practice will be
much larger. Note that for larger , our aggregate algorithm will
only read a small number of bits more than the Lucent bit vector
algorithm even in the worst case.

C. Why Rearrangement of Rules can Help

Normally, in packet classification it is assumed that rules
cannot be rearranged. In general, if Rule 1 occurs before Rule
2, and a packet could match Rule 1 and Rule 2, one must
never rearrange Rule 2 before Rule 1. Imagine the disaster if
Rule 1 says “Accept,” and Rule 2 says “Deny,” and a packet
that matches both rules get dropped instead of being accepted.
Clearly, the problem is that we are rearranging overlapping
rules; two rules are said to overlap if there is at least one packet
header that can match both rules.

However, the results from [11] imply that in real databases
rule overlap is rare. Thus, if we know that a packet header can
never match Rule 1 and Rule 2, then it cannot affect correctness
to rearrange Rule 2 before Rule 1; they are, so to speak, “in-
dependent” rules. We can use this flexibility to try to group to-
gether rules that contribute to false matches into the same aggre-
gation groups, so that the memory access cost of false matches
is reduced.

Better still, we can rearrange rules arbitrarily as long as we
modify the algorithm to find all matches and then compute the
lowest cost match. For example, suppose a packet matched rules
Rule 17, Rule 35, and Rule 50. Suppose after rearrangement
Rule 50 becomes the new Rule 1, Rule 17 becomes the new
Rule 3, and Rule 35 becomes the new Rule 6. If we compute
all matches the packet will now match the new rules 1, 3, and 6.
Suppose we have precomputed an array that maps from new rule
order number to old rule order number (e.g., from 1 to 50, 3 to
17, etc.). Thus, in time proportional to the number of matches,
we can find the “old rule order number” for all matches, and se-
lect the earliest rule in the original order. Once again the crucial
assumption to make this efficient is that the number of worst
case rules that match a packet is small. Note also that it is easy
(and not much more expensive in the worst case) to modify a bit
vector scheme to compute all matches.
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Fig. 8. Example of rearranging the database in Fig. 7 in order to improve the
performance of aggregation. The size of the aggregate A = 2.

For example, rearranging the rules in the database shown in
the database in Fig. 7, we obtain the rearranged database shown
in Fig. 8. If we return to the example of packet header ( , ),
the bit vectors associated with the longest matching prefix in the
new database will be 111 11000 0 and 000 01111 1
having the first 31 bits 1 in the first bit vector and the last 31 bits 1
in the second bit vector. However, the result of the AND opera-
tion on the aggregate has the first bit that is set in the position
16. This makes the number of bits necessary to be read for the
aggregate scheme to be which is less than
the number of the bits to be read for the scheme without re-
arrangement: .

The main intuition in Fig. 8 versus Fig. 7 is that we have
“sorted” the rules by first rearranging all rules that have in
Field 1 to be contiguous; having done so, we can rearrange the
remaining rules to have all values in Field 2 with a common
value to be together (this is not really needed in our example).
What this does is to localize as many matches as possible for
the sorted field to lie within a few aggregation groups instead of
having matches dispersed across many groups.

Thus, our paper has two major contributions. Our first contri-
bution is the idea of using aggregation which, by itself, reduces
the number of memory accesses by more than an order of mag-
nitude for real databases, and even for synthetically generated
databases where the number of false matches is low. Our second
contribution is to show how can one reduce the number of false
matches by a further order of magnitude by using rule rearrange-
ment together with aggregation. In the rest of this paper, we de-
scribe our schemes more precisely and provide experimental ev-
idence that shows their efficacy.

V. THE ABV ALGORITHM

In this section, we describe our new ABV algorithm. We start
by describing the algorithm with aggregation only. We then de-
scribe the algorithm with aggregation and rearrangement.

A. Aggregated Search

We start by describing more precisely the basic algorithm
for a two-level hierarchy (only one aggregate bit vector), and
without rearrangement of rules.

For the general -dimension packet classification problem
our algorithm uses the rules of the classifier to precompute

tries, , . A trie is associated with field from

the rule database; it consists of a trie built on all possible prefix
values that are found in field in any rule in the rule database.

Thus, a node in trie is associated with a valid prefix
if there is at least one rule in the classifier having ,
where is the prefix associated with field of rule . For each
such node two bit vectors are allocated. The first one has bits
and is identical to the one that is assigned in the BV algorithm.
Bit in this vector is set if and only if rule in the classifier
has as a prefix of . The second bit vector is computed based
on the first one using aggregation. Using an aggregation size of

, a bit in this vector is set if and only if there is at least one
rule , for which is a prefix
of . The aggregate bit vector has bits.

When a packet arrives at a router, a longest prefix match is
performed for each field of the packet header in trie to
yield a trie node . Each node contains both the bit vector
( ) and the aggregate vector ( ) spec-
ifying the set of filters or rules which matches prefix on the
dimension . In order to identify the subset of filters which are
a match for the incoming packet, the AND of is
first computed.

Whenever position is 1 in the AND of the aggregate vectors,
the algorithm performs an AND operation on the regular bit vec-
tors for each chunk of bits identified by the aggregate bit (bits

). If a value of 1 is obtained for bit
, then the rule is part of set . However, the algorithm

selects the rule with the lowest value of .
Thus, the simplest way to do this is to compute the matching

rules from the smallest position to the largest, and to stop when
the first element is placed in . We have implemented this
scheme. However, in what follows we prefer to allow arbitrary
rearrangement of filters. To support this, we instead compute
all matches. We also assume that each rule is associated with a
cost (that can easily be looked up using an array indexed by the
rule position) that reflects its position before rearrangement.
We only return the lowest cost filter, i.e., the filter with the
smallest position number in the original database created by
the manager. As described earlier, this simple trick allows us
to rearrange filters arbitrarily without regard for whether they
intersect or not.

The pseudocode for this implementation is:

1 Get Packet ;
2 for to do
3 ;
4 ;
5 for to do
6 ;
7 ;
8 for to do
9 if ( )
10 for to do
11 if ( )
12 if ( )
13 ;
14 return BestRule;



8 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 1, FEBRUARY 2005

B. A Sorting Algorithm for Rearrangement

One can see that false matches reduce the performance of the
algorithm introduced in the previous section, with lines 10 to 13
in the algorithm being executed multiple times. In this section,
we introduce a scheme which rearranges the rules such that,
wherever possible, multiple filters which match a specific packet
are placed close to each other. The intent, of course, is that these
multiple matching filters are part of the same aggregation group.
Note that the code of the last section allows us to rearrange filters
arbitrarily as long as we retain their cost value.

Recall that Fig. 8 was the result of rearranging the original
filter database from Fig. 7 by grouping together the entries
having as a prefix on the first field and then the entries having

as a prefix in the second field. After rearranging entries,
a query to identify the filter which matches the header ( ,

) of a packet takes about half the time it would take before
rearrangement. This is because regrouping the entries reduces
the number of false matches to zero.

To gain some intuition into what optimal rule arrangement
should look like, we examined four real life firewall databases.
We noticed that there were a large number of entries having pre-
fixes of either length 0 or 32. This suggests a simple idea: if we
arbitrarily pick a field and group together first the entries having
prefixes of length 0 (such wildcard fields are very common),
then the prefixes of length 1, and so on until we reach a group
of all size 32 prefixes. Within each group of similar length pre-
fixes, we sort by prefix value, thereby grouping together all fil-
ters with the same prefix value. For the field picked, this will
clearly place all the wildcard fields together, and all the length
32 prefixes together, and so on. Intuitively, this rule generalizes
the transformation from Figs. 7 and 8. In the rest of the paper,
we refer to this process of rearrangement as sorting on a field.

Suppose we started by sorting on field . There may be a
number of filters with prefix . Of course, we can continue
this process recursively on some other field , by sorting all en-
tries containing entry using the same process on field . This
clearly leaves the sorting on field unchanged.

Our technique of moving the entries in the database creates
large areas of entries sharing a common subprefix in one or more
fields. If there are entries having fields sharing a common sub-
prefix with different lengths, it separates them at a comfortable
distance such that false matches are reduced.

A question each rearrangement scheme should address is cor-
rectness. In other words, for any packet and any filter database

which, after rearrangement is transformed into a database ,
the result of the packet classification problem having as entries
both ( , ) and ( , ) should be the same. One can see that
the ABV algorithm guarantees this because an entry is selected
based on its cost. Note that (by contrast) in the BV scheme an
entry is selected based on its position in the original database.

Our rearranging scheme uses a recursive procedure which
considers the entries from a subsection of the original database
identified through the first and last element. The rearrangement
is based on the prefixes from the field col provided as an ar-
gument. The procedure groups the entries based on the length
of the prefixes; for example first it considers the prefixes from
field 1, and creates a number of groups equal to the number of
different prefix lengths in field 1. Each group is then sorted so

that entries having the same prefix are now adjacent. The en-
tries having the same prefix then create subgroups; the proce-
dure continues for each subgroup using the next fields that needs
to be considered; the algorithm below considers fields in order
from 1 to . Note that one could attempt to optimize by con-
sidering different orders of fields to sort. We have not done so
yet because our results seem good enough without this further
degree of optimization.

A pseudocode description of the algorithm is given below.
The algorithm is called initially by setting the parameters

, ,

ARRANGE-ENT( )
1 if(there are no more fields) or (

) then return;
2 for (each valid size of prefixes) then
3 Group together all the elements with
the same size;
4 Sort the previously created groups.
5 Create subgroups made up of elements
having the same prefixes on the field col
6 for (each subgroup with more than two
elements) then
7 Arrange-Ent( );

VI. AGGREGATED BIT VECTORS VERSUS BRIGG’S

REPRESENTATION FOR SPARSE SETS

Ref. [3] introduced an efficient way to represent sparse sets
which we describe in Section II-A. In this section, we analyti-
cally compare the two schemes.

Let be the word size, be the size of a pointer to a position
in the dense vector in the Brigg’s scheme (e.g., probably 16
bits to cover bitmaps of size greater than 256) and be the
number of rules (called size of universe in [3]). Recall that our
model is different from Brigg’s model: we only count memory
references. Thus, if we read a word with 6 bits set and have to
chase down each bit set, this operation still only has a cost of 1.
This is because hardware (and even software) logic operating
on registers is much faster than a memory access.

We first investigate the time complexity of a search operation.
Lemma 6.1: There exists rule sets (moderately dense) for

which the Brigg’s representation takes a factor of more
memory accesses than ABV, where is a small constant no
greater than 4.

For example, with (typical word size) and ,
there are executions where ABV is 256 times faster than using
Brigg’s representation.

Proof: Consider a case in which we are intersecting two
64-bit vectors and . (The case may be generalized for other
values of ) has its first 32 bits set while has the next 32
bits set. Therefore their intersection is null. By using aggrega-
tion with an aggregate size equal to 32, ABV gives an answer
using only two memory accesses, reading the two aggregates
and intersecting them. Let us consider next two bit vectors

, . has the first half of its bits set, while has the second
half set. The sets they designate are disjoint. ABV produces an
answer using accesses, while using Brigg’s
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representation the answer requires reading words.
We consider .4

Lemma 6.2: There is no execution on which ABV is more
than a factor times worse than using Brigg’s rep-
resentation.

The worst case executions occur when the bit vector is sparse.
For example, with and (pretty much the
largest sizes one should consider and considered in our paper),
this means that the Brigg’s method can beat ABV by at most a
factor of 2. Notice that for larger , easily achieved in hard-
ware, the comparison favors ABV further.

Proof: If ABV examines a word in the sparse bitmap, it
must be that both aggregate bits indicate a 1, so both bitmaps
have a nonzero position in that word, so using Brigg’s represen-
tation must pay two memory accesses as ABV does. Thus, ABV
can only pay more accesses by reading the aggregates. However
for every bit set ( a position that must be examined using Brigg’s
representation) ABV pays at most memory accesses
(ignoring the root which is an extra 1 that cancels with the scalar
field in Briggs).

Corollary 6.3: For and , ABV is never
more than a factor of two worse than Brigg’s representation,
while using Brigg’s representation can be 256 times worse than
using ABV.

The following lemmas investigate the memory occupied by
both implementation: ABV and the one based on Brigg’s repre-
sentation. We consider first the situation in which the rule set is
dense. As we will see in the Section VII it is quite common to
have sets which contain more than 20% of the total universe.

Lemma 6.4: There exists rule sets (very dense) for which the
Brigg’s representation takes a factor of 16 more memory (using
16 bit pointers when every bit is set) than ABV.

Proof: Immediate, considering that the dense vector con-
tains pointers which are represented using bits. In this case

.
Lemma 6.5: There exists no rule set for which ABV is more

than a factor of worse in memory size than using
Brigg’s representation.

Proof: Consider the case in which there is only one ele-
ment in the set. For this case using Brigg’s representation one
only needs to store a pointer to that element. However, ABV
pays for storing the aggregate. The overall size of the aggregate
is . Therefore the overall memory space occupied
by ABV is while using Brigg’s repre-
sentation the memory size is .

Corollary 6.6: For , using Brigg’s representation
can be 16 times worse in storage than, while for any database
of rules using ABV uses at most 3% more memory than using
Brigg’s representation.

So, which of the representations should be used for the multi-
dimensional packet classification problem? The authors in [11]
noticed that despite an increase in the number of rules in the
packet classification, there are only a small, limited number of
matching rules. Therefore in a set representation one can only
say that the result set is sparse. However, in each individual di-

4This example also suggests why rearrangement helps. It allows us to pay
a cost of only one memory access to look at an aggregate pointing to a word
containing lots of 1’s that we do not need to examine.

mension we have observed multiple matches because of lots of
wildcards.

Therefore the result set in each dimension is not sparse; thus
it does not favor the use of Brigg’s representation. It is very
common to have about 20% matching rules in each dimension,
because of a large number of zero length (wildcarded) prefixes.
As a result we conclude that ABV is a better solution for multi-
dimensional packet classification.

VII. EVALUATION

In this section we consider how the ABV algorithm can be im-
plemented, and how it performs on both real firewall databases
and synthetically created databases. Note that we need synthet-
ically created databases to test the scalability of our scheme be-
cause real firewall databases are quite small.

First, we consider the complexity of the preprocessing stage
and the storage requirements of the algorithm. Then, we con-
sider the query performance and we relate it to the performance
of the BV algorithm. The speed measure we use is the worst
case number of memory accesses for search across all possible
packet headers. This number can be computed without con-
sidering all possible packets because packet headers fall into
equivalence classes based on distinct cross products [20]; a dis-
tinct cross-product is a unique combination of longest matching
prefix values for each header field.

Since each packet that has the same cross-product is matched
to the same node (in trie ) for each field , each packet
that has the same cross-product will behave identically in both
the BV and ABV schemes. Thus, it suffices to compute worst
case search times for all possible cross-products. However,
computing all crossproducts for a database of 20 000 rules
took 6 hours on a modern SPARC. We improved the testing
algorithm from hours to minutes using a clever idea used in
the RFC scheme [11] to equivalence cross-products while
computing crossproducts pairwise. Note that these large times
are the times required to certify the worst case behavior of our
algorithm, not the time for a search.

We have seen that false matches can cause our ABV algo-
rithm (in theory) to have a poorer worst behavior than BV. How-
ever through our experiments we show that ABV outperforms BV
by more than an order of magnitude on both real life databases
and synthetic databases.

A. ABV Preprocessing

We consider the general case of a dimension classifier.We
build tries , , one for each dimension. Each trie
has two different types of nodes depending if they are associated
or not with valid prefixes. The total number of nodes in the tries
is on the order of , where is the number of entries
in the classifier (i.e., rule database). Two bit vectors are asso-
ciated with each valid prefix node. One bit vector is identical
with the one used in BV scheme and requires
words of data. The second bit vector is the aggregate of the first
one; it contains bits of data which means that it requires

words of memory ( is the size of the
aggregate). Building both bit vectors requires an pass
through the rule database for each valid node of the trie. Thus,
the preprocessing time is .
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Fig. 9. Sizes of the firewall databases we use in the experiments.

One can easily see from here that the memory requirements
for ABV are slightly higher than that of BVS; however for an
aggregate size greater than 32 (e.g., software), ABV differs from
BV by less than 3%, while for an aggregate size of 500 (e.g.,
hardware), it is below 0.2%.

The time required for insertion or the deletion of a rule in
ABV is of the same complexity as BV. This is because the ag-
gregate bit vector is updated each time the associated bit vector
is updated. Note that updates can be expensive because adding
a filter with a prefix can potentially change the bit maps of
several nodes. However, in practice it is rare to see more than a
few bitmaps change, possibly because filter intersection is quite
rare [11]. Thus, incremental update, though slow in the worst
case, is quite fast on the average.

B. Experimental Platform

We used two different types of databases. First we used a set
of four industrial firewall databases. For privacy reasons we are
not allowed to disclose the name of the companies or the actual
databases. Each entry in the database contains a 5-tuple (source
IP prefix, destination IP prefix, source port number(range), des-
tination port number(range), protocol). We call these databases

. The database characteristics are presented in
Fig. 9.

The third and fourth field of the database entries are repre-
sented by either port numbers or range of port numbers. We
convert them to valid prefixes using the technique described in
[20]. The following characteristics have important effects on the
results of our experiments.

1) Most prefixes have either a length of 0 or 32. There are
some prefixes with lengths of 21, 23, 24 and 30.

2) No prefix contains more than four matching subprefixes
for each dimension.

3) The destination and source prefix fields in roughly half
the rules were wildcarded (by contrast, [8] only assumes
at most 20% of the rules have wildcards in their exper-
iments), and roughly half the rules have in the
port number fields. Thus, the amount of overlap within
each dimension was large.

4) No packet matches more than four rules.
The second type of databases are randomly generated two

and five field (sometimes called two- and five-dimensional)
databases using random selection from five publicly available
routing tables ([13]). We used the snapshot of each table taken
on September 12, 2000. An important characteristic of these
tables is the prefix length distribution, described in Fig. 10.

Recall that the problem is to generate a synthetic database
that is larger than our sample industrial databases to test ABV
for scalability. The simplest way to generate a two-dimensional
classifier of size would be to iterate the following step

Fig. 10. Prefix length distribution in the routing tables, September 12, 2000.

times: in each step, we randomly pick a source prefix and a des-
tination prefix from any of the five routing tables. This genera-
tion technique is unrealistic because real routing databases have
at most one prefix of length 0. Thus, simple random genera-
tion is very unlikely to generate rules with zero length prefixes,
whereas zero length prefixes are very common in real firewall
rule databases.

For more realistic modeling, we also allow a controlled in-
jection of rules with zero length prefixes, where the injection is
controlled by a parameter that determines the percentage of zero
length prefixes. For example, if the parameter specifies that 20%
of the rules have a zero length prefix, then in selecting a source
or destination field for a rule, we first pick a random number be-
tween 0 and 1; if the number is less than 0.2 we simply return
the zero length prefix; else, we pick a prefix randomly from the
specified routing table.

A similar construction technique is also used in [8] though
they limit wild card injection to 20%, while our experiments
have used up to 50% wild card injection. [8] also uses another
technique based on extracting all pairs of source-destination
prefixes from traces and using these as filters. They show that
the two methods differ considerably with the random selection
method providing better results because the trace method pro-
duces more overlapping prefix pairs. However, rather than using
an ad hoc trace, we prefer to stress ABV further by adding a
controlled injection of groups of prefixes that share a common
prefix to produce more overlapping prefix pairs.

When we inject a large amount of zero length prefixes and
subprefixes, we find that ABV without rearrangement begins
to do quite poorly, a partial confirmation that we are stressing
the algorithm. Fortunately, ABV with rearrangement still does
very well. Finally, we did some limited testing on synthetic five-
dimensional databases. We generated the source and destination
fields of rules as in the synthetic two-dimensional case; for the
remaining fields (e.g., ports) we picked port numbers randomly
according to the distribution found in our larger real database.
Once again, we find that ABV scales very well compared to BV.

C. Performance Evaluation on Industrial Firewall Databases

We experimentally evaluate ABV algorithm on four industrial
firewall databases described in Fig. 9. The rules in the databases
are converted into prefix format using the technique described in
[17]. The memory space that is used by each of them can be esti-
mated based on the number of nodes in the tries, and the number
of nodes associated with valid prefixes. We provide these values
in Fig. 11. A node associated with a valid prefix carries a bit
vector of size equal to words and an aggregate bit vector
of size words. We used a word size equal to 32;
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Fig. 11. Total number of nodes in the tries and the total number of nodes
associated with valid prefixes for the industrial firewall databases.

Fig. 12. Total number of memory accesses in the worst case scenario for the
industrial firewall databases. Several cases are considered: databases with no
rule rearrangement, databases sorted on one field only, and databases sorted on
two fields.

we also set the size of the aggregate to 32. We used only one
level of aggregation in this experiment.

Our performance results are summarized in Fig. 12. We con-
sider the number of memory accesses required by the ABV al-
gorithm once the nodes associated with the longest prefix match
are identified in the trie in the worst case scenario. The first stage
of finding the nodes in the tries associated with the longest prefix
matching is identical in both algorithms ABV and BV (and de-
pends on the longest prefix match algorithm used; an estimate
for the fastest algorithms is around three to five memory ac-
cesses per field). Therefore, we do not consider it in our mea-
surements. The size of a memory word is 32 bits for all the ex-
periments we considered.

The results show that ABV without rearrangement outper-
forms BV, with the number of memory accesses being reduced
by a factor of 27% to 54%. By rearranging the elements in the
original database, the performance of ABV can be increased by
further reducing the number of memory accesses by a factor of
40% to 75%. Our results also show that for the databases we
considered it was sufficient to sort the elements using only one
field.

D. Experimental Evaluation on Synthetic Two-Dimensional
Databases

Thus, on real firewall databases our ABV algorithm outper-
forms the BV algorithm. In this section we evaluate how our
algorithm might behave with larger classifiers. Thus, we are
forced to synthetically generate larger databases, while injecting
a controlled number of zero length prefixes as well as a number
of prefixes that have subprefixes. As described earlier, we create
our synthetic two-dimensional database of prefixes from pub-
lically available routing tables [13] whose characteristics are
listed in Fig. 10. We show results for databases generated using
MAE-EAST routing table. The results for databases generated
using the other routing tables are similar and are not reproduced
here.

Effect of Zero-Length Prefixes: We first consider the effect
of prefixes of length zero on the worst case number of memory
accesses. Entries containing prefixes of length zero are ran-
domly generated as described earlier. The results are displayed

in Fig. 13. The presence of prefixes of length zero randomly
distributed through the entire database has a heavy impact on
the number of memory accesses. If there are no prefixes of
length zero in our synthetic database, the number of memory
accesses for a query using ABV scheme is a factor of 8 to 27
times less than the BV scheme.

However, by inserting around 20% worth of prefixes of
length zero in the database we found that the ABV scheme
(without rearrangement) needed to read all the words from
both the aggregate and the bit vector; in such a scenario, clearly
the BV scheme does better by a small amount. Fortunately, by
sorting the entries in the database using the technique described
in Section V.B, the number of memory accesses for the worst
case scenario for ABV scheme is reduced to values close to
the values of a database (of the same size) without prefixes
of length zero. Note that the sorted ABV scheme reduces the
number of memory accesses by more than 20 compared to the
BV scheme, with the difference growing larger as the database
size gets larger.

Fig. 14 graphs the distribution of the number of memory
accesses as a function of number of entries in the synthetic data-
base. The databases are generated using randomly picked pre-
fixes from the MAE-East routing table, and by random injec-
tion of prefixes of length zero. The line with stars represents the
linear scaling of the Lucent (BV) scheme. Notice that unsorted
ABV with more than 20% injection of zero length prefixes has
slightly worse overhead than the BV scheme. However, the over-
head of the sorted ABV scheme with up to 50% zero length in-
jection (see the bottom lines) appears to increase very slowly,
possibly indicating logarithmic scaling.

Injecting Subprefixes: A second feature which directly af-
fects the overall performance of our algorithm is the presence of
entries having prefixes which share common subprefixes. These
prefix groups effectively create subtries whose root is is the
longest common subprefix of the group. Let be the depth
of the subtrie, and consider a filter database with dimensions.
It is not hard to see that if we wish to stress the algorithm, we
need to increase . How do we generate a synthetic database
for a given value of ?

To do so, we first extract a set of 20 prefixes having length
equal to 24. We call this set . is chosen so no two elements
in share the same 16 – bit prefix. In the second step, for each
element in we insert eight other elements with prefix length
in the range . These elements are subprefixes
of the element in .

We generate the filter database by randomly picking prefixes
from both the routing table and from the newly created set .
We can control the rate with which elements from are in-
serted in the filter database. We measure the effect of different
tries heights as well as the effect of having different ratios of
such elements. The results are displayed in Figs. 15, 16, and 18.
For example, Fig. 18 compares the linear scaling of the Lucent
(BV) scheme to the sorted ABV scheme. The figure shows that
when the percentage of subprefixes sharing a common prefixes
increases to very large values, the overhead of ABV also in-
creases, though much more slowly than the BV scheme.

The tables show that, at least for a model of random inser-
tion, the height does not have a large impact on the number
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Fig. 13. Worst case total number of memory accesses for synthetic two-dimensional databases of various sizes, with a variable percentage of zero prefixes. The
databases were generated using the MAE-EAST routing table [13].

Fig. 14. Number of memory accesses as a function of the number of database
entries. The ABV scheme outperforms the BV scheme by a factor greater than
20 on a sorted synthetic database having prefixes of length zero randomly
inserted. The synthetic databases were generated using the MAE-EAST routing
table [13].

of false matches. A slight increase in this number can be seen
only when there are about 90% of such elements inserted in
the measured database. We consider next the ratio of such el-
ements to the total number of prefixes in the database. Their
impact on the total number of memory accesses is lower than
the impact of prefixes of length zero. When their percentage
is roughly 50%, the number of memory accesses using the
ABV algorithm (without sorting) is about 10 times lower than
the number of memory accesses using the BV algorithm. This
number is again improved by a factor of about 30% by sorting
the original database. These numbers were for a database with

entries.
1) Evaluating ABV With Different Word Sizes: Our measure-

ments until now have compared ABV versus BV using a word
size equal to 32 bits. However, in hardware the clear power of
BV is using a larger word size of up to 1000 bits using a wide
internal bus. We analyzed the worst case scenario for both ABV
and BV using different word sizes between 128 and 1024 bits.
In all cases ABV outperformed BV. The results for a 20 000
rules two-dimensional synthetic generated database are given
in Fig. 17. However, it is interesting that the worst case gain
of ABV over BV seems to decrease from a factor of nearly ten
(using 128 bit words) to a factor of two (using 1024 bit words).
This makes intuitive sense because with larger bitmaps more
bits can be read in a single memory access. We suspect that with
larger word sizes one would see larger gains only when using
larger rule databases.

2) Evaluating ABV With Two Levels of Aggregation: So
far our version of ABV for two-dimensional databases has
used only one level of aggregation. Even for a 32 000 rule
database, we would use an aggregate bit vector of length equal
to . However, if only a few bits are set in
such an aggregate vector, it is a waste of time to scan all 1000
bits. The natural solution, for aggregate bit vectors greater than

(1024 in our example), is to use a second level of hierarchy.
With , a second level can handle rule databases of size
equal to . Since this approaches the limits of the
largest database that we can test (for worst case performance),
we could not examine the use of any more levels of aggregation.

To see whether two levels provides any benefit versus using
one level only, we simulated the behavior of the two-level ABV
algorithm on our larger synthetic databases. (It makes no sense
to compare the performance of two levels versus one level for
our small industrial databases.). For lack of space, in Fig. 19 we
only compare the performance of two versus one level ABV on
synthetic databases (of sizes 5000, 10 000, and 20 000) gener-
ated from MAE-EAST by injecting 0% to 50% prefixes of zero
length. In all cases we use the ABV algorithm with rearrange-
ment (i.e., the best case for both one and two levels).

The results show that using an extra level of aggregation re-
duces the worst number of memory accesses by 60% for the
largest databases. For the smallest database (5000) the improve-
ment is marginal, which accords with our intuition — although
the algorithm does not touch as many leaf bits for the database
of size 5000, this gain is offset by the need to read another level
of aggregate bits. However, at a database size of 10 000 there
is a clear gain. The results suggest that the number of memory
accesses for a general multilevel ABV can scale logarithmically
with the size of the rule database, allowing potentially very large
databases.

E. Performance Evaluation Using Synthetic Five-Dimensional
Databases

So far we have tested scalability only on randomly gener-
ated two-dimensional databases. However, there are existing
schemes such as grid-of-tries and FIS trees that also scale well
for this special case. Thus, in this section we briefly describe
results of our tests for synthetic five-dimensional databases.

The industrial firewall databases we use have a maximum size
of 1640 rules, making them infeasible for scalability tests. To
avoid this limitation, we generated synthetic five-dimensional
databases using the IP prefix addresses from MAE-EAST as in
the two-dimensional case, and port number ranges and protocol
fields using the distributions of values and ranges found in the
industrial firewall databases.
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Fig. 15. Worst case total number of memory accesses for synthetic two-dimensional databases having injected a variable percentage of elements which share a
common subprefix. The databases are not sorted.W is is the depth of the subtrie created by these elements. The values belowW denote the percentage of injection.
The values labeled by BV estimate the number of memory accesses using the BV scheme. All the other values are associated with the ABV scheme. The synthetic
databases were generated using the MAE-EAST routing table [13].

Fig. 16. Worst case total number of memory accesses for synthetic two-dimensional databases having injected a variable percentage of elements which share a
common subprefix. The databases are sorted.W is the depth of the subtrie created by these elements. The values belowW denote the percentage of injection. All
the values are associated with the ABV scheme. The synthetic databases were generated using the MAE-EAST routing table [13].

Fig. 17. ABV versus BV scheme for a two-dimensional synthetic generated
database with 20 000 rules. The synthetic database was generated using the
MAE-EAST routing table. We consider an aggregate size of 32, and different
word sizes between 128 and 1024 bits.

Fig. 18. Number of memory accesses as a function of the number of database
entries. Synthetic databases generated using MAE-EAST routing table and by
randomly inserting group of elements which are sharing a common subprefix.
W = 6 is the depth of the subtrie created by these elements. The percentage of
subprefixes injected varies from 0 to 90%. The ABV scheme outperforms the
BV scheme by a factor of 2 to 7 if the databases are sorted.

Our results are shown in Fig. 20. The ABV scheme outper-
forms the BV scheme by more than one order of magnitude. The
only results we have shown use no wildcard injection. The re-
sults for larger wildcard injections are similar to before (though
sorting on multiple fields appears to be even more crucial). Note
that for a five-dimensional database with 21 226 rules the Lucent
(BV) scheme required 3320 memory accesses while ABV with
an aggregation size of 32 required only 140 memory accesses.

VIII. CONCLUSIONS

While the Lucent BV scheme [14] is fundamentally an
( ) scheme, the use of an initial projection step allows
the scheme to work with compact bitmaps. Taken together
with memory locality, the scheme allows a nice hardware or
software implementation. However, the scheme only scales to
medium size databases.

Our paper introduces the notions of aggregation and rule re-
arrangement to make the Lucent BV scheme more scalable, cre-
ating what we call the ABV scheme. The resulting ABV scheme
is at least an order of magnitude faster than the BV scheme on all
tests that we performed. The ABV scheme appears to be equally
simple to implement in hardware or software. In hardware, the
initial searches on the individual tries can be pipelined with the
remainder of the search through the bitmaps. The searches in
the levels of the bitmap hierarchy can also be pipelined.

In comparing the two heuristics we used, aggregation by it-
self is not powerful enough. For example, for large syntheti-
cally generated databases with 20% of the rules containing zero
length prefixes, the performance of ABV without rearrangement
grew to be slightly worse than BV. However, the addition of
sorting again made ABV faster than BV by an order of magni-
tude. A similar effect was found for injecting subprefixes. How-
ever, a more precise statement of the conditions under which
ABV does well is needed.

We evaluated our implementation on both industrial firewall
databases and synthetically generated databases. We stressed
ABV by injecting prefixes that appear to cause bad behavior.
Using only 32-bit memory accesses, we were able to do
packet classification in a 20 000 rule random two-dimensional
databases (with almost half the entries being wild cards) using
20 accesses using two levels of hierarchy. By contrast, the
Lucent algorithm took 1250 memory accesses on the same
database. Similarly, for a random five-dimensional database
of 20 000 rules the Lucent scheme required 3320 memory ac-
cesses while ABV with one level of hierarchy required only 140
memory accesses. Taken together with wider memory accesses
possible using either cache lines in software or wide busses
in hardware, we believe our algorithm should have sufficient
speed for OC-48 links even for large databases using SRAM.
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Fig. 19. Number of memory accesses for the ABV algorithm with one and two levels of aggregation. The databases are sorted and are generated using the
MAE-EAST routing table [13] using various percentages of wildcard injection and various sizes.

Fig. 20. ABV versus BV scheme for five-dimensional synthetically generated
databases. The synthetic databases were generated using the MAE-EAST
routing table, and using port number ranges and protocol numbers from the
industrial firewall databases. All results use an aggregate size of 32.

While most of the paper used only one level of hierarchy, we
also implemented a two-level hierarchy for the large syntheti-
cally generated databases. The second level of hierarchy does
improve the number of memory accesses for large classifiers,
which suggests that the scaling of ABV is indeed logarithmic.
It also suggests that ABV is potentially useful for the very large
classifiers that may be necessary to support such applications
as DiffServ and content-based Load Balancing that are already
being deployed.

Finally, the use of aggregate bitmaps may be useful in
other networking and system contexts as well. For example,
the select() mechanism in UNIX works well for small scale
applications, but does not scale to the large number of file
descriptors used by large web servers or proxies [2]. One
reason for the poor performance of select() is that on each call
the application must inform the operating system kernel about
the set of descriptors of interest, where the set is encoded using
bitmaps. For a large number of descriptors, searching through
the bitmap for set bits can be time consuming. Aggregate
bitmaps may reduce search and copy times.
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