IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 1, FEBRUARY 2007

On Scalable Attack Detection in the Network

Ramana Rao Kompella, Student Member, IEEE, Sumeet Singh, and George Varghese, Member, IEEE

Abstract—Current intrusion detection and prevention systems
seek to detect a wide class of network intrusions (e.g., DoS attacks,
worms, port scans) at network vantage points. Unfortunately,
even today, many IDS systems we know of keep per-connection
or per-flow state to detect malicious TCP flows. Thus, it is hardly
surprising that these IDS systems have not scaled to multi-gigabit
speeds. By contrast, both router lookups and fair queuing have
scaled to high speeds using aggregation via prefix lookups or
DiffServ. Thus, in this paper, we initiate research into the question
as to whether one can detect attacks without keeping per-flow
state. We will show that such aggregation, while making fast im-
plementations possible, immediately causes two problems. First,
aggregation can cause behavioral aliasing where, for example,
good behaviors can aggregate to look like bad behaviors. Second,
aggregated schemes are susceptible to spoofing by which the
intruder sends attacks that have appropriate aggregate behavior.
We examine a wide variety of DoS and scanning attacks and
show that several categories (bandwidth based, claim-and-hold,
port-scanning) can be scalably detected. In addition to existing
approaches for scalable attack detection, we propose a novel data
structure called partial completion filters (PCFs) that can detect
claim-and-hold attacks scalably in the network. We analyze PCFs
both analytically and using experiments on real network traces to
demonstrate how we can tune PCFs to achieve extremely low false
positive and false negative probabilities.

Index Terms—Data structures, denial of service, network at-
tacks, routers, scanning, streaming algorithms, Syn flooding.

I. INTRODUCTION

HILE the very success of the Internet is due to its open

model in which any computer can send to any other com-
puter, this openness also allows attackers to send malicious mes-
sages that can cause damage to other hosts and networks, some-
times at great cost. Thus, the field of network security has sprung
up in an attempt to prevent or mitigate attacks against campus,
enterprise, and ISP networks.

The earliest network security solutions attempted to secure
Internet hosts using anti-virus software running at end-nodes,
and firewalls installed at network vantage points (or, more re-
cently, at hosts themselves). Unfortunately, end-node based ap-
proaches must be widely deployed within a network to pro-
tect against attacks. They also do very little to mitigate band-
width attacks that may be blocked at the end-nodes but con-
sume so much internal network bandwidth that the network is
unusable. Similarly, most distributed denial-of-service (DDoS)

Manuscript received April 19, 2005; revised November 4, 2005; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor D. Yau.

The authors are with the Department of Computer Science, University of Cal-
ifornia at San Diego, La Jolla, CA 92093 USA (e-mail: ramana@cs.ucsd.edu;
susingh@cs.ucsd.edu; varghese@cs.ucsd.edu).

Digital Object Identifier 10.1109/TNET.2006.890115

attacks and scans routinely penetrate firewalls using essential
services such as HTTP or e-mail.

For these reasons, a number of researchers and vendors
have suggested perimeter defenses that sit at the entrance to
networks or subnets. Besides firewalls, a traditional approach
has been to do intrusion detection (and sometimes mitigation)
at such points. Two classical approaches to intrusion detection
have been anomaly detection and signature detection. Sig-
nature detection [1] is useful to detect an important class of
attacks (e.g., known worms and viruses) but is not helpful in
detecting other attacks (e.g., scans, DDoS attacks) which are
not characterized by a signature within a single packet, but
by unusual behavior across a set of packets. In this paper, we
concentrate on detecting and mitigating such attacks (that can
only be detected by behavior across a set of packets) at network
vantage points.

While anomaly detection also targets such attacks [2],
anomaly based detection is often very general, and works by
first automatically identifying a baseline for “normal” network
behavior (using, say, wavelets [2] or change point detection
[3]) and then flagging deviations from such behaviors as pos-
sible attacks. A difficulty with the most general approaches
is establishing normal behaviors because most network traffic
behaviors evolve in unpredictable ways.

Network based behavioral approaches: A simpler (but less
general) approach to anomaly detection is to look for viola-
tions of specific behaviors, where a description of the bad be-
haviors has been preprogrammed into the detection device. In
this paper, we will refer to such techniques as network based
behavioral approaches. Such approaches have been widely de-
ployed ([4]-[9]). To be effective, anomaly detection must run
at a network vantage point where it sees a lot of traffic. A min-
imal deployment would be at the edge of a subnet; a more useful
deployment would be at the entrance to a network; a potential
future deployment would be within ISPs. Notice that for some
attacks such as DoS, it is helpful to detect the attack as upstream
in the attack path as possible, to reduce the collateral damage
caused to innocent sources that share the attack path until the
detection device.!

Running a detection device at the edge of a network requires
that the detection device operate at link speeds of 1 Gb/s and
higher. Such positions also expose the detection system to a
larger number of flows making it more difficult. But most cur-
rent behavioral based approaches do maintain per-flow state. For
example to detect port scans, Snort maintains a large vector per
source to count all the ports and destinations each source talks
to. Not only does this plugin take a large amount of space, but it

'While this might argue for moving detection close to sources, this does not
work well either because often we have little control over rogue sources and
their networks.

1063-6692/$25.00 © 2007 IEEE

KOMPELLA et al.: ON SCALABLE ATTACK DETECTION IN THE NETWORK

also slows down the Snort code considerably when it is enabled.
Bro [10] also maintains per-flow state in order to detect evasion
and other attacks. Similar observations hold for many other ap-
proaches to detecting DDoS [9].

To meet the speed challenge, several vendors (e.g.,
NetScreen, Fortinet) and researchers are implementing de-
tection in hardware. While signature detection is being done
in hardware, it has proved difficult to speed up network based
behavioral approaches.

Scalable attack detection: The main question we examine in
this paper is whether it is possible to scale behavioral network
detection to very high speeds. To begin to grapple with this ques-
tion, it is instructive to consider other network functions that
have been made to be scalable. Both in the case of IP lookups
and network QoS, scalability has been achieved via aggregation
to reduce the state used by the function so as to fit into high
speed memory. For example, Internet lookups in routers use
prefix aggregation to store around 150 000 prefixes for the en-
tire Internet. Similarly, DiffServ uses class aggregation to avoid
per-flow state in core routers.

Aggregation helps with forwarding performance for the
following reasons. First, the number of connections/flows
at network vantage points can easily scale into the millions,
and this does not scale with the increases in the size of high
speed memory. Second, the highest speed memories (on-chip
and off-chip SRAM or cache) scale far more slowly than the
number of flows.

Thus we ask: can we use aggregation to reduce the state re-
quired for behavioral attack detection? While several types of
attacks (e.g., evasion, TCP hijacking) have been proved to be
impossible to detect in a scalable fashion [11], we will show in
this paper that under some minimal assumptions, scan detection
and DDoS detection (and perhaps several others) can indeed be
detected scalably using aggregation.

The use of aggregation for scalable attack detection immedi-
ately creates two fundamental problems:

* Behavioral aliasing: One form of behavioral aliasing oc-
curs when a set of well behaved connections aggregate to
look like bad behavior, creating a false positive. For ex-
ample, when detecting a port scan, if we aggregate several
sources into an aggregate, while each source may talk to
only a few distinct destinations, the aggregate may look
like it is talking to lots of destinations. A rigorous argu-
ment [11] can be based on this intuition to show that at-
tempts to scalably detect port scans using such a predicate
do not work. A second form of behavioral aliasing occurs
when the aggregate behavior of several badly behaved con-
nections looks like good behavior—a false negative.

* Spoofing: Spoofing occurs when an intelligent attacker
subverts the detection mechanisms by suitably spoofing
the attack to appear benign. For example, the SYN-DOG
approach to syn-flood detection [9] does a first level of ag-
gregation by keeping state only on a per-destination basis
(not sufficient, but a good start) for the difference between
SYNs and FINs going to each destination. Such a scheme
can always be spoofed by the attacker sending spurious
FINs that do not serve to finish any active connection but
only confuse the detection mechanism.

15

We believe that any scalable intrusion detection mechanism
must deal with these two issues. Thus, the contributions of this
paper are as follows.

1) Framework: Our paper initiates the study of scalable at-
tack detection schemes. We use behavioral aliasing and
spoofing as a framework to analyze such techniques.

2) Technique: As a specific example, we focus on scalable
DDoS and scan detection, and propose a specific new scal-
able technique called partial completion filters (PCFs). We
analyze behavioral aliasing and spoofing characteristics of
PCFs in different deployment scenarios.

3) Evaluation: To evaluate the efficacy of PCFs, we use a
theoretical model later validated by real traces from two
different ISPs. For example, in an OC-48 traffic trace for
an entire day, we were able to identify about 517 attack
flows out of a total of 30.36 million flows over the entire
trace period.

The rest of this paper is organized as follows. In Section 1I,
we describe the kind of scanning and DoS attacks, called partial
completion attacks, we consider in this paper. Section III in-
troduces a scalable mechanism, PCFs, to detect partial comple-
tion attacks and describe a theoretical analysis that shows why it
is resilient to behavioral aliasing and (in some deployments) to
spoofing. In Section IV, we describe experimental evaluation of
PCFs for scalable monitoring and detection of partial comple-
tion attacks, scanning based attacks. Section V contains imple-
mentation details of PCFs in routers, followed by related work
in Section VI and conclusions in Section VII.

II. ATTACK CLASSIFICATION

We restrict our focus in this paper to analyzing the following
three different types of attacks.

Partial Completion Attacks: Such attacks are also known as
claim-and-hold attacks. The basic theme in these attacks is to
grab a precious resource and not release it thereby denying ser-
vice to legitimate clients. The classic example of a partial com-
pletion attack is syn-flooding. In syn-flooding, the attacker ini-
tiates several connections to the server by sending TCP SYN
packets with spoofed IP addresses and never terminates any of
these connections. In a variant called Naptha [12], the attacker
initiates a connection and finishes the initial three way hand-
shake, but does not do any further activity forcing the connection
to time out. In both these attacks, we can see that the precious
resource namely, connection memory, is claimed but never re-
leased.

Attacks That Do Scanning: Host scanning represents an im-
portant component of several attacks including most worm epi-
demics? [4], [13], [14]. Thus, several recent worms such as Code
Red-II [16], Nimda [17], etc., propagated by scanning other vul-
nerable hosts in the Internet. A second example is probing for
backdoors installed on various machines either installed during
worm infection or by other means such as viruses. Such activity
also exhibits scanning behavior. Finally, horizontal (multiple
hosts and same port) and vertical (one machine, multiple ports)

2Note that there exist worms that spread through other means and hence do
not exhibit scanning; for example, MyDoom spread through e-mail and a Kazaa
vector [15].

port scans are often performed by attackers as preliminary re-
connaissance to identify a large number of vulnerable hosts in
the Internet. Henceforth, we refer to these myriad activities as
just scanning.

Bandwidth Attacks: Finally, the third kind of attacks we dis-
cuss in this paper are what are commonly called bandwidth at-
tacks. In such attacks, an attacker or a set of compromised slaves
(zombies), continuously pound a victim with a large number of
packets, crippling normal services. In other such attacks, the at-
tacker can take advantage of other machines to amplify the mag-
nitude of traffic directed towards a particular destination. Smurf
[18], fraggle, and reflector attacks [19] fall into this category.
The common theme in all such attacks is huge traffic volume.

III. DETECTION OF TCP SCANS AND PARTIAL
COMPLETION ATTACKS

It is fairly immediate to see that bandwidth attacks have
scalable solutions using existing techniques such as MULTOPS
[20], sketches [21], [22], multistage filters [23], and tools such
as Autofocus [24]. On the other hand, these techniques do not
work well to detect TCP flood attacks since the traffic volume
of SYNs (especially early in the attack tree) may not be large
enough compared to the volume of benign traffic. Sampling
[23], [25] works best for bandwidth attacks because an attack
with a large traffic footprint is more likely to be sampled.
However, it is not at all clear how sampling can be used to
detect partial completion and scan-based attacks which have
much smaller traffic footprints. Given the importance of these
low traffic attacks, in this section we introduce a new data
structure—partial completion filters (PCFs) that can detect
both scanning attacks and partial completion attacks even when
they correspond to small traffic volumes.

A. PFartial Completion Filters: Algorithm

Partial completion filters identify flows with high imbalance
between two types of control packets that are usually balanced.
For example, benign TCP connections consist of equal number
of SYN and FIN packets—PCFs can be used to detect SYN-
flooding that involves transmitting only SYN packets (and hence
high imbalance between SYNs and FINs).

PCF data structure consists of parallel stages each containing
a set of counters. Packets are hashed based on the header fields
using multiple independent hash functions (Fig. 1) and counters
indexed by these hash functions are incremented/decremented
for the two types of control packets. If all the counters indexed
by the hashes of a packet are above a particular threshold (ex-
hibiting high imbalance), the flow is output. At the end of a mea-
surement interval, these counters are all reset.

The expected value of these counters is zero if there are equal
number of SYN/FIN packets in a given flow. However the stan-
dard deviationis O(v/N) after N packets. Thus, a benign bucket
may have fairly large positive counters (causing false positives)
while a bucket containing an attack may be be pulled down to
zero (causing a false negative). The tricky part is to show that
both false negatives and false positives stay within control for
reasonable parameter values.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 1, FEBRUARY 2007

Increment for a SYN
/ Decrement for a FIN

Greater than Threshold
Comparator

[LT T A 1]

Comparator

LA 111 11]
Comparator

MULTI STAGE PCFs
MAINTAIN PARTIAL COMPLETION COUNT
PER HASH BUCKET

Extraction of various Fields
for Hash Generation

/

Extraction

Hash
Functions

All Stages indicate
Counter Value greater
Than Threshold

Fig. 1. Partial completion filters.

One might hastily conclude that PCFs are the same as multi-
stage filters first proposed in [23] to detect heavy-hitter flows in
the network. This is not true for the following three reasons:

1) Non-monotonicity: In multistage filters (and in fact in all
Bloom filter [26] variants), the counters are only incre-
mented and never allowed to be negative.

2) False negatives: Bloom filters and multistage filters have
only one-sided errors; there are no false negatives. Unfor-
tunately, since PCFs allow counters to decrease, they can
cause false negatives.

3) Different analysis: The analysis of PCFs using the Central
Limit theorem (Section III-B) is very different from the
simple counting argument for multistage filters.

Also, the design of a PCF reflects a delicate balance between
false positive and false negative rates. For instance, using more
than three stages is almost always a bad idea for PCF while it is
always a good idea for multistage filters.

B. Behavioral Aliasing in PCFs

In this section, we provide a theoretical analysis that allows
us to predict the behavior of as well as tune PCFs in real network
settings. The analysis is in three parts. In Part 1, we will use the
Central Limit Theorem and tail bounds on Gaussian distribu-
tions to bound the false negative and false positive probabilities,
which in turn determines the operating range of PCFs. In Part 2,
we identify how to use PCFs to detect flows that greater than a
given threshold. Finally, in Part 3, we analyze the false positives
and false negatives in the presence of other bad flows.

Before we proceed, note that if a flow begins and ends in a
given measurement interval, then the contribution of that flow
to the counters would be 0. However, due to the presence of in-
tervals, there can be benign but malformed connections. First,
a connection may be long-lived, in which case it contributes its
SYN to one measurement interval, and its FIN to another mea-
surement interval. Second, a connection may retransmit its FIN.
However, as a first-order approximation, we can assume that
a connection is equally likely to retransmit its SYN. In prac-
tice, TCP has a built-in asymmetry that makes SYN retransmis-
sions happen slightly more often than that of FIN retransmis-

KOMPELLA et al.: ON SCALABLE ATTACK DETECTION IN THE NETWORK

sions. After using our first-order model (with equal retransmis-
sion probabilities), we show how this small bias can easily be
corrected for in Section IV-A. Third, route churn may cause the
SYN to be seen but not the FIN, but in that case, during another
interval due to another route churn, it might see the FIN but
not the SYN. On average, a set of measurement intervals should
be able to smooth out this noise. In [27], the authors have ex-
perimentally verified that the routes are stable on the scale of
a few minutes. So, we believe that the noise generated due to
route churn is not really significant. Nevertheless, our analyt-
ical model captures this effect as well. In all these cases, we can
simply assume that in a given measurement interval, the proba-
bility of a SYN or a FIN is 0.5.

Part 1, Estimating Noise Range of PCFs: Without loss of
generality, since the counters are chosen at random, let us con-
sider one particular counter and a particular measurement in-
terval. Let X; represent the random variable that represents the
value added to the counter in the sth trial. X; is 1 with proba-
bility 0.5 and is —1 with same probability. The expectation of
X, say p is 0, and standard deviation o is 1. After n trials, we
are interested in what the final value of X = """/ X; is. This
represents the current counter value assuming that the counter
started at zero. In the case of SYN-FIN correlation, this number
represents the number of excess SYNs or FINs that have arrived
for this bucket.

The exact distribution for counter values follows a binomial
for which it is difficult to estimate tail probabilities in closed
form. Fortunately, for sufficiently large values of n,3 the Cen-
tral Limit Theorem assures us that the binomial distribution can
be approximated using a Normal distribution. Thus, we can use
cookbook Normal tables to obtain confidence bounds on the
probability that the counter value is above a particular threshold.
fxX=>%",X;

X—n-p

Y L
Prla< 2" P<p| = — =24y,
rla< T _b} m/ﬂe dz

And if we choose a = —3, b = 3, also, u = 0, 0 = 1, then
Pr[|X| < 3y/n] = 0.9987.

Note that these bounds can be found in statistical tables for
Z-ratios (e.g., [28]). Therefore, counters of buckets containing
only unattacked destinations should approximately lie within
3 times the standard deviation times y/n. For example, in a
measurement interval suppose there are 10 million SYN/FIN
packets. Also, let the number of buckets be 3000. The expected
number of trials per bin would be 10 million divided by 3000
which is approximately 3300, i.e, n = 3300.

From the above probability calculation, the probability that
the counter value is less than 3 - v/3300 = 172 is rather large,
and in fact 0.9987. So, even if all the connections were benign,
the counters can be between —172 and 172 with very high prob-
ability. This determines the operating range of PCFs. Note that
we can build more sensitive PCFs by choosing a larger number

3And for reasonably large measurement intervals on real traffic, n is indeed
large enough.

17

of buckets so that the noise range becomes smaller. In fact the
noise range of PCF is inversely proportional to /n, where n is
the number of buckets in PCF.

The probability that a benign flow maps to any counter greater
than the calculated noise of 3¢ is 0.0013. In order to reduce this
even further, we add k parallel stages to the PCF. The proba-
bility that in % stages the counter value is greater than 3500 (as
in the previous example) becomes 0.0013% . For k = 3, the prob-
ability is 2.197 x 10~ which is extremely small. This bounds
the noise range of the filter to 30 with very high probability. An-
other reason to add stages is to reduce the probability of false
positives that occur when an unattacked destination hashes into
a bucket containing an attacked destination (discussed in part 3).

Therefore, if the number of stages increases, the probability
that a benign flow maps to all counters greater than 3o drops
exponentially. However, false negatives, i.e, the probability that
a flow greater than 30 goes undetected increases linearly. This
is because if the flow maps to at least one counter for which the
negative noise cancels out its contribution, it appears benign.
The more stages we use, the more likely it is for the flow to map
to one such counter.

Due to an exponential decrease in the false positive prob-
ability and linear increase in the false negative probability, a
small number of stages can drastically decrease the false posi-
tive probability without causing the false negative probability
go too high. For example, we show later (in Section IV-A) that
choosing 3-4 stages often reduces false positive probability
while keeping false negative probability low enough.

Dynamic setting of threshold T': As we have seen, the noise
range of the filter is dependent on the number of packets in
the given measurement interval. How then can we dynamically
adapt this threshold? There are many ways we can approximate
the exact count of packets in a given interval. One simple way is
to use the count of number of packets in the previous interval as
a means to estimate the threshold. If the traffic does not exhibit
drastic change in different intervals (if the intervals are suitably
small), then this estimate of the threshold remains correct. One
other way to choose this threshold is based on past history of this
particular link. However, if we explicitly set the threshold to a
reasonably large value, as we show in the next part of the anal-
ysis, there would be no need to dynamically adjust the threshold.

Part 2, Using PCFs to Detect Flows Greater Than a
Threshold T': Earlier, we have obtained a theoretical bound
on the noise that PCF counters are susceptible to, even if all
the flows were benign. The noise arising from other benign
flows is additive with that of a malicious flow that hashes to
these buckets. Hence, a flow of size s can hash to buckets that
lie between s — 30, and s + 3o with high probability. Hence,
if we choose the PCF threshold to be T, false negatives (flows
of size greater than 7" are undetected) increases. So, we should
choose the PCF threshold to be at least 17" — 30. However, this
increases the false positives since now, a flow of size T' — 6o
can, due to the positive noise, appear as a malicious flow with
high probability.

From this analysis, we can see that if we are interested in
flows greater than size 7', choosing a threshold value of T' — 3o

allows us to guarantee two properties. First, PCF identifies all
flows with greater than 7" with high probability. Second, if PCF
identifies a flow, the flow is at least of size T' — 60 with high
probability.

Part 3, Estimating False Positives and False Negatives in
the Presence of Attacks: So far, we have analyzed those cases
where we found the false positive and false negative proba-
bility in the presence of one malicious flow. In the presence of a
greater number of attack flows, a subset of the buckets appears
large, increasing the number of false positives. We now estimate
false positives in the presence of a number of attack flows.

For the analysis, let us assume that there are b attack flows. It
is easy to prove that the expected number of buckets to which
these b attack flows hash to is n (1 — (1 — 1/n)®), where n is
the number of buckets. We call such buckets as bad buckets. If
b < mn, this expected number of bad buckets is approximately
b. Any flow, even if it is benign, that hashes to one of these b
buckets in all the three stages is deemed an atfack flow. The
probability that a flow hashes to one of these bad buckets in one
stage is given by b/n. For k stages, the probability is (%) * The
expected false positives now is given by (%) o f where f is the
total number of benign flows, namely the bad flows subtracted
from total flows.

For example, suppose the total number of flows were, say,
250000, out of which 500 of them were genuinely bad flows.
Let us assume that the total number of buckets is 1000 per stage
and there are three stages. The expected number of buckets into
which these 500 bad flows hash to is approximately 394. There-
fore, the expected number of false positives is (394/1000)% x
249500 = 15265. If there were only 100 bad flows, then the
number of false positives is only about 250. As we can see from
this analysis, the number of false positives increases superlin-
early with the number of bad flows. In cases where the number
of bad flows is only around 20, the number of false positives de-
creases to close to one.

A similar analysis applies to false negatives. In the presence
of a reasonable number of flows with larger negative SYN-FIN
differences, some of the buckets become unreasonably small.
Any flow that maps to these buckets would not be detected.
However, this case occurs less often, since SYN packets usu-
ally dominate FIN packets for any flow.

The bottom line from the analysis is that one can tune PCFs
appropriately to obtain reasonably high probabilities of de-
tecting a partial completion attack or a TCP scan, while making
sure there are not too many false positives. Note that despite
the small chance of missing an attack, if several routers in the
attack path are using this scheme, then it is more likely that one
of them will detect the attack.

C. Applying PCFs to Detect Partial Completion and Scanning
Attacks

Notation: We use PCF(A, B, C) to denote a PCF that incre-
ments (decrements) on a TCP packet with flags A (B), and uses
C as the field(s) used to hash the packet.

1. Partial completion detection: For the detection device, the
key abstract behavior that signals a SYN flood to a destination

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 1, FEBRUARY 2007

is the presence of a destination that receives a large number
of SYNs from various sources.# Thus, a PCF(SYN, FIN,
(DIP,DP)) can be used to scalably detect a TCP SYN flood
attack by hashing based on destination IP address, port pairs.

In the network, if we assume that the detection mechanism
cannot see both directions of the traffic, the attacker can easily
spoof the PCF by transmitting an additional FIN packet along
with the SYN packet. We show how to make SYN flood
detection spoof resilient using reverse path deployments in
Section III-D (Section II-E), though this will require an in-
version: the trick is to hash source addresses (as opposed to
destinations) in the reverse path to identify victims. This is
because, without collusion from inside the network, the attacker
cannot force the victim to send FIN packets.

2. TCP scanning detection: At a network vantage point,
during TCP scanning activity such as portscan, a detection de-
vice can observe a large number of SYN packets to a particular
port but with no corresponding FIN packets that correspond to
legal tearing down of the connection.

Therefore, for the detection device the key abstract behavior
that signals a TCP scan is the presence of a source that sends a
large number of SYNSs to various destinations and destination
ports without sending a corresponding FIN. Thus, a PCF(SYN,
FIN, (SIP)) can be used to scalably detect a TCP scan by
hashing based on source IP addresses and zeroing in on such
sources that have a large SYN-FIN imbalance. In the network,
if we assume that the detection mechanism cannot see both
directions of the traffic as we have assumed, then PCF methods
are easily subject to spoofing. One approach is to ignore
spoofing because most attackers employ tools such as NMAP
[29] that do not spoof today; however, we will show how to
make detection spoof-resilient using bidirectional deployments
(in scenarios where we can see both directions of traffic) in
Section III-E. Next, we apply PCFs for scalable monitoring of
partial completion and scanning attacks in the network.

D. Applying PCFs for Attack Monitoring

PCFs can be applied to characterize attack flows in an online
fashion, in contrast to current approaches that rely on passive
traces. Note however that, for the ease of validation, we used real
traces to evaluate PCFs in Section IV. Using PCFs, we can iden-
tify attack flows (sources and destinations using different PCFs
or can be combined into one by hashing each packet twice),
count the estimated size and duration of attacks in a scalable
fashion. We will show in Section IV-B2 our experiences with
PCFs in scalable characterization of attack flows.

As we have seen earlier, PCF(SYN, FIN, (DIP,DP)) based
on destination IP address, port pairs can detect the destinations
under attack in a scalable fashion. We call this the forward path
of the attack since we infer DoS activity based on the attack
packets going towards a victim. PCF(SYN, FIN, (SIP,SP)),
based on source IP address, port pair can be effective in mon-
itoring based on the reverse path of the attack. This follows

“Note that unlike a number of other approaches like backscatter [6] our ap-
proaches work regardless of whether the attacker employs address spoofing.
Thus, we can detect DDoS attacks that use a large army of zombies (increas-
ingly common today) that often use true IP addresses. We can also detect re-
flector attacks, reflector servers use true IP address to the victim since it sends
a response packet to the original request packet.

KOMPELLA et al.: ON SCALABLE ATTACK DETECTION IN THE NETWORK

the fact that a victim under attack generates several SYN-ACK
packets but no corresponding FIN packets. This is because the
connection typically does not get established, and even when it
does, it does not terminate. Together, the forward and reverse
path PCFs can aid in scalable monitoring and characterization
of partial completion based DoS activity with an ISP network
domain. The forward path PCF however is spoofable, but
the reverse path PCF is spoof-resistant as we discuss later in
Section III-E.

Network telescopes [6] based on “backscatter analysis” are
currently employed to infer world-wide DoS activity in a scal-
able fashion. Network telescopes however, cannot detect cer-
tain types of attacks such as those that do not employ random
spoofed source IP addresses. For example, reflector attacks [19]
where a large number of attackers send packets to listening
servers with source IP address spoofed with that of a victim thus
generating a flood of responses from these listening servers di-
rected to victim, cannot be detected using a network telescope.
PCFs on the other hand can easily detect such attacks. A quick
comparison between telescopes and reverse path PCFs is given
below, while actual trace driven comparisons between the two
schemes are presented later in Section IV-B3.

* Reliance on source address spoofing: Network telescopes
can only detect attacks that employ spoofed source ad-
dresses. PCFs, on the other hand, do not depend on this
feature. Thus, PCFs are capable of detecting reflector based
attacks, and other attacks using “zombies” that do not em-
ploy source address spoofing.

* Reliance on TCP: Network telescopes can observe source
address spoofed attacks using a wide variety of protocols
including TCP, UDP, ICMP as opposed to PCFs that are
designed only for TCP.

* Reserved IP space: Network telescopes have an inherent
tradeoff between detection time and the size of the unused
private address space they watch: the larger the space, the
faster the detection. PCFs on the other hand, do not require
any reserved IP space.

* Geographical scope: Network telescopes receive the ag-
gregate traffic sent from any source under attack that uses
address spoofing towards the private IP space reserved for
it. Hence, network telescopes have much wider geograph-
ical scope in contrast to PCFs that have only local scope.

As we can see from the comparison, PCFs can be a viable
and scalable complementary solution for general TCP-imbal-
ance detection that passes through the detection device. It can
be widely deployed without any issues. On the other hand, tele-
scopes are invaluable for the global detection of DoS attacks
(based on fake source addresses) at a few monitoring points. A
combination of network telescopes and PCFs can scalably de-
tect partial completion attacks in the network.

E. Deployment and Spoofability of PCFs

In this section, we apply PCFs to partial completion attacks
and scanning attacks and discuss their spoofability properties.

Partial Completion Detection: Since spoofing is dependent
on the particular instance of deployment, we first discuss briefly
various network deployment options of interest, and discuss the

19

. . PCF DEPLOYMENT

Attacker K OPTIONS
Attacker 1

* (1) SYN/FIN or SYN/SYN-ACK

PCF based on
R2 Destination

Attacker IS @ V

@ SYN/FIN PCF based on
| ’ Destination
& Y

- (3 SYN-ACK/FIN PCF based on

Source
@

1
/E # @ SYN/FIN PCF based on
L . Destination
- @ Y

‘@ Detection
Y Defense

BackScatter.
Path

Victim ISP

Fig. 2. Deployment options.

spoof resistance of each option. Fig. 2 shows these deployment
options.

* Near sources. A PCF(SYN, FIN, (SIP)) can easily iden-
tify those sources that are generating many SYN packets
but no FIN packets. This deployment scenario could po-
tentially be used to monitor sources of attacks. However
this is subject to spoofing using a variety of mechanisms.
Sample spoofing mechanisms include the sending of fake
FIN packets, the use of carefully crafted TTLs for FIN mes-
sages that only crosses the monitor but never reaches the
victim. Attempting to defend against the dazzling variety
of spoofing options is a virtual impossibility; we choose in-
stead to finesse this issue by espousing reverse path PCFs
because it is harder for the attacker to control the reverse
path.

* Qutgoing/incoming edge of an ISP or customer network: A
PCF(SYN, FIN, (DIP,DP)) could be deployed at the edge
of an an ISP network or a large customer network to de-
tect attacks to destinations that originate or are directed to-
wards their domain. This constitutes the forward path of
the attack (which is controlled by the attacker). The at-
tacker can again spoof using either FINs before SYNs, or
using FINs with TTLs that expire early. Note that this par-
ticular spoofability arises from uni-directionality of traffic.
If we assume a bi-directional model, then PCF (incoming
SYN, outgoing FIN, (DIP,DP)) is not spoofable since it is
hard to forge a packet in the opposite direction.

* Qutgoing edge of an ISP or customer network: PCF (SYN,
FIN, (SIP,SP)) can detect destinations in the domain under
attack. This follows the fact that a victim under attack
generates several SYN-ACK packets but no corresponding
FIN packets (since connection is never really established,
even if it did does not terminate). This is spoof-resistant®
since the attacker cannot force the victim to generate a FIN
packet without legally tearing down the connection. We
call this the reverse path of attack. Later in Section IV-B3,

SMore accurately, to spoof this scheme the attacker will need to have ma-
chines under its control in the victim domain that can send fake FIN packets. If
the attacker already has such power, it is unclear why the attacker needs to stop
at simple DoS attacks of victims.

20

we focus on this particular deployment of PCF to scalably
detect backscatter in the network

e Near destinations: This case is similar to that of the in-

coming edge of an ISP or customer network and hence
spoofable in uni-directional but not spoofable in bi-direc-
tional detection model.

Fundamentally, any approach which observes only the for-
ward direction (active SYN-FIN(ACK)) of TCP traffic (as is
often the case in the network) to a particular destination is
susceptible to spoofing. This is because an attacker can always
manufacture packets in the forward path (some of which can
die before they reach the victim via low TTLs etc.) that look
exactly like valid TCP connections.

Scanning Detection: PCF(SYN,FIN, (SIP)) can detect at-
tacks that involve scanning hosts for vulnerabilities. However, a
clever scanning approach can easily spoof the PCF (or any other
full state approach) that only sees one direction of the traffic. On
the other hand, by assuming a bidirectional model (where PCF
sees both directions of traffic, usually true at the edge), we can
scalably detect hosts that are scanning for other hosts.

In the bi-directional model, the PCF increments for the SYN
packet going out and a FIN packet coming in to detect scan-
ners inside the network. In order to detect a scanner outside
the network, PCF correlates between in-bound SYN packet and
out-bound FIN packet. Note that this deployment of PCF is not
susceptible to spoofing since, the originator of the scan cannot
force a non-existent host to generate a FIN packet in the oppo-
site direction. Similarly, PCF(SYN, FIN, (SIP, DP)) can detect
horizontal scans for specific ports in a scalable fashion too and
can be made spoof-resistant.

IV. MEASUREMENT ON REAL TRACES

We evaluated PCFs on a set of real traces that belongs to two
ISPs, ISP-A and B, we obtained from CAIDA [30]. The traces
are named ISP-A Dir-0, ISP-A Dir-1, ISP-B Dir-0, ISP-B Dir-1
corresponding to two different directions of traffic. All these
links have OC-48 capacity.

The main aim of these experiments is two-fold. First, we want
to validate the theoretical analysis of PCFs when applied in real
settings; any deviations from analysis can be used to tune and
modify PCFs. Second, we want to gather experience using PCFs
to scalably detect attacks (in the categories we restricted our-
selves to earlier) on real network traces.

We use the following terminology throughout the evaluation
section. First, a “flow” is any unique tuple over a subset of packet
contents. For example, if the aggregation is over fields SIP and
SP, all packets that bear (say) (192.168.10.1, 80) as the source
IP, port pairs (perhaps with different destination IP addresses
or ports) is termed a flow. Note that the word flow in the usual
sense is often referred to as the 5-tuple; for the lack of a better
word, we used this somewhat loaded term in a different way.

A flow is said to be correctly identified if both the full-state
approach and PCFs identify that the flow has a value greater than
the threshold. A flow on the other hand is a false positive if PCF
indicates that the flow has a value greater than the threshold but
using the full-state approach we find that the flow does not have
a value greater than the threshold. Similarly, a false negative

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 1, FEBRUARY 2007

refers to those flows that have not been identified using PCFs
but were detected using a full-state approach.

A. PFart I: Validation and Tuning of the Model

Recall our assumption that the probability of a SYN and FIN
is equal to 0.5. How accurate is it really? There are a set of
issues that warrant adjustment to the model. In this section, we
briefly discuss these issues and discuss how to correctly adjust
the behavior of PCFs for real traffic.

In the first part of our results, we validate and tune the model
to possible deviations from these assumptions. These poten-
tial idiosyncrasies in real traffic determines the operating range
and usefulness of PCFs. Unless explicitly stated otherwise, we
used a measurement interval of one minute, and used a total of
5000 buckets for our evaluations. Since attack detection time is
directly dependent on the measurement interval, we choose a
minute for the measurement interval. The number of buckets is
usually dependent on the memory constraints on the router. To
implement PCFs with 5000 buckets and three stages, we need
about 480 Kbits of memory, that can be easily accommodated
in today’s routers.

Q1. How does the asymmetry between SYNs and FINs affect
the results? In the theoretical model, we assumed that the ex-
pected value of each counter is O since the packet can be a SYN
or a FIN with equal probability. However, in reality, this is not
true. The expected value of the counters is close to zero but not
quite zero. This is primarily due to the fact that there are poten-
tially a larger number of SYN retransmissions than that of FIN
retransmissions in a connection. This is plausibly because the
round-trip delay has not been calculated when a SYN is sent (as
opposed to a fairly accurate value when the FIN is sent); thus
estimates that are too low will lead to more unnecessary SYN
retransmissions.

Also, note that some connections are torn down by RSTs as
opposed to FIN packets. One way to take into account this bias is
to decrement for the RSTs along with FINs. We decided how-
ever to capture all these effects into a single parameter called
“bias”. This positive bias accounts for all irregularities that arise
from SYN-FIN differences and can be appropriately set. The
problem with this positive bias is that, even a reasonable number
of these flows with the positive bias can now aggregate to look
like a bad bucket. Hence, in actual practice, the mean g has to be
set to a positive value. The analysis however remains the same,
except that the threshold for detection has to be tuned based on
the positive bias.

Fig. 3(a) shows the number of (DIP,DP) pairs (any other kind
yields similar results) for different SYN-FIN difference values
ranging from —10 to 10. We chose 10 as our cut-off point since
beyond this value, it is reasonable to expect that they are outliers.
From Fig. 3(a), we can observe that the area under the right half
of graph (z = 0 to x = 10) is higher than that on the left side
(z = —10 to = 0). The amount of positive bias that needs to
applied to each counter per flow is equal to the weighted mean
of the SYN-FIN differences.

Suppose all flows (e.g (DIP,DP) pairs) on an average have
a positive bias of z (average SYN-FIN difference for all flows
= x). Then we have to modify the threshold to take into account
this positive bias. In our counter model, suppose f were the total

KOMPELLA et al.: ON SCALABLE ATTACK DETECTION IN THE NETWORK

21

262144 — 0.00016
ISP ADir-0 ——
ISP A Dir-1 -
65536 ASP B Dir-0 1 0.00014
SP B Dir-1
16384 A 0.00012

4096 0.0001

1024 86-05
256 6-05 [,

4e-05%

Average proportion of False Positives

2e-05

" ISP-ADIr0 —— ISP-A Dir 0 False Positives
ISP-A Dir 1 ----we-e- ISP-A Dir 1 False Positives -
ISP-B Dir 0 - ISP-B Dir 0 False Positives -
ISP-B Dir 1 -@-- ISP-B Dir 1 False Positives

ISP-A Dir 0 False Negatives -
ISP-A Dir 1 False Negatives -
ISP-B Dir 0 False Negatives -
ISP-B Dir 1 False Negatives -

0.0001 ¢

1e-05 |

Average proportion of False Positives/Negatives

4 0
-10 -5 0 5 10 0
SYN FIN Difference

(@)

01 02 03 04 05 06 07 08
Bias per flow

1e-06
09 1 1

Number of Stages

(b) (©)

Fig. 3. PCF validation and tuning. We first characterize benign behavior to tune the model. We later show how to select number of stages based on the tradeoff
between false positives and false negatives. (a) Flow distribution per source, per destination of SYN-FIN counters. (b) Effect of varying the bias. (c) Tradeoff

between false positives and false negatives with different number of stages.

number of flows, and b be the total number of buckets. Then,
the expected number of flows that map to a particular bucket is
going to be f/b. But since, these flows have a genuine positive
bias, the expected value of each counter is u = (f/b) - .
Therefore, instead of an expected value of O used in the
Normal approximation, if we use the new expected value (the
standard deviation remains same), the probabilities would still
remain the same. In other words,
b
/ e 24z,
a

X - b) - 1
prlac X UM x<b}—
Now again, fora =3,b= -3,y =1,0 =1

a <

I

Pr [|X] < (f/b)z + 3y/n] = 0.9987.

Our new threshold value has to be modified to include this
positive bias, resulting in a new term equal to (f/b)z + 6/n.
Recall that f is the number of flows, and 7 is the total number
of events per bucket (SYN-FIN packets in the case of partial
completion attacks).

The theory above suggests that the model can be adjusted to
account for this bias we observe in real life. In the next experi-
ment, we evaluate the significance of this bias. Fig. 3(b) shows
the relationship between the bias and the false positive ratio. For
the traces we used in this figure, we can see that a reasonable
bias of 0.5 reduces the number of false positives dramatically,
although we calculated empirically that the actual bias for the
ISP A and B traces was less than 1. Choosing a high value of
the bias increases the threshold but the operating range of the
filter becomes smaller.

Summary: We see that for some traces more than the others,
bias effects the number of false positives significantly. Hence,
this factor must be appropriately set (we assume henceforth a
threshold of 0.5) to a reasonable value. For the set of traces we
considered, a bias value of 0.5 worked well in all cases.

Q2. How many stages are necessary in PCF? In this exper-
iment, we evaluate empirically the number of stages required
in the PCF to sustain a reasonable false positive rate. Fig. 3(c)
shows the variation of false positives and negatives with increase
in the number of stages from 1 to 10. Again, the y axis repre-
sents the average proportion of false positives/negatives to the
total number of flows. From the figure as well as our theoretical

analysis, three stages represents a good tradeoff to reduce the
false positives while keeping the false negatives to a minimum.

Beyond three stages, we can see that there is really little gain
in the false positive rate. In addition, false negatives begin to in-
crease. In fact, from the figure, three stages represent the “knee”
of the false positives curve with diminishing returns from adding
more stages. Henceforth, we operate with three stages for the
rest of the paper for our evaluations.

Q4. Why is the false positive rate still high? A curious reader
can immediately notice that in the earlier plots, even for the the-
oretical threshold, the false positive rate is much higher that
what we have predicted using our analysis in Section III-B,
part 1. This is due to the fact that, in the presence of a large
number of flows that have a high imbalance in the counters (bad
flows), the number of false positives increases as we have an-
alyzed before in Section III-B, part 3. In fact, we found that
the number of flows that were anomalous was close to 100.
Using our analysis in Section III-B, the estimated number of
false positives in proportion to the total number of flows is about
(100/5000)* which is close to 107>, We can see that the false
positive proportion is close to this value in the plots.

One way to reduce the false positives in this case is to add
an extra threshold (beyond the theoretical threshold value in-
cluding that calculated taking into account bias). This can po-
tentially restrict the number of attacks of interest to a low value
(only the heavier attacks will be identified—in fact maybe de-
sirable) but it also reduces the number of flows that will mon-
itored. We can even adaptively vary the threshold based on the
amount of flow memory available. In [23], the authors suggest
a heuristic algorithm that adjusts the threshold based on the
amount of flow memory in the context of heavy hitter detection
using multistage filters. We can use a similar algorithm so that
we can operate within the memory constraints of the router.

Summary: The false positive rate is higher in the presence of
alarge number of bad flows. A way to decrease the false positive
rate to a reasonable value is to increase the threshold beyond our
current theoretical value. This remains a compromise between
the available memory resources, expected number of attacks and
SO on.

Q5. How big should the measurement interval be? The next
important issue is how to choose the measurement interval. A
plausible first guess could be to choose a very small measure-
ment interval. In any scheme, a small measurement interval,

22

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 1, FEBRUARY 2007

0.9
0.8
0.7
0.6
0.5

Cdf of attacks

0.4
0.3

0.2

ISP-A Dir 0 —— 02

ISP-A Dir 1
ISP-B Dir 0
ISP-B Dir 1

0.1 0.1

09
08
0.7 |
06
05

Cdf of attacks

04 -
03

02

ISP-A Dir0 —— ISP-A Dir 0 ——
ISP-A Dir 1 ==--w--- ISP-A Dir 1 ----s--n
ISP-B Dir 0 = 01 r ISP-B Dir 0 -weeer

ISP-B Dir 1 ISP-B Dir 1

10
Duration

(a)

100 100

1000

Size

(b)

1000
Total Size

1000 10000

©

Fig. 4. CDF of the duration, average attack size, total attack size of attacks detected using PCFs on different traces in the reverse path. (a) CDF of duration of
attack. (b) CDF of average SYN flood size per minute. (¢) CDF of total attack size.

while facilitating fast detection, lacks a clear signature to infer
an attack. A large measurement interval on the other hand in-
creases the time of detection. Usually the choice of the mea-
surement interval is dependent on the scenario of application.
We choose one minute as our measurement interval for all our
experiments. However, we hasten to add that this can be varied
depending on the situation. Note that this implies that we re-
quire multiple copies if we want to simultaneously accommo-
date multiple applications with different requirements. How-
ever, typically PCFs need to operate with the smallest interval
among requirements across all applications. Another option is
to divide the set of buckets into multiple classes, with each class
of buckets operating at different measurement intervals. For the
purposes of this paper, however, we operate with one measure-
ment interval and one threshold.

B. Part II: Experience With PCFs

In this section, we present our experience (attack identifica-
tion and characterization) with PCFs over real traces. We also
compare our scheme with the Network telescopes approach for
scalable monitoring, followed by detection of scanning activity
in our traces.

1) Experience With PCF on ISP-A OC-48 Link: Through this
experiment, we discuss briefly our experience with PCFs over
large time periods (one day). The main aim of this experiment
is to discuss how PCFs operate over large time periods along
with a general characterization of SYN floods observed in such
periods. We set the PCF threshold to 150 (theoretical threshold
is 60), which allowed us to identify attacks of size greater than
2.5 SYNs per second. Recall once again that we use the term
“flow” to represent any unique tuple over a subset of packet con-
tents. We only had access to ISP-A’s Direction 0 trace for an
entire day. The total number of unique destination IP addresses
in the full trace was about 5.16 million over the entire day. The
total number of unique (DIP, DPort) pairs was over 30.36 mil-
lion. Similarly, the number of unique sources, (SIP, SPort) pairs
were found to be approximately 1.9 million and 30.9 million re-
spectively. In all, we have observed a total of 517 attack flows
that were detected by PCF in the forward path. We had 6 false
positives and O false negatives reflecting the efficacy of PCFs.
About 40% of the attacks found lasted for less than a minute and
85% less than 10 minutes. A similar observation has been made
by the authors in [31].

TABLE I
SUMMARY OF FLOWS WE IDENTIFIED USING FORWARD AND REVERSE PATH
PCFs ON VARIOUS TRACES USING A THRESHOLD OF 150

Trace Code Attacks identified False Positives False Negatives
Fw. Path | Rev. Path | Fw. Path | Rev. Path | Fw. Path | Rev. Path
ISP-A Dir-0 68 19 2 0 1 0
ISP-A Dir-1 39 33 1 1 0 0
ISP-B Dir-0 34 12 0 0 0 0
ISP-B Dir-1 41 47 0 0 0 1

2) Attack Characterization Using PCFs on Other Traces:
We now present the characterization of partial completion at-
tacks that we detected using PCFs on both directions of ISP-A
and B one hour traces. Table I shows the number of attacks iden-
tified for each trace and the corresponding false positives and
false negatives using both forward path and reverse path PCFs.
As before, we have used a PCF threshold of 150 to identify these
attacks.

For brevity, we only show the characterization of the attack
flows obtained using the reverse path PCFs. Fig. 4 consists of
CDF plots that show the relative distribution of the attack flows
PCFs identified in both directions. From the figure, we observe
that in ISP-A traces, 30% of the attacks identified lasted through
the complete duration of the trace (60 minutes). We have ob-
served similar behavior in the forward path (not shown here)
as well. However, for the ISP-B traces, we observed that 85%
of the attacks last for less than 10 seconds. This points out that
the attack duration varies depending on the particular location
of the monitor. In Fig. 4, we also characterize the rate and total
size of the attack. About 20% of attacks discovered in ISP-A
trace had more than 1200 SYNs per minute, roughly 20 SYNs
per second constituting much heavier attacks. Similar to the at-
tack duration, we observed that the characteristics of the total
attack volume varied significantly across traces.

3) Comparison of DOS Detection With State-of-the-Art Net-
work Telescopes: As promised earlier in Section III-D, we con-
ducted an experiment that provides empirical comparison be-
tween PCFs and backscatter analysis using network telescopes.
We used a trace, BACKSCATTER, obtained on Jan 22, 2004, at
2pm from the CAIDA network telescope. Simultaneously, we
obtained a trace from ISP A Direction 0 and Direction 1. The
main intuition in comparison with the backscatter approach is
that PCFs should be able to detect sources that are generating a
lot of SYN-ACK packets in response to a SYN-flood and hence
should be aggregated based on sources.

KOMPELLA et al.: ON SCALABLE ATTACK DETECTION IN THE NETWORK

On ISP-A direction 0 and 1, PCFs detected about 19 and 33
flows in the reverse path as shown in Table I. At the same time,
the telescopes detected about 776 990 different flows. However,
only three destinations were detected by both PCFs and tele-
scopes, that too in only one direction of the traffic. We believe
this occurred because the scope of any one router especially if
it is a transit router (as in our case) is much smaller than that of
the total backscatter. Unfortunately, we cannot verify this hy-
pothesis with the traces available to us. For one of the flows
common to both backscatter and PCFs, PCF received a huge
number of SYN packets while backscatter detected only one
packet. We conjecture that this attack did not employ enough
spoofing hence was not detected by the backscatter telescope.

We also found that a large percentage of attacks that we ob-
served in the router trace were not observed by the telescope.
This could be due to either of two reasons. One is that the attacks
were mostly reflector attacks which did not employ spoofing as
a method to bombard the victim. In these cases, the telescope
cannot detect any backscatter. The other reason could be the
presence of DoS attacks which are single or multiple source at-
tacks that do not employ spoofing. We have manually verified
the existence of both in our trace.

Summary: Comparison of the reverse path PCF reveals that
both telescopes and PCFs can identify attacks the other cannot.
The telescope observes worldwide DoS activity that primarily
employs packet spoofing. Any attacks such as reflector attack,
or a DDoS attack with a set of zombies with no spoofing never
reach the telescope. On the other hand, reverse path PCF is
oblivious to address spoofing but suffers from a much smaller
scope. The intersection set is rather small, making PCFs a
complementary solution to backscatter for scalable attack
monitoring.

4) Scanning Detection: In this section, we use PCFs to scal-
ably detect scanning in the network. We conducted two sets of
experiments to validate our findings—one based on aggregation
using source IP Addresses, and the other using source IP Ad-
dress, destination Port combinations as discussed in Section II.
In order to validate whether the sources we have found are in-
deed scanners, we counted the number of unique destinations
found. Any source which generated SYNs but no FINs for more
than a particular number of destinations, we posit as being a true
port scan for our comparison. The question at hand is whether
PCFs can scalably detect such scanners. Note that PCFs based
on (SIP), fundamentally observe sources which are generating
too many failed connections generating SYNs but no FINs. This
counting of destinations is only a step we can use to ascertain
ourselves that these sources are indeed scanners.

This approach combines two traditional approaches of scan
detection—counting events in a given time interval [1], [32], and
observing failed connections [10], [33]. PCFs identifies sources
that generate many SYNs but no corresponding FINs (corre-
sponds to failed connections) in a given time interval. Note that
in situations where there are a limited number of end-hosts such
as in an enterprise, heavy weight schemes such as [34] might be
practical. PCFs allow scalable and efficient detection of scans
in situations where scalability is important (hence heavy weight
approaches are impractical).

23

512 T T T T T T T — T
ISP-A Direction 0 —+—
ISP-A Direction 1 ----x---
* ISP-B Direction 0 -—x-
256 Lt ISP-B Direction 1 -

N

128 | L\

64

KX HHK XK s g
XX, KHX Koy %
= KK KKK KK
XXy

Number of originating sources

S e S e ARV VIVING
32+

KKt st2¢ 3454 X
>

16 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Destinations

Fig. 5. Port scan detection using PCFs. Figure plots sources identified by PCF
that (SIP) alone. The y axis represents the number of scan sources identified by
PCFs that have more than x destinations (for varying z).

In order to establish that the sources identified by PCFs were
really portscans, we plot the number of identified sources with
increasing number of destinations in Fig. 5. In other words, on
the x axis we vary the number of destinations in steps of 100,
and we plot on the y axis the number of sources identified by
PCF that have sent SYN packets (but no corresponding FIN)
to more than x destinations. From these figures, we can ob-
serve that a large number of the sources that have been iden-
tified by PCFs have failed connections to more than 500 desti-
nations—portscans.

For brevity, we only showed the results using a PCF on (SIP).
Results obtained using (SIP,DP) for horizontal portscans were
similar.

V. IMPLEMENTATION

We now discuss an architecture for implementing PCFs in
high end routers. PCFs can be implemented on the line card as
a dedicated ASIC that obtains the relevant fields of the packet
such as source IP address, source port, destination IP address,
destination port, protocol, TCP flags and so on. This process
does not require too many modifications, since routers already
obtain destination IP address from the packet header. PCF then
uses these fields to simultaneously update the counters in dif-
ferent stages and identifies those packets that map to buckets
whose counter value is greater than the threshold. The mecha-
nism then involves PCFs triggering a rule in the access control
list (ACL) in the forwarding path that will allow the capture of
the packets belonging to that particular flow to obtain further
forensics.

Upon detection of an attack, the attack stream can then be di-
verted through a special port in the switch by configuring the
ACL appropriately. This stream can now be examined further
using other techniques such as hop-count based filtering or ac-
tive probing using RST-cookies [35] etc., in the network to vali-
date the authenticity of the packets. There are specially available
vendor boxes such as that by Arbor Networks [8] or Riverhead
Networks [36] that can further characterize the attack stream.
Basically, PCFs can be used as efficient trigger for full-flow

24

forensics without having to resort to expensive mechanisms in
the fast forwarding path of the router.

Hash Function: We used the Carter—Wegman H3 [37] hash
function for PCF Evaluation. H3 hash function can be easily im-
plemented in hardware as it consists primarily of XOR gates pro-
portional to the number of output bits. To avoid synchronization
of flows that get mapped to the same set of buckets in each and
every memory interval, we can vary the hash function every few
measurement intervals. Any long enough malicious flow might
get lucky a few times (by mapping to some other bucket that ag-
gregates with this flow to make it look benign). But, if the hash
function is varied every now and then, this synchronization can
be easily mended.

VI. RELATED WORK

The general notion of scalable attack detection has been
addressed independent of our work, recently by Yaar et al.
in [38]. However, their work requires routers to implement
marking along with some header changes to support marking of
packets. In [39], the authors also propose a Path Identification
scheme for efficient identification of the sources of DDoS
attacks. Their work builds on other traceback related schemes
(see [38], [39] for further references on Traceback).

In [9] and [40], the authors propose simple stateless SYN-FIN
and SYN-SYN/ACK counters in the last hop IDS solutions to
detect the presence of SYN flooding presence. While their ap-
proach does a preliminary level of aggregation, it does not ag-
gregate across destinations (or sources). They also do not con-
sider the issue of spoofing or suggest solutions to this problem.

For SYN flooding defense, there are several end-host
solutions that have been proposed before. These include
SYN-cookies [41] and SYN-cache [42] that have been widely
deployed. “Backscatter analysis” was proposed in [6]. This
technique uses the reverse path attack properties of SYN-floods
to infer DoS activity around the world. Since it is relevant to
our work, we provided a comparison earlier in the paper.

Vendor based solutions such as SynKill [43], Netscreen [44]
or free open source IDS tools such as Bro [10], Snort [1] can
be used to detect SYN floods, port scans, but they (as far we
can ascertain) employ per-flow state. A clever hop-count based
method to detect spoofing in general has been proposed in [45].
Here, the main intuition is that spoofed packets typically have a
wrong Time-to-Live (TTL) value and hence should be identified
by a previously detected TTL value for a particular IP address.
This technique is fairly resilient to spoofing. MULTOPS [20] is
a data-structure maintained by each network device that detects
bandwidth attacks by the significant, disproportional imbalance
between packet rates going to and coming from the victim or
attacker.

Most scan detection techniques [1], [32] in the literature are
based on detecting N events in 7" seconds. Another approach
[10], [33] relies on failed connections as a better indicator of
a scan. Leckie er al. [46] use probabilistic approaches to esti-
mate the degree to which a given local IP address is unusual.
SPICE [47] is an offline analysis algorithm to detect stealthy
scans (scans which are of low rate) and cannot be performed
scalably in the network. A recent paper by Jung et al. [34] apply
threshold based random walks for fast portscan detection. The
need to track for each remote host the different local hosts to
which it has connected to makes the scheme unscalable.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 1, FEBRUARY 2007

VII. CONCLUSION

It appears to be widely perceived that detecting intrusions
scalably within the network is a bad idea. Unfortunately, that
causes security devices to choose between performance (which
requires low memory) and completeness (which appears to re-
quire per-flow state). This paper is a gentle first step towards
suggesting that this tradeoff may not be as Draconian as is com-
monly thought. While the general problem is still very hard (and
indeed for attacks such as evasion attacks, we believe that ag-
gregated solutions cannot work without causing unacceptably
high false positives), our paper shows some progress for band-
width-based and partial completion DoS attacks, and scan-based
attacks including worms.

This is fortunate because market researchers [48] have al-
ready begun to warn that increases in total ownership costs for
end node and edge solutions require the network to play a pro-
portionately larger share in detecting and combating network in-
trusions. This paper explores this possibility in the specific con-
text of DoS attacks and scan attacks. While we have not harped
on this point, doing DoS detection in the network also finesses
the need for traceback and/or manual intervention, and allows
enterprise networks and ISPs to automatically filter out attacks
before they enter (or leave) their networks.

More fundamental than the specific techniques discussed in
this paper is the general question of scalable behavior-based de-
tection of attacks within the network. We believe this question is
interesting because many other network functions (forwarding,
classification, QoS) have already received considerable atten-
tion in the research and product literature, and solutions that
scale to 40 Gb/s already exist. As security functions become
more prevalent in the edge first and then the core, it is natural
to expect the same attention to be paid to scalable security so-
lutions.

More than just introducing the question and suggesting a spe-
cific mechanism for some problems, our paper shows that the is-
sues of behavioral aliasing and spoofing are key questions that
must be addressed in any scalable solution, even if the only re-
sponse is to simply ignore the problem. For example, it may
be reasonable to ignore spoofing until the bar is raised. These
two provide a simple lens to view existing and future work in
attack detection, and can perhaps suggest new solutions to an
even broader class of attacks.

REFERENCES

[1] M. Roesch, Snort. [Online]. Available: http://www.snort.org

[2] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis of net-
work traffic anomalies,” in Proc. 2nd ACM SIGCOMM Internet Mea-
surement Workshop, 2002, pp. 71-82.

[3] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based
change detection: Methods, evaluation, and applications,” in Proc. 3rd
ACM SIGCOMM Internet Measurement Conf., 2003, pp. 234-247.

[4] S. J. Staniford, “Containment of scanning worms in enterprise net-
works,” J. Computer Security, 2004, to be published.

[5] ForeScout Technologies. [Online]. Available:
forescout.com

[6] D.Moore, G. Voelker, and S. Savage, “Inferring Internet denial of ser-
vice activity,” in Proc. 10th USENIX Security Symp., Aug. 2001, pp.
9-22.

[7] Mazu Publishing. [Online]. Available: http://www.mazu.com

[8] Arbor Networks. [Online]. Available: http://www.arbornetworks.com

[9] H. Wang, D. Zhang, and K. Shin, “Detecting SYN flooding attacks,” in
Proc. IEEE INFOCOM, 2002, pp. 1530-1539.

[10] V. Paxson, “Bro: A system for detecting network intruders in real-
time,” Computer Networks, vol. 31, no. 23-24, pp. 2435-2463, 1999.

http://www.

KOMPELLA et al.: ON SCALABLE ATTACK DETECTION IN THE NETWORK

[11] K.Levchenko,R. Paturi, and G. Varghese, “On the difficulty of scalably
detecting network attacks,” in Proc. 11th ACM Conf. Computer and
Communications Security, 2004, pp. 12-20.

[12] R. Keyes, “The Naptha DoS vulnerabilities,” [Online]. Available:
http://www.cert.org/advisories/CA-2000-21.html

[13] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham, “A tax-
onomy of computer worms,” in Proc. ACM Workshop of Rapid
Malcode (WORM), 2003, pp. 11-18.

[14] S. Staniford, V. Paxson, and N. Weaver, “How to Own the Internet in
your spare time,” in Proc. 11th USENIX Security Symp., Aug. 2002,
pp. 149-167.

[15] MyDoom.B Virus. [Online]. Available: http://www.us-cert.gov/cas/
techalerts/TA04-028 A .html

[16] CERT Advisory CA-2001-19, *“Code Red” Worm Exploiting
Buffer Overflow In IIS Indexing Service DLL, [Online]. Avail-
able: http://www.cert.org/advisories/CA-2001-19.html

[17] CERT Advisory CA-2001-26 Nimda Worm, [Online]. Available: http://
www.cert.org/advisories/CA-2001-26.html

[18] CERT Advisory CA-1998-01 Smurf IP Denial-of-Service Attacks,
[Online]. Available: http://www.cert.org/advisories/CA-1998-01.html

[19] V. Paxson, “An analysis of using reflectors for distributed denial-of-
service attacks,” Comput. Commun. Rev., vol. 31, no. 3, Jul. 2001.

[20] T. M. Gill and M. Poletto, “MULTOPS: A data-structure for band-
width attack detection,” in Proc. 10th USENIX Security Symp., 2001,
pp. 23-38.

[21] M. Datar and S. Muthuktishnan, “Estimating rarity and similarity over
data stream windows,” DIMACS, Tech. Rep. 2001-21, 2001.

[22] A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. J. Strauss,
“Quicksand: Quick summary and analysis of network data,” DIMACS,
Tech. Rep. 2001-43, 2001.

[23] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” in Proc. ACM SIGCOMM, 2002, pp. 271-282.

, “Autofocus: A tool for automatic traffic analysis,” in Proc. ACM
SIGCOMM, 2003, pp. 137-148.

[25] Cisco NetFlow. [Online]. Available: http://www.cisco.com/en/US/
products/ps6601/products_ios_protocol_group_home.html

[26] B. H. Bloom, “Space/time tradeoffs in hash coding with allowable er-
rors,” Commun. ACM, vol. 13, no. 7, pp. 422-426, Jul. 1970.

[27] Y. Zhang, N. Duffleld, V. Paxson, and S. Shenker, “On the constancy
of internet path properties,” in Proc. ACM SIGCOMM Internet Mea-
surement Workshop, 2001, pp. 197-211.

[28] R.J.Larsenand M. L. Marx, An Introduction to Mathematical Statistics
and Its Applications. Upper Saddle River, NJ: Prentice-Hall, 2001.

[29] NMap. [Online]. Available: http://www.insecure.org/nmap

[30] Cooperative Association for Internet Data Analysis (CAIDA). [On-
line]. Available: http://www.caida.org

[31] A. Hussain, J. Heidemann, and C. Papadopoulos, “A framework for
classifying denial of service attacks,” in Proc. ACM SIGCOMM, 2003,
pp. 99-110.

[32] L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, and
D. Wolber, “A network security monitor,” in Proc. IEEE Symp. Re-
search in Security and Privacy, 1990, pp. 296-304.

[33] S. Robertson, E. V. Siegel, M. Miller, and S. J. Stolfo, “Surveillance
detection in high bandwidth environments,” in Proc. 2003 DARPA
DISCEX I1II Conf., pp. 229-238.

[34] J. Jung, V. Paxson, A. Berger, and H. Balakrishnan, “Fast portscan
detection using sequential hypothesis testing,” in Proc. IEEE Symp.
Security and Privacy, 2004, pp. 211-225.

[35] E. Shenk, “Another new thought on dealing with SYN flooding,” 1996
[Online]. Available: http://www.wcug.wwu.edu/lists/netdev/199609/
msg00171.html

[36] Riverhead Networks. [Online]. Available: http://www.riverhead.com

[37] L. Carter and M. N. Wegman, “Universal classes of hash functions,” J.
Comput. Syst. Sci., vol. 18, no. 2, pp. 143154, 1979.

[38] A. Yaar, A. Perrig, and D. Song, “SIFF: a stateless Internet flow filter
to mitigate DDoS flooding attacks,” in Proc. IEEE Symp. Security and
Privacy, 2004, pp. 130-143.

, “Pi: a path identification mechanism to defend against DDoS
attacks,” in Proc. IEEE Symp. Security and Privacy, 2003, pp.
93-107.

[40] H. Wang, D. Zhang, and K. Shin, “SYN-dog: sniffing SYN flooding
sources,” in Proc. IEEE Int. Conf. Distributed Computing Systems
(ICDCS), 2002, pp. 421-428.

[41] D. J. Bernstein, “SYN Cookies,”
http://cr.yp.to/syncookies.html

[42] J. Lemon, “Resisting syn flooding dos attacks with a syn cache,” in
Proc. USENIX BSDCon’2002, pp. 89-98.

[43] C.L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A. Sundaram,
and D. Zamboni, “Analysis of a denial of service attack on TCP,” in
Proc. IEEE Symp. Security and Privacy, 1997, pp. 208-223.

[24]

[39]

1997 [Online]. Available:

25

[44] Netscreen Technologies. Available:
netscreen.com

[45] C. Jin, H. Wang, and K. G. Shin, “Hop-count filtering: An effective
defense against spoofed ddos traffic,” in Proc. 10th ACM Int. Conf.
Computer and Communications Security (CCS), 2003, pp. 30—41.

[46] C. Leckie and R. Kotagiri, “A probabilistic approach to detecting net-
work scans,” in Proc. 8th IEEE Network Operations and Management
Symp., 2002, pp. 359-372.

[47] S. Staniford, J. A. Hoagland, and J. M. McAlerney, “Practical auto-
mated detection of stealthy portscans,” in Proc. 7th ACM Conf. Com-
puter and Communications Security, 2000, pp. 1-7.

[48] J. Pescatore, M. Easley, and R. Stiennon, “Network security plat-
forms will transform security markets,” 2002 [Online]. Available:
http://www.techrepublic.com/article.jhtml1?id=r00220021223jdt01.
htm&src=bc

[Online]. http://www.

Ramana Rao Kompella (S’03) He received the
B.Tech. degree from the Indian Institute of Tech-
nology (IIT), Bombay, in 1999, and the M.S. degree
from Stanford University, Stanford, CA, in 2001.
He is currently a fourth-year Ph.D. student at the
University of California at San Diego (UCSD).

His main research interests include fault-man-
agement in IP networks, scalable algorithms and
architectures for high-speed switches and routers,
and scheduling in wireless networks. During his
Ph.D., he worked at ATT Labs—Research for two
summers (2004 and 2005) devising patent-pending mechanisms to localize
IP and MPLS layer failures in the network using novel spatial correlation
approaches. Prior to joining UCSD, he worked as an ASIC Design and
Verification Engineer at Chelsio Communications and as a Design Engineer at
SwitchOn Networks (acquired by PMC Sierra Inc. in 2001) where he helped
pioneer algorithms for packet classification and routing lookups. Together with
several colleagues, he has six patents (two awarded and four pending) and
more than 15 research publications in the areas of packet classification, fault
localization, and wireless networks. He has been a student member of the ACM
since 2003.

Sumeet Singh is a Technical Leader at Cisco Sys-
tems. His research interests include network security,
switching and routing. Previously he was Co-founder
and Chief Scientist at NetSift, Inc. and pursuing the
Ph.D. degree in computer science at the University of
California at San Diego, where he helped to pioneer
one of the fastest approaches to packet classification
(HyperCuts) and one of the first approaches to auto-
mated signature extraction (the EarlyBird system).

George Varghese (M’99) worked at DEC for several
years designing DECNET protocols and products
(bridge architecture, Gigaswitch) before receiving
the Ph.D. degree from the Massachusetts Institute of
Technology (MIT), Cambridge, MA, in 1992.

He worked from 1993 to 1999 at Washington Uni-
versity. He joined the University of California at San
Diego (UCSD) in 1999, where he is currently a Pro-
fessor of computer science. Together with colleagues,
he has 14 patents awarded in the general field of net-
work algorithmics. Several of the algorithms he has
helped develop have found their way into commercial systems including Linux
(timing wheels), the Cisco GSR (DRR), and Microsoft Windows (IP lookups).
He also helped design the lookup engine for Procket’s 40 Gb/s forwarding en-
gine. He has written a book on building fast router and endnode implementa-
tions called Network Algorithmics, (Morgan-Kaufman, 2004). In May 2004, he
co-founded NetSift Inc., where he was the President and CTO. NetSift is now
part of Cisco Systems. From August 2005 to August 2006, he has been working
at Cisco Systems to help equip future routers and switches to detect traffic pat-
terns to facilitate traffic measurement and real-time intrusion detection.

Dr. Varghese won the ONR Young Investigator Award in 1996, and was
elected to be a Fellow of the Association for Computing Machinery (ACM) in
2002.

