Parsaye, DeVries, Ilse - 20

Wireless Network Security: WEP and Beyond

Heidi Parsaye, Jason DeVries, and Roxanne Ilse
Dr. Edward Chow

CS 591: Fundamentals of Computer/Network Security

May 13, 2007

Wireless Network Security: WEP and Beyond

Section 1: Overview of Wireless Technology, Heidi Parsaye, pages 3-6.
Section 2: Cracking WEP, Jason DeVries, pages 7-16.
Section 3: Beyond WEP, Roxanne Ilse, pages 17-19.
Section 1: Overview of Wireless Technology, Heidi Parsaye

How Does Wireless Broadband Work?
Wireless broadband technology is somewhat similar to cellular technology--it uses radio waves to transmit and receive data across the air waves without having to rely on any type of physical connection. Simply put, wireless broadband refers to the spreading of an electromagnetic wave through empty space by an antenna which is connected to some type of base station.

The most obvious upside of a wireless broadband network would be the ability to provide broadband Internet access for an entire region without having to string thousands of miles of fiber, coax or twisted pair wiring. It would become a lot more cost effective to provide broadband Internet access to rural locations.

With a wireless broadband Internet connection is the freedom it offers to its users. If you have a desktop computer with wireless capabilities, this benefit is little more than 1 less wire plugged into the back of your tower. Wireless broadband is designed primarily for laptop users so they can access the Internet from literally any point within the signal range. Take your computer outside to do some online shopping and some email. Work from your bed without worrying about getting out your 60 ft Ethernet cable. Another benefit for laptop users is the ability to take your laptop around town and receive wireless broadband Internet connections from various coffee shops, restaurants, airports, etc., catering to their tech-savvy customer base.

The main disadvantage is security. A surprising number of households and companies simply forget or do not have the knowledge necessary to set up security measures to keep their connection safe. Before we address how to secure the wireless network, we should go over some basic terms.

IEEE 802.11

Also known by the brand Wi-Fi, is a protocol that a wireless network is using. See Table 1.1 [1] below. 802.11b was the first widely accepted wireless networking standard, followed by 802.11a and 802.11g. 802.11b and 802.11g standard use the 2.40 GHz band, which can incur interference from microwave ovens, cordless telephones and other appliances using same band. The 802.11a standard uses the 5 GHZ band.

Table 1.1

	Protocol
	Release Date
	Op. Frequency
	Data Rate (Typ)
	Data Rate (Max)
	Range (Indoor)
	Range (Outdoor)

	802.11
	1997
	2.4-2.5 GHz
	1 Mb/s
	2 Mb/s
	 ?
	 ?

	802.11a
	1999
	5.15-5.35/5.47-5.725/5.725-5.875 GHz
	25 Mb/s
	54 Mb/s
	~25 meters
	~75 meters

	802.11b
	1999
	2.4-2.5 GHz
	5.5 Mb/s
	11 Mb/s
	~35 meters
	~100 meters

	802.11g
	2003
	2.4-2.5 GHz
	25 Mb/s
	54 Mb/s
	~25 meters
	~75 meters

	802.11n
	2007

(unapproved draft)
	2.4 GHz
	300 Mb/s
	540 Mb/s
	~50 meters
	~126 meters

How to Secure Wireless Network?

The security of a wireless LAN is very important, especially for applications hosting valuable information. For example, networks transmitting credit card numbers for verification or storing sensitive information are definitely candidates for emphasizing security. In these cases and others, it is necessary to proactively safeguard your network against security attacks. Below is a list of available tools/features to secure your wireless network.

Disabling the SSID Broadcast

By disabling the broadcasting of the SSID, or even the beacon signal itself, you can hide the presence of your wireless network or at least obscure the SSID which is critical for a wireless client to connect to your network.

MAC Address Filtering
This feature is normally turned "off" on the AP by the manufacturer, because it requires a bit of effort to set up properly. However, to improve the security of your Wi-Fi LAN (WLAN), strongly consider enabling and using MAC address filtering [2]. Without MAC address filtering, any wireless client can join a Wi-Fi network if they know the network name (also referred to as the SSID) and perhaps a few other security parameters like encryption keys. When MAC address filtering is enabled, however, the access point or router performs an additional check on a different parameter. MAC addresses on wireless clients can't be changed as they are burned into the hardware. However, some wireless clients allow their MAC address to be "impersonated" or "spoofed" in software. It's certainly possible for a determined hacker to break into your WLAN by configuring their client to spoof one of your MAC addresses. Although MAC address filtering isn't bulletproof, it is an additional layer of defense that improves overall Wi-Fi security.

Wired Equivalent Privacy (WEP)

WEP is part of the IEEE 802.11 standard for securing wireless networks [1]. It was intended to provide comparable confidentiality to a traditional wired network, however several serious weaknesses were identified. WEP key can be cracked with readily available software in one minute or less.
Wi-Fi Protected Access (WPA/WPA2)

As an interim step to 802.11i, WPA was introduced in 2003 using the Temporal Key Integrity Protocol (TKIP) [3]. TKIP evolved to solve some of the security problems associated with WEP.

In 2004, WPA2 was released under the completed IEEE 802.11i standard. WPA2 uses the Advanced Encryption Standard (AES) and is eligible for FIPS (Federal Information Processing Standards) 140-2 compliance. WPA2 will be discussed in more detail later in this document.

Virtual Private Network (VPN)
Another means to securing your WLAN is to require user to launch their VPN client once they are associated to an AP. By using a VPN client, all of their wireless data is tunneled through an IPSec gateway. There are some tradeoffs, however, since using a VPN client can create performance bottlenecks.
Cracking WEP

Most personal wireless users have very limited knowledge when it comes to securing their wireless network and will not take the time to implement any type of security policy. Those that are aware of the security implications will more than likely choose the least cumbersome path, which is WEP. In the section that follows, we will show how easy it is to crack a wireless network running WEP.

Section 2: Cracking WEP, Jason DeVries
For my part of the project, I decided to learn if there is any truth behind the stories I have heard about wireless access points being easy to crack. In the past, I have read overviews of how to secure wireless networks, but never delved into the details myself. I just blindly implemented recommendations such as disabling SSID broadcast, enabling MAC filtering, and turning on the strongest encryption available. At some point in the past, I briefly experimented with the tools for cracking a wireless network but never had any success at getting them to work. Even if I had managed to get them working, I would not have understood how they worked. This class was a fun opportunity to give it another try, plus learn in-depth about all of the details I had never understood before.

I decided to concentrate my efforts on Wired Equivalent Privacy, or WEP. Based on my observations, WEP still seems to be the most common means of securing a wireless access point, despite newer and more secure technologies such as WiFi Protected Access (WPA) being available. WEP secures traffic on a wireless network by encrypting it with a shared key. Every user on the wireless network must know the shared key in order to be granted access. These shared keys can be either 5 or 13 bytes and the encryption algorithm used is RSA’s RC4 algorithm which was designed by Ron Rivest in 1987 [5]. This algorithm involves combining the shared key with a 3 byte initialization vector which is then passed into the RC4 Key Scheduling Algorithm. The RC4 KSA is used to create a pseudo-random state array which will be used in the next step. The same initialization vector and shared key will always result in the same state array. This state array is then passed into the RC4 Pseudo Random Generation Algorithm. The PRGA outputs a streaming key which can be used to encrypt plaintext data of any length. This part of the algorithm essentially involves swapping the order of the bytes based on the state array. The PGRA output is then XORed with the plaintext data to produce the encrypted data which is then passed over the wireless network [6]. This process is similar for decryption, with the encrypted text being XORed with the PGRA output to produce the plaintext. The following two figures are adapted from “Cracking WEP” by Seth Fogie.
[image: image1.png]Initialization Vector Secret Key
(3 bytes) (5 or 13 bytes)

IV + Key
(8 or 16 bytes)

RC4 Key
Scheduling
Algorithm

RC4 Esuedo

Plaintext Data + Random
32-bit CRC Generation

Algorithm

XOR

Encrypted Data

RC4 Key Scheduling Algorithm
i Creates a pseudo random state array.

Assume N = 256 (Defined by WEP)

RC4 Psuedo Random Generation Algorithm
Creates a stream of encrypted data.

Figure 1.1: RSA RC4 Encryption

[image: image2.png]Initialization Vector
(plaintext) +
Encrypted Data

Initialization Vector Secret Key

(3 bytes)

(5 or 13 bytes)

Encrypted Data

IV + Key
(8 or 16 bytes)

RC4 Key
Scheduling
Algorithm

RC4 Esuedo
Random
Generation
Algorithm

XOR

Given CRC an be
compared with
calculated CRC.

Plaintext Data +
32-bit CRC

RC4 Key Scheduling Algorithm
i Creates a pseudo random state array.

Assume N = 256 (Defined by WEP)
i K[] = Secret Key Array

RC4 Psuedo Random Generation Algorithm
i Creates a stream of encrypted data.

Figure 1.2: RSA RC4 Decryption

As you can see, this is a relatively simple algorithm to understand. However, it has weaknesses that can be exploited but first a brief overview of the frame format specified by the 802.11 standard is necessary.
All 802.11 frames contain a header that must be transmitted in plaintext. The first part is the Basic Service Set Identifier (BSSID) which is the 6 byte MAC address of the wireless access point. The 3 byte initialization vector discussed previously is next. This must be sent in plaintext in order for the recipient to process the encrypted part of the message. The last part of the plaintext header is the 6 byte destination MAC address. The encrypted part of the frame always begins with a Logical Link Layer (LLC) header, followed by a Sub-Network Access Protocol (SNAP) header. Finally we get to the actual data portion of the frame which could contain TCP/IP or other network protocols, followed by a 4 byte checksum for data integrity [6]. An overview of an 802.11 frame can be seen in the following figure.
· Plaintext Header

· BSSID

· Initialization Vector

· Destination MAC Address

· Encrypted Data

· LLC Header

· SNAP Header

· Data

· 4-byte CRC

Figure 1.3: 802.11 Frame Format

With knowledge of the 802.11 frame format and the RC4 algorithm, it is possible to begin exploiting the weaknesses in a wireless network with WEP encryption. The first fundamental weakness is that the first 3 bytes of the key passed into RC4 are always the initialization vector with the remaining 5 or 13 bytes being the secret key. Since the initialization vector must be passed in plaintext, we know the first 3 bytes used by the RC4 KSA algorithm. Thus, we can easily reconstruct at least the first three iterations. If the contents of the encrypted data can be guessed or assumed, it may be possible to do additional iterations. For instance, the encrypted data begins with a LLC header and the first byte of LLC will always be 0xAA. In some cases we may know many of the encrypted bytes such as with Address Resolution Protocol requests. ARP requests follow a set pattern in which 16 of the bytes are always the same regardless of the request being made [7]. Knowledge of the encrypted bytes can make it possible to perform additional iterations of the KSA and PRGA algorithms and calculate values for the unknown secret key [5]. As we see more messages encrypted with the same secret key, cracking the secret key used becomes easier. A brute-force attack trying all possible keys will always be successful but this is not possible in a reasonable amount of time. Even with only a 5-byte/40-bit secret key, we have 240 resulting in 1,099,511,627,776 possible keys. The goal is to recover enough sections of the secret key such that we vastly narrow the remaining number of possible keys. Then a brute-force attack on the relatively few remaining keys becomes a reality.
With a means of cracking the key given enough messages, it becomes a simple matter of collecting enough messages. Now there is a choice to be made. We could passively monitor messages coming from the wireless network until we have enough. This would be completely undetectable by the network being cracked. However, if the network has very low utilization, it could be weeks or months before a sufficient number of messages are collected for analysis. The other choice we could make is to actively interact with the wireless network in order to generate messages faster. With this type of an attack, it could be possible to capture a sufficient number of messages in a matter of minutes. However, if an active attack is chosen, discovery of the attack by an Intrusion Detection System becomes a possibility. It becomes a trade-off between stealth and speed. If a passive attack is chosen, we are essentially done. There is nothing more to do but wait. If an active attack is chosen, more work and networking knowledge is required.
An active attack on a wireless network involves actively transmitting frames to that network. The goal is to get some sort of response in the form of an additional encrypted message from that network. However, since we do not have the secret key, we cannot encrypt messages of our own which the target network would be able to process. While many possible active attacks exist, I will detail a readily available one known as an ARP replay attack which involves an ARP request as mentioned previously. An ARP request is essentially a node on the network broadcasting its MAC address and requesting that another machine reply with its network address. An Internet Protocol (IP) address would be a common reply on most networks. You can also expect that the network will provide the same response every time the same request is made. So if we could transmit an ARP request, we would get an additional frame of data back from the target network in return every time. More requests mean more replies but there is a slight problem. Since we do not have the secret key, we cannot encrypt an ARP request and broadcast it on the target network. However, there is an easy solution.
The solution to broadcasting a properly encrypted ARP request to the target network is to capture a legitimate encrypted ARP request from the target network and then replay it an indefinite number of times. While it will not be possible to decrypt the ARP request and review its contents, it is still possible to recognize one because of two things [7]. First, an ARP request always follows the same format and will always be the same length. While it is impossible to view the contents, no attempt is made to hide the length of the message. It is a matter of waiting to see a message of the right length. The second thing that helps us is that we know an ARP request is always sent to a standard broadcast MAC address. Remember, the destination MAC address is included in the plaintext portion of the 802.11 header. If we see an encrypted message of the right length sent to the right address, it can be reasonably assumed that the encrypted data is an ARP request. In the 802.11 standard, initialization vectors can be reused an indefinite number of times. As such, the same message can be replayed onto the target network indefinitely. Each one will be processed by the node responsible for handling ARP requests. When the reply is sent from the node, the wireless access point will encrypt and transmit it. As an added bonus, 16 of the bytes in the reply are pre-defined regardless of the request made which makes cracking even easier.
It should also be noted that this particular attack would be easily detected by an Intrusion Detection System or possibly even without a sophisticated IDS. First, seeing high utilization on a network that typically has low utilization would be seen as potentially abnormal. Second, on most networks a broadcast should be relatively rare compared to the rest of the data. This attack would flood the network with broadcast messages. A knowledgeable person using even a simple network analysis tool would find this highly abnormal. However, the fact that an attack can be carried out successfully in as little as a few minutes to a matter of hours at most gives the advantage to the attacker. Assuming the network is monitored at all, the odds of a knowledgeable person detecting and responding to an attack at say 2:00 a.m. when most people are sleeping is rather low. An automated network defense system would make for an interesting research topic, however anyone interested in going to this level of security would certainly choose a wireless technology other than WEP.
After understanding how WEP works and why it is vulnerable, I decided to try cracking a WEP network to see if it was really that easy. To begin, I needed a target wireless network to crack. I brushed the dust off a wireless access point that I had not used for approximately a year after I purchased one that supports 54Mbps rates and WPA. This old one was a common off-the-shelf model a few years ago and was manufactured by Linksys. After resetting it to default values, I configured the SSID to be linktest, set it to 64-bit WEP with a key of DEADBEEF01, and otherwise left everything else at default which includes channel 6 with SSID broadcast enabled. Now that I had a target wireless network to crack, I was ready to learn about the tools available for doing so.
Searching the internet was obviously the first thing I tried. I found there are numerous guides and tutorials. However, I found the information tends to be very scattered. Most guides are incomplete at best. Those that are fairly complete still tended to be out of date as to the latest tools and techniques. While the guides I found gave me an idea of how to crack a wireless network, virtually none gave me any details as to how it worked or why you did a particular step. It was particularly frustrating trying to determine whether any of my wireless cards were compatible with the tools available. Information for each chipset was often found on different websites. When I did find information for my chipset, it was unknown as to whether my version was compatible or not. Several guides made recommendations as to the best card to purchase, but I was hoping to get it working without buying additional hardware.

A little research revealed that AirCrack seems to be the most popular and widely used set of tools for cracking a wireless network. As such, I decided to get AirCrack working on one of my personal computers. I tried my laptop computer first which has a built-in wireless NIC with a Broadcom chipset. The guides indicated that support might be available for this chipset if I patched the drivers. After booting from a live Linux CD to preserve my existing operating system, I downloaded AirCrack 0.8, compiled, and installed it without any issues. Support for this chipset has apparently been included since the 2.6 kernel and I had no trouble getting Linux to recognize the NIC. I was able to place the NIC into monitor mode, otherwise known as promiscuous mode, and then proceeded to launch aircrack-ng to view the wireless networks near me. By default, the wireless NIC will hop across all available channels scanning for all wireless networks. In all, it detected about a dozen wireless networks near my home with some interesting results.

First of all, aircrack-ng detected my home wireless access point even though I have SSID broadcast disabled. I quickly learned that although disabling SSID broadcast might keep my neighbors from accidentally discovering my wireless access point, it will do absolutely nothing to keep a hacker from discovering my network. It showed that I was using WPA encryption. Of the dozen wireless networks near me, only one other was using WPA. One was completely unsecured and unencrypted. The rest were all using WEP. The tool also displays other information such as the signal strength, MAC addresses, and clients associated with each access point. Most importantly, it showed the information for linktest, the target wireless network I had created previously. Another important note here is that this was a completely passive survey of the wireless networks near me. I learned all of this without broadcasting any data and as such, I would be undetectable thus far. It was now time to proceed to the next step which is collecting enough data from the target network.
When collecting data, it is important to stop scanning all channels and focus on the channel used by the target network. Monitoring a single channel will allow the capture of all frames transmitted by that network. I also wanted to focus on only the target network and not the others in my neighborhood. The tool airodump-ng is used to lock the interface to channel 6, filter on the target BSSID, and dump the data to a file. This will continue running until the attack has been completed. At this point, the choice of an active or passive attack must be made as mentioned previously.
Provided an active attack will be attempted, the wireless interface must support packet injection. I found that most do not, and that if they do, the drivers must be patched to support it. The latter was the case for the built-in Broadcom chipset on my primary laptop. I learned that I needed to patch the Linux kernel to support this operation [8]. That meant scrapping the live Linux CD. And with such low-level access required to the hardware, I felt that using a virtual machine on VMWare had little chance of success. Since I was unwilling to lose the Windows operating system on my primary laptop, it was time to try another machine.
I next tried my desktop system, booting from the live Linux CD. It has a wireless network card as well which I learned uses an Atheros chipset. This chipset seems to have better support, but I could not get the live Linux CD to recognize this card at all. Again unwilling to sacrifice the Windows operating system for a non-live Linux installation, it was time to try another machine.
The third machine I tried is an old laptop with a PCMCIA wireless network card. Booting from the live Linux CD, I learned that this card had a Broadcom chipset as well. This put me right back where I had started, unable to use the CD because of the need for a custom-built kernel. However, on this old laptop I was willing to wipe out the Windows operating system and load RedHat Fedora Core 6. I then patched the Broadcom modules to support packet injection, rebuilt and installed everything, then rebooted. To my dismay, the card was no longer recognized during boot. A scan of the logs revealed a missing file. After much searching, I learned that I needed to download a copy of the Windows drivers for the card, use a special tool to extract the firmware from the drivers, and install it in the right location. This time yielded success and the card was recognized. Not only that, but a simple test revealed that packet injection was working. The aircrack website reveals that there is a known issue when transmitting at high rates with the patched Broadcom drivers. [reference – aircrack driver site] However, in my attempts I would hang the system every time I transmitted more than a few packets, regardless of how slowly I transmitted them. All this work had yielded absolutely no progress which leads me to two conclusions so far. First, there is no “off the shelf” or simple “point and click” tool for cracking a WEP network. Second, anyone but the most determined person would have given up long before they got this far.
In my last attempt, I decided to try purchasing another wireless network card that might work better. I sorted through PCMCIA cards known to work well and compared them to those available from a nearby retailer. For $65, I purchased a Netgear model WG511T which uses an Atheros chipset. After inserting this card into the FC6 system and loading the proper drivers, it worked perfectly. I was finally able to inject attack packets at high data rates with no system lockups. The exact mechanism for doing this involves running the aireplay-ng tool and specifying an ARP replay attack. In this mode, it will monitor your target network until it sees an ARP request. Once detected by length and destination address as mentioned previously, it will begin replaying that frame as quickly as possible. Meanwhile, airodump-ng is capturing all of the responses from the target network. I found that I could transmit approximately 300 packets per second on my 802.11b target. After doing this for a little over 35 minutes, I had captured approximately 660,000 responses from the target network. It was time to run the actual aircrack-ng tool to attempt recovery of the secret key.
Running aircrack-ng yielded some very interesting results. One of the parameters that can be passed in is whether it tries 5 byte or 13 byte WEP first. I knew that it was a 5 byte secret key, but acting as an attacker would, I let it try the default which is to look for a 13 byte key first. With approximately 660,000 messages to work with, it took 4 minutes and 42 seconds to recover the 5 byte secret key on a modest Pentium III laptop. As an experiment, I tried specifying a 5 byte key so that it would not attempt to recover 13 byte keys first. In this attempt, aircrack-ng recovered the key in just 2 seconds. In this exercise, it took far longer to capture the messages than it did to actually crack the key. The last step of actually cracking the key is the easiest part of this whole process.
Overall, learning in depth how WEP works and then trying to crack WEP encryption was extremely interesting. WEP and the RSA RC4 algorithm it was based on were once very powerful and secure. Today they can be broken in a matter of minutes. While they remain better than nothing, clearly newer technology is required today.

Section 3: Beyond WEP, Roxanne Ilse

Given the ease with which WEP can be compromised, as shown above, the best method to prevent an intruder from compromising your wireless network is to implement 802.11i.

Overview of 802.11i

To date, the most secure method of securing your wireless network is by following the standards set forth in the IEEE 802.11i. IEEE 802.11i (also known as WPA2) was introduced in 2004 by the Wi-Fi Alliance [9] to address the security weaknesses found in the IEEE 802.11 specification. As shown earlier in this paper, Wired Equivalent Privacy (WEP), the security mechanism included in the 802.11 specifications, could easily be compromised by an intruder with limited technical knowledge. As a result, the Wi-Fi Alliance developed WPA2 which includes 802.1x authentication and the Advanced Encryption Standard (AES) for data encryption. WPA, which was an interim step to WPA2, uses 802.1X for authentication and TKIP for data encryption, which is not as strong as AES. Like WPA, WPA2 is also available in Personal and Enterprise modes.

WPA2 Encryption Mechanisms

WPA2 supports AES, which utilizes the Counter-Mode/CBC-MAC Protocol (CCMP). The Counter-Mode (CTR) is used to encrypt the data, while CBC-MAC (Cipher Block Chaining Message Authentication Code) is used for authentication. CBC-MAC “is a technique for constructing a message authentication code from a block cipher. The message is encrypted with some block cipher algorithm in CBC mode to create a chain of blocks such that each block depends on the proper encryption of the block before it. This interdependence ensures that a change to any of the plaintext bits will cause the final encrypted block to change in a way that cannot be predicted or counteracted without knowing the key to the block cipher. [10]” For more details on CCM, see RFC 3610.

WPA2 Authentication Mechanisms

Like its predecessor WPA, WPA2 Enterprise mode supports 802.1x with Extensible Authentication Protocol (EAP) and PSK technology with Personal mode [9].

EAP supports mutiple authentication methods suchs as token cards, Kerberos, one-time passwords, certificates and public key authentication. There are several EAP types—EAP-MD5, LEAP, EAP-TLS, EAP-TTLS and PEAP. The table 1.2 [11] below summarizes the features of each type.

Table 1.2
	
	EAP-MD5
	LEAP
	EAP-TLS
	EAP-TTLS
	PEAP

	Server Authentication
	None
	Password Hash
	Public Key (Certificate)
	Public Key (Certificate)
	Public Key (Certificate)

	Supplicant Authentication
	Password Hash
	Password Hash
	Public Key (Certificate or Smart Card)
	CHAP, PAP, MS-CHAP(v2), EAP
	Any EAP, like EAP-MS-CHAPv2 or Public Key

	Dynamic Key Delivery
	No
	Yes
	Yes
	Yes
	Yes

	Security Risks
	Identity exposed, Dictionary attack, Man-in-the-Middle (MitM) attack, Session hijacking
	Identity exposed, Dictionary attack
	Identity exposed
	MitM attack
	MitM attack; Identity hidden in Phase 2 but potential exposure in Phase 1

In [12], the author lists a series of interactions of 802.1X. No other traffic is permitted until this series of events has successfully completed.

1) The client sends an EAP-start message. This begins a series of message exchanges to authenticate the client.

2) The AP replies with an EAP-request identity message.

3) The client sends an EAP-response packet containing the identity to the authentication server.

4) The authentication server uses a specific authentication algorithm to verify the client’s identity. This could be through the use of digital certificates or other EAP authentication type.

5) The authentication server will either send an accept or reject message to the AP.

6) The AP sends an EAP-success packet (or reject packet) to the client.

7) If the authentication server accepts the client, then the AP will transition the client’s port to an authorized state and forward additional traffic.

PSK (pre-shared key) was designed for home and small office/home office (SOHO) users who are not privy to expensive authentication servers. With PSK, a pass-phrase is manually configured in the AP to generate an encryption key. This pass-phrase is typically shared among the WLAN users.

Recommendations for Future Projects

This project addresses various tools available to secure a wireless network and how easy it is to crack the most basic of these tools. An interesting follow-up would be to compare the various EAP-types available for authentication and what their strengths/weaknesses are. In some cases, the AP is more of a pass-through device and the real work is passed off to a controller that could be anywhere in the network (local or remote). In such instances, how vulnerable is the authentication process?

References

[1]
Wikipedia, “IEEE 802.11”, May 2007, http://en.wikipedia.org/wiki/802.11.

[2]
“Setting Up a Secure Wireless Network”, July 10, 2003,
http://www.wi-fiplanet.com/tutorials/article.php/2233511
[3]
B. Mitchell, “Enable MAC Address Filtering on Wireless Access Points and Routers,” http://compnetworking.about.com/cs/wirelessproducts/qt/macaddress.htm
[4]
“WPA Encryption Key Generator,” May 2007, http://www.yellowpipe.com/yis/tools/WPA_key/generator.php
[5]
Wikipedia, “RC4,” May 2007, http://en.wikipedia.org/wiki/RC4.

[6]
Seth Fogie, “Cracking WEP,” July 12, 2002, http://www.samspublishing.com/articles/article.asp?p=27666&rl=1.

[7]
E. Tews, R. Weinmann, and A. Pyshkin, “Breaking 104 bit WEP in less than 60 seconds,” 2007, http://eprint.iacr.org/2007/120.pdf.

[8]
“Compatibility, Drivers, Which Card to Purchase,” May 2007,
http://www.aircrack-ng.org/doku.php?id=compatibility_drivers.
[9]
Wi-Fi Alliance, “WPA and WPA2 Implementation White Paper,” March 2005,
http://www.wi-fi.org/files/wp_9_WPA-WPA2%20Implementation_2-27-05.pdf
[10]
Wikipedia, “CBC-MAC,” May 2007, http://en.wikipedia.org/wiki/CBC-MAC
[11]
Lisa Phifer, “Deploying 802.1X for WLANs: EAP Types,” September 10, 2003,
http://www.wi-fiplanet.com/tutorials/article.php/3075481
[12]
Jim Geier, “8021X Offers Authentication and Key Management, May 7, 2002,
http://www.wi-fiplanet.com/tutorials/article.php/1041171
