SELinux (Security Enhanced Linux)

Corey McClurg

CS591

5/13/2007

I. Introduction

Whether you have just decided to install Linux or you are already using it, there is a good chance that you could use a little more security than what is offered with just a basic install. The great thing about Linux is no matter what need you have there is usually a solution for it, or at least an attempt at a solution. One of the bad things about Linux is that sometimes the best solution isn’t the easiest (more times that not). While this may be the case with SELinux, what it has to offer could be so valuable that it would be worth the extra effort it takes to setup what could be viewed as a potential Goliath of computer configuration. One thing to remember when deciding if SELinux is right for you is that if you have certain aspects of your computer (http server for example) that need to be limited in a very precise way, then SELinux is probably your best bet to do that. If you don’t have anything that is very security sensitive, it would probably be better to choose not to even mess with SELinux. While all distributions of Linux are very useful, there are some definite holes in the security aspects. SELinux is an example of a project dedicated to figuring out ways to making Linux just that much safer. While SELinux is certainly not the only security option, currently it is probably the best. I set out to figure out a little bit about the history of SELinux and how it came about. In addition, I also explored how rules can be written and how to implement/utilize some of the great features that SELinux is capable of offering. In this report, I will start out with a brief history of SELinux, followed by a brief rundown of what SELinux is and how somebody can get/implement it. After the description of what SELinux is, I will go into some detail about MAC, type enforcement and also cover a couple of examples that could be quite useful. While this report covers a variety of different aspects of SELinux, in all reality it only just scratches the surface of what all SELinux consists of.
II. A Brief History

While Linux is a very versatile and potentially secure operating system with just what is provided in the box, there are some holes that can be found in any distribution. SELinux started out as the work of a couple of different groups, The NSA (National Security Agency) and SCC (Secure Computing Corporation) started developing a way to implement MAC (Mandatory Access Control) and type enforcement. “The NSA and SCC developed two Mach-based prototypes of the architecture: DTMach and DTOS. The NSA and SCC then worked with the University of Utah's Flux research group to transfer the architecture to the Fluke research operating system.”[1] Some more modifications were made along the way and renamed FLASK. SELiniux was integrated into the kernel of Linux, this was done by utilizing the LSM (Linux Securtiy Modules) framework. “Originally, the SELinux implementation used persistent security IDs (PSIDs) stored in an unused field of the ext2 inode.”[2] SELinux started out with as an implementation of PSID’s (Persistent Security ID’s), they were stored in a way that people wouldn’t be able to just look at them and read them. There were problems with this method, mainly the requirement that you had to modify every file system type. This wasn’t a practical solution and was then replaced by the idea of a loadable kernel. This caused some problems as well such as a sacrifice in performance and a big difference in SELinux depending on the distribution it was being used with. Eventually SELinux was “integrated upstream to the 2.6.x kernel, which has full support for LSM and has extended attributes (xattrs) in the ext3 file system. SELinux was moved to using xattrs to store security context information.” [2] , this format was the best solution to date and is the implementation of SELinux that is still in place today.
III. The Idea Behind SELinux
SELinux serves as an example of how mandatory access controls can be integrated into Linux in order to limit what users can access and what operations a user can even perform. The main idea behind SELinux is that it’s not just one security method that is the same for everybody. SELinux is capable of providing support for all kinds of security policies. The great thing about this is you aren’t depending on some company to provide support for your computer’s security, you implement it all yourself if you want to and it’s done by simply adding, deleting or modifying rules. Another important distinction about SELinux is that it’s open source so the documentation and source code are all provided free of charge.
IV. Getting SELinux

There are many distributions out now that come with SELinux as an install option which makes it extremely easy to get SELinux. If a distribution doesn’t have SELinux out of the box, it can be obtained from the website http://www.nsa.gov/selinux/code/download-stable.cfm, this link provides the current release for download as well as the documentation, all of the libraries and the policy compiler for making your own security policies. Whatever way you choose to get the latest release, you can count on it to come packaged with a general purpose security policy configuration, this policy is called targeted. The targeted policy is designed to secure only certain parts of Linux, usually just the most basic parts that could be potentially harmful. It’s a good idea not to rely solely on this policy although it is a great example to make your own policy with. This is a great example of how versatile SELinux is with all of the policy modifications that can be made and customizations that can be implemented for any installation.
V. MAC (Mandatory Access Control)

SELinux is based on the idea of mandatory access control as "a means of restricting access to objects based on the sensitivity (as represented by a label) of the information contained in the objects and the formal authorization (i.e., clearance) of subjects to access information of such sensitivity."[3]. Authorization is based on prerequisites being met, resulting in an individual gaining access. MAC makes it so that a user can be regulated to whatever degree is necessary, which can even include limiting access to resources that they have created themselves. The level of access control depends on the compatibility of the security properties of the data and the clearance properties possessed by an individual.
VI. Type Enforcement

Type Enforcement is implemented using what are called allow rules to grant access to something in SELinux. A simple rule that demonstrates the basic ideas behind type enforcement is:

The components of this rule are as follows: user_t is the domain type of the process; the permissions are read, execute and get attributes; the permissions apply to the access of objects with a type of bin_t. While _t is used in this example, there is no relevance with that in relation to the syntax of rules. This rule could be used to allow users to execute shell programs such as the bash shell (/bin/bash). In order to do a domain transition, there must be 3 rules in place to cover the three ideas of a domain transition rule: the current process must have entrypoint access to an executable file type, the domain type of the process must have execute access to the entrypoint file type, the current domain type must have transition access to the new domain type.
VII. An Example Using Type Enforcement

In order to display everything needed to create a type enforcement rule on a directory, use the command:

This will produce the output:

[image: image1]
This information can be used to create a domain transition to the password file.
The following rule will allow user_t to execute an execve() system call on passwd_exec_t:

[4]
The next rule will give entrypoint access to the passwd_t domain, this a way to define if an executable file can enter into another domain.

[image: image2]
[4]
The last rule that is necessary is the one that will give transition permission for the original type to transition to the new type (user_t and passwd_t respetively):

[image: image3][4]

Creating these rules by themselves doesn’t do a whole lot of good. In order for a rule to be beneficial, a user either has to specifically say they want a domain transition, or there must be a domain transition created by default, which is what makes the most sense. The rule that can create a default domain transition is called “type_transition”. For the previous rules, the following additional rule will create a default domain transition:

[image: image4][4]
This rule simply says that the default of the execve() system call for the process with the domain type of user_t and the executable file type of passwd_exec_t is to attempt a domain transition to passwd_t. One important thing to note is that even if there is a type_transition rule to cause a domain transition attempt by default, this doesn’t mean that the transition will occur, it MUST have the other three previously created rules for it to actually be allowed. The purpose of this example is to allow the user to change the password in the shadow file. The reason that it’s very important to limit the user in this context is that all of the encrypted passwords are stored in the shadow file and that isn’t something you want to allow just anyone to access. In addition, there is really no reason for somebody to be able to access the shadow file contents directly, this is more than likely only going to promote trouble. This applies to any user including the root user.
VIII. Predefined Types For CGI Scrypts in SELinux

There are a few predefined types in SELinux that can be used to do things such as limit CGI scripts. The idea behind this is that using CGI scripts is a fairly common practice and the main things that somebody would want to limit are all pretty easy to predict. The rule to make it so a CGI script can only read files and directories with the certain type is:

[image: image5]
If every script is set to this other than index.cgi (which cannot be), only index.cgi will be able to do more than reading. The next type is:

[image: image6]
This is what index.cgi has to be set to, this is because of the fact that httpd can’t execute any types other than this. The next type is to allow a file to read and write. This type is:

[image: image7]
There are of course many other things that can be done to limit CGI scripts. Using the right rules, it is possible to limit the access of CGI scripts at all to any user, including root. This brings up and interesting fact about SELinux which is that you can just as easily limit the actions of root as you can of any other user. With SELinux, CGI scripts on your apache server can be made much more secure than those that are located on a regular apache server without SELinux.
IX. Conclusion

While SELinux can be quite a chore to configure exactly the way that you want it, once you have it set up properly it’s amazing just how much control you have over everything. With SELinux you can literally control every aspect of security imaginable because you decide all of the rules and what/who they apply to. A user is confined to be able to do only what has been defined in the SELinux policy, nothing more, nothing less. One more thing of note is that a computer with SELinux has the capability of being much more secure than any windows based operating system, since windows doesn’t have a version of SELinux that can be run on it. All in all SELinux is a very viable option for creating a highly secure Linux computer that is running a httpd server or whatever else it might be running. If you have stuff that is security sensitive on your Linux machine, SELinux is definitely the safest way available to protect it.
References

1. NSA, “SELinux Background” http://www.nsa.gov/selinux/info/ (2007?)

2. Red Hat Inc., “Brief Background and History of SELinux”, http://www.redhat.com/docs/manuals/enterprise/RHEL-5-manual/Deployment_Guide-en-US/rhlcommon-appendix-0005.html (2006)
3. Trusted Computer System Evaluation Criteria. United States Department of Defense. DoD Standard 5200.28-STD (December 1985)
4. David Caplan, Karl MacMillan, Frank Mayer, “SELinux Concepts” http://www.phptr.com/articles/article.asp?p=606586&seqNum=2&rl=1 (Nov 3, 2006)
allow user_t bin_t : file {read execute getattr};

ls -Z /usr/bin/passwd

	-r-s—x—x root root system_u:object_r:passwd_exec_t /usr/bin/passwd

allow user_t passwd_exec_t : file {getattr execute};

allow passwd_t passwd_exec_t : file entrypoint;

allow user_t passwd_t : process transition;

type_transition user_t passwd_exec_t : process passwd_t;

httpd_sys_script_ro_t

;

httpd_sys_script_exec_t

;

httpd_sys_script_rw_t

;

