Modification of Pktfilter tool

Brad Baker – CS591

Modification of Pktfilter tool

Brad Baker

University of Colorado - Colorado Springs

CS591

Spring 2007 term project

5/13/2007

Table of contents:
1.0 – Abstract

2.0 – Introduction

3.0 – Benefits of Pktfilter

4.0 – Project Goals

5.0 – Goal #1: Portability to Windows XP 64-bit & Windows Vista

6.0 – Goal #2: Rule Mixing

7.0 – Goal #3: Logging Operation

8.0 – Goals #4 & #5: Remote and Local IP Address Resolution

9.0 – Summary

10.0 – References

1.0 – Abstract

In this paper I present a project which researched and modified the open-source Pktfilter stateless firewall tool for 32-bit Windows operating systems. This tool was originally developed by Jean-Baptiste Marchand, and is listed on the Sourceforge website. The Pktfilter tool configures the Windows 2000 packet filtering API, which filters packets within the TCP/IP driver. The tool was analyzed for its portability to platforms such as Windows XP 64-bit and Windows Vista, its ability to process complicated configurations not handled by the original software, its problem updating a log file, and its ability to resolve hostnames when configuring filtering. The end result is a modified application which resolves remote and local hostnames, allowing the tool to compensate for DHCP configuration changes. This tool remains a useful security mechanism for pre-Vista Windows operating systems.

2.0 – Introduction

The Pktfilter tool is an open-source project listed in Sourceforge, developed by Jean-Baptiste Marchand, created on February 12, 2003(1). As described by the software documentation, Pktfilter is: “A Win32 service to control the IPv4 filtering driver of Windows 2000/XP/Server 2003”. This tool itself does not perform packet filtering functions, it just configures the existing filtering driver within Windows operating systems.

Pktfilter is installed as a service on a target machine; administrators must manually configure the service to start automatically. With group policy controls, permission to stop the service can be restricted to authorized users, thus stopping attempts to circumvent the firewall. Pktfilter creates and references registry settings for configuration options such as file location, and it uses a text file with simple syntax to configure filtering operations. The original software includes two executable programs, pktfltsrv which configures the filtering driver and pktctl which provides a command-line interface to manage filters.

The rules file used by Pktfilter is the most critical component, its contents direct the system to pass or block incoming and outgoing packets. The syntax is simple, and is based on a general structure. The file begins with option statements, followed by a default inbound and outbound action, followed by exceptions to the default actions. Exceptions always reverse the default action for selected addresses, ports, or protocols. Comments are lines beginning with the pound “#” character. Figure A shows an example of a rules file configuration that will block fragmented packets, and only allow communication with remote hosts with TCP port 80, for non-SSL web access.

	option small_frags on eth0

default behavior = deny everything

block in on eth0 all

block out on eth0 all

pass out on eth0 proto tcp from 192.168.1.100 to any port = 80

pass in on eth0 proto tcp from any port = 80 to 192.168.1.0/24

Figure A – Example of a rules file.

Each line can define an action (pass/block), an interface (eth0/eth1), a protocol (TCP, UDP, ICMP), source computer and port information, and destination computer and port information. Local and remote host information must be specified with numeric IP address or subnet, or the “any” wildcard. Ports can be specified singly, as ranges, or using comparison operators (greater than/less than). The original software distribution contains full documentation on rule configuration.

The packet filtering API is implemented in the Windows system file iphlpapi.dll, and uses the header file fltdefs.h. The API works in the TCP/IP driver of the Windows kernel (2), and controls its filtering based on the packet header contents. The packet filtering process operates above the Network Driver Interface Specification (NDIS) level, and to have a lower level filter a network driver would need to be developed to hook into the NDIS. Because the API only inspects packet headers for source and destination address, port and protocol information, application based filtering and stateful filtering including packet inspection are not possible. The basic operation of the filtering mechanism performs a basic action and allows reversals or exceptions to that action. If the base action is block, exceptions can only be pass and further block statements won't be used.

3.0 – Benefits of Pktfilter

Connections are the root of remote threats to security on modern computing systems. Controlling potential connections through firewalls and filtering techniques is an important component in a comprehensive security model. By limiting available connections, an administrator limits potential exploit paths. Once a firewall or series of firewalls is in place, the attacker must first break through the firewalls before more harmful attacks can be launched. By limiting the network-visibility of system services such as Windows RPC and LSASS services, an administrator can improve security without disabling potentially critical system processes.

Pktfilter provides an additional layer of security, which can operate with other software firewalls, hardware firewalls, intrusion detection, etc. The technology used by the Pktfilter application can compliment network-driver firewalls, the Windows firewall, external firewalls, and many other security methods.
Pktfilter is transparent and provides a granular level of control. Transparency is achieved through the simple syntax and setup mechanism. Administrators specify all possible communication ports, which protects against some vulnerabilities in network facing services (LSASS, etc.). Because Pktfitler can block all communication and doesn't have built in allowances for basic services, all communication possibilities must be considered. For example, DNS (domain name service), DHCP (dynamic host control protocol), Windows protocols, and other services such as SFTP, SSH, database servers must all be explicitly allowed for them to operate correctly. Once a port is allowed to communicate, the destination address is defined as specifically as needed. Thus, if a system service such as LSASS needs access to a particular remote machine, communication can be accommodated while blocking LSASS to other connection attempts.

The Windows Firewall service is another technology enabled by default on Windows machines. The Windows Firewall uses a different filtering/blocking method, and since Windows Firewall runs on most machines, it is a common target for malicious users and viruses (3). If a program or user were to attempt unauthorized connections, the first target would be finding a bug or method to disable the Windows Firewall, or get the user to add an exception to the firewall. Since exceptions to the Windows Firewall can be created simply with a click of a button, it is more dangerous. With Pktfilter, administrators can prevent users from allowing unauthorized connections by controlling access to the rules file and the Pktfilter service, while Windows Firewall exceptions can be controlled though group policies. Layers of firewall technology are important when securing workstation PCs.
The Pktfilter tool can control both outbound and inbound connections; typically tools like Windows firewall and the GUI routing and remote access configuration (RRAS) only filter inbound connections. Filtering outbound connections is just as important, because it prevents malicious programs on the machine from connecting to remote hosts. For example, if a user adds a malicious program to the system by opening an email attachment, that program will be unable to communicate outside of the machine unless it uses authorized ports. If the machine doesn’t need general Internet access, the likelihood that the malicious program will be cut off is greatly increased. Overall, outbound communication control is an often overlooked detail that has real benefits for workstation security.

As an example of the result of a restrictive Pktfilter configuration, see Figures C and D. Figure C shows the nmap output for a Pktfilter machine before starting the service. Note the system service ports, such as RPC, Netbios, and LSASS, which typically remain open when using tools such as Windows Firewall. Figure D shows the nmap output from the Pktfilter machine after running the service. The only allowed communication is the Windows file and print sharing port, TCP 445.

	Starting Nmap 4.20 (http://insecure.org) at 2007-05-07 11:16 Mountain Daylight Time

Interesting ports on 192.168.1.100:

Not shown: 65530 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

1026/tcp open LSA-or-nterm

3476/tcp open unknown

MAC Address: 00:14:85:1D:C3:F3 (Giga-Byte)

Nmap finished: 1 IP address (1 host up) scanned in 33.797 seconds

Figure C – Target machine before Pktfilter starts.

	Starting Nmap 4.20 (http://insecure.org) at 2007-05-07 11:18 Mountain Daylight Time

Interesting ports on 192.168.1.100:

Not shown: 65534 filtered ports

PORT STATE SERVICE

445/tcp open microsoft-ds

MAC Address: 00:14:85:1D:C3:F3 (Giga-Byte)

Nmap finished: 1 IP address (1 host up) scanned in 610.859 seconds

Figure D – Target machine after Pktfilter starts.

4.0 – Project Goals
Although Pktfilter is a useful security tool on non-Vista Windows operating systems, there are several shortcomings that this project was intended to investigate.

As stated in the software documentation, the Pktfilter tool only operates on 32 bit versions of Windows 2000, Windows XP, and Windows Server 2003 operating systems. The primary goal of this project was to determine if the tool could be modified to work on the Windows XP 64-bit and Windows Vista operating systems. If the tool could operate on those operating systems, this project would develop a version to use on those operating systems.

The primary filtering mechanism of the API is based on a default action and exceptions to that action. The default action and the exception actions are always opposite of one another; if the default action is block, the exceptions must be pass, and vice versa. This pattern restricts some configurations that could be useful when securing a machine; these configurations are referred to as “mixed rules”. Rule mixing would provide the ability to apply the default action to selectively reverse exception rules. For example, a typical rules file configuration could have a default action to block all connections, and allow TCP port 80 to any remote host for general web browsing. With such a configuration, the administrator may wish to block selected IP addresses of dangerous websites. Because the software doesn’t support rule mixing, a user cannot block an address after an exception has allowed access to the address. This project’s second goal intended to discover if rule mixing was a limitation of the implementation or the underlying system, and to fix the problem if possible.

According to the software documentation, the Pktfilter tool maintained a log file in its primary directory that tracked all packets that were filtered by the underlying API. On a new installation, this log file is created installing the service, but it is not updated when the service runs. Logging operations are valuable for finding what types of attacks the machine experiences which are blocked by the filtering system. Determining why the logging didn’t work and if the problem could be fixed was the third goal of this project.

The fourth and fifth goals of the project attempted to make the configuration process simpler, more convenient and adaptable to changes in the network. The original Pktfilter tool required numeric IP address specification for both remote and local hosts, and it supported subnet masks for wide range addressing. The fourth goal of this project was including DNS lookup functionality so users could provide remote hostnames rather than static IP addresses. By providing DNS lookup services, the rules file could remain static while DHCP or other processes changed the IP address of remote computers. This function would work best when the local computer needed to access a service on a specific machine. The function is less useful when controlling targets of general web browsing, because websites reference many remote machines. This project’s fifth goal was adding a symbol to the rules file to specify the local machine. A local host lookup would allow rules to be more specific about allowed communication, and the rules file wouldn’t need to be updated when DHCP assigned a new address. Addressing the local machine is important in the rules file, because each rule has a source and destination address, and a direction of in or out. The local machine should always be the source of outbound communication, and the destination of inbound communication. Because the source and destination is known in those cases, the value for the source and destination could be set to the wildcard value of “any”. However, allowing packets that have possibly unexpected IP addresses in the source or destination could be a sign of malicious activity, for example IP address spoofing. It is a safer policy to use the specific local host IP address to protect against unusual incoming and outgoing packets.

5.0 – Goal #1: Portability to Windows XP 64-bit & Windows Vista

The primary project goal was researching issues with porting the tool to the 64-bit version of Windows XP and the Windows Vista operating system, and implementing the tool on those platforms if possible. When the software was configured and built for an x64 (Windows 64-bit) platform, it operated without any code changes. However, after considerable testing with build configurations and program setups, a common executable could not be developed to operate on both 32 and 64 bit versions of Windows. As of project completion, the two platforms will use different versions of the main executable program.

Windows Vista does not include the Windows 2000 packet filtering API, it has been replaced with the Windows Filtering Platform (WFP) (4). The WFP system is a much more robust and functional interface for network traffic control, and can be used as a stateful firewall. The WFP system supports both IPv4 and IPv6, it can control access based on the application using the port, rather than just opening the port as the Pktfilter tool does (5). Additionally, the WFP system provides boot-time security for the TCP/IP interface, whereas the current packet filtering API takes about two minutes to become fully operational after system boot. The filtering platform allows a user to develop external callout modules that can inspect the content of packets, providing a deeper level of content control. Overall, the Windows Filtering Platform is an interesting technology that a future project will be devoted to exploring in more detail. Due to the lack of availability of Windows Vista and the overall goal of improving the existing Pktfilter tool rather than developing a new firewall system, this project did not pursue the filtering platform in more detail.

6.0 – Goal #2: Rule Mixing

The second goal of the project was investigation into the support of rule mixing, which would allow the system to block communication to specific machines when prior rules allowed that communication through an exception to the default rule. Rule mixing would be similar to the function of Unix iptables chains, where the packet is blocked if it matches any of the block criteria in a series of rules. Rule mixing would allow an administrator to specifically block IP addresses of remote attackers regardless of prior considerations that allow the communication. Unfortunately, rule mixing is not possible based on the underlying API; it is only designed to enforce a default action with opposing exceptions. With testing, this effect was verified. When the program was modified to load additional block rules into the API, they had no effect on filtering. Additionally, the original MSDN articles on the primary filtering functions, PfCreateInterface and PfAddFiltersToInterface describes the basic function of the default processing rule and reversals to that rule (6). Because the Pktfilter service configures the filtering API and doesn’t filter packets, it was not possible to implement rule mixing.

7.0 – Goal #3: Logging Operation

The original software both documents and attempts to process a log file to track packets blocked by the system, for troubleshooting and system monitoring purposes. This log file does not operate correctly on new installations of the program, in these cases the log file is created but no data is ever written to it. As the third goal of this project, this problem was investigated and a fix was attempted. Initially, the operating system configuration was tested to verify that a system level configuration wasn’t preventing the file from being updated. Various changes were made such as modifying service credentials, modifying permissions on the file, and exploring security options. There was no change in program behavior. Following the system level exploration, significant efforts were made to determine if the program was at fault, or to find at what step the program failed to update the log file. The logging operation of the original program was accomplished through the use of a separate thread within the process. The thread waited for an event to be triggered to perform the log file processing. The event was designed to be triggered within the API itself; however the API never created the event. After attempting several fixes and working through the logic of the threaded process, a programmatic solution was abandoned. After additional research, particularly on the project’s Sourceforge site, it was determined that Windows XP service pack 1 broke the logging function. It should be possible to fix the logging problem by replacing the DLL containing the API, iphlpapi.dll, with a copy from a pre-SP1 release of Windows XP. However replacing such a system DLL is extremely risky; it could potentially destabilize the system and open operating system vulnerabilities closed by the patch. Because the root of the problem is a system issue and an operating system patch, the logging mechanism was not fixed. All new Windows installations of the program will fail to update the log file contents.
8.0 – Goals #4 & #5: Remote and Local IP Address Resolution
This project's fourth and fifth goals are closely related, the former working with automatic IP address resolution for remote machines, while the latter resolves the local machine address. While DNS and hostname lookups may introduce a new security risk to the machine, the filtering service would gain the flexibility to automatically adjust for both local and remote IP address changes. Ideally, a special syntax would be used to trigger the DNS and local host mapping, if the user didn’t want to rely on dynamic addressing, they would simply not use the extended syntax.

For this project, the square bracket symbols, “[“ and “]”, were used to begin and end the remote hostname string to be queried through DNS. For example, the user would replace an IP address “128.198.1.212” with a string “[www.uccs.edu]” in the rules file. For local host IP address lookups, the keyword “me” would be used. For example, rather than specify the actual IP address “192.168.1.100” or the “any” keyword, the user would use the keyword “me”. The program would then create filtering rules based on the current local IP address, so the rules would compensate for DHCP changes.

The DNS and local host lookup functions were implemented within the rule processing section of the program, during the file parsing segment and before the construction of the filter data structure. The filter data structure is a linked list of rules passed to the API to control packet filtering. One design decision that developed over the course of the project was the method used to query DNS. Initially, the function DnsQuery_A(), implemented in the base windows DNS header “windns.h”, was used to translate hostnames into IP addresses. After testing and further research, the project was modified to use gethostbyname() in the Windows sockets library “winsock2.h”, and finally getaddrinfo(), also implemented in Windows sockets.

The DnsQuery_A() function is a generic DNS query tool, which allows a program to request a variety of DNS record types and provides direct control over the returned records (8). When the project queried DNS through the DnsQuery interface, special handling was required to correctly parse multiple returned DNS records. In some cases a machine represents multiple IP addresses, and a hostname is an alias for a secondary name. In these cases, the developed program must correctly parse through multiple returned records to obtain the desired IP address information. For example, the simple address “www.yahoo.com” maps to “www.yahoo-ht3.akadns.net” when a lookup is performed. An nslookup command will verify this concept. Because of the additional processing and risk associated with incorrectly processing the returned DNS record, this function wasn’t used in the solution.

The gethostbyname() function is much simpler to operate than the DnsQuery function. This function takes a remote hostname directly and returns a pointer to a hostent structure that contains information about the host, including its IPv4 address (9). Finding the IP address from the hostent structure is a straightforward process. This method produced a workable solution to the DNS lookup problem, however additional research determined that the gethostbyname function wasn’t the preferred solution. The getaddrinfo() function was determined to be the best method for querying DNS records because of the simplicity granted through the Winsock library and the current features it supports. The getaddrinfo function is the accepted replacement for the deprecated gethostbyname function (9), so using it is preferable in all cases possible. Additionally, the getaddrinfo function is protocol independent and uses error codes recommended by the Internet Engineering Task Force (IETF), so it is more standards compliant (10). Using the getaddrinfo function, this project successfully modified the Pktfilter tool to query DNS records and insert the returned IP address into the normal filtering structure of the application. The modifications check for malformed input by restricting empty requests “[]” and restricting all hostname requests to 65 characters. Safe functions are used to capture and copy input data so buffer overflows are not possible. For requests that fail due to an empty string, a long string, or a non-existent hostname, the parsing does not fail and stop the service. Rather, the service is allowed to start and initiate filtering, however the rule is modified to allow the loopback IP address (127.0.0.1) the intended access. For example, if a user requested http access over TCP port 80 to the non-existent hostname “[test.invalid.error]”, then the loaded rule would allow access for 127.0.0.1 over TCP port 80. This solution may not be the ideal method for handling this type of bad input, but for the context of the project it was determined an acceptable solution.

The Winsock libraries also provided the solution for the local host address resolution problem. Rather than obtaining the hostname string from the input file, the modified Pktfilter tool identifes a potential local host lookup with the “me” keyword in the rules file. When a local host lookup is needed, the program uses the Winsock function gethostname() to get the local computer hostname. Then the hostname is passed to the getaddrinfo function to find the IP address, much like the remote DNS lookup. The IP address is substituted when constructing the filtering rule.

Because the IP address resolution of remote and local host machines through DNS can return unexpected results in cases of network problems or errors with the computer’s ability to query DNS, a log file was created to track the resolution results each time a rules file is loaded to the system. The Pktfilter tool was modified to reference an additional registry value “DnsLogFile” in the key “HKLM\SYSTEM\CurrentControlSet\Services\PktFilter”, this value stores the path to the user selected DNS query log file. The log file is appended to each time a rule parsing session begins, the log file tracks one instance of the local host lookup result, and each instance of all remote host lookups. The tool tracks only one instance of the local host lookup because it is typically a very common value and occurs on every rule of the file. Every remote host lookup is tracked to clarify for the user which translations were performed, and to reduce the complexity of the modified software. Figure E shows an example of a DNS log file segment from a single rule parsing section. Note the file captures failed (non-existent) and truncate (longer than 65 characters) hostname requests. Figure F shows the listing from the Pktfilter program “pktctl” of the currently active rules for the same input as the DNS log entry, note the failed resolutions change to 127.0.0.1 filtering rules.

Begin rule file parsing, GMT: 2007-05-06 19:04:28

 > local 'me' symbol resolved : (192.168.1.100 : artos)

 > Remote DNS lookup resolved : (66.35.250.150 : slashdot.org)

 > Remote DNS lookup resolved : (66.35.250.150 : slashdot.org)

 > Remote DNS lookup resolved : (209.131.36.158 : www.yahoo.com)

 > Remote DNS lookup resolved : (209.131.36.158 : www.yahoo.com)

 > Remote DNS lookup FAILED : (- : test.my.blah)

 > Remote DNS lookup FAILED : (- : test.my.blah)

 > Remote DNS lookup FAILED : (- : http://www.crh.noaa.gov/forecast/Map)

 > Remote DNS lookup FAILED : (- : http://www.crh.noaa.gov/forecast/Map)

 > Remote DNS lookup resolved : (128.198.1.212 : www.uccs.edu)

 > Remote DNS lookup resolved : (128.198.1.212 : www.uccs.edu)

 > Remote DNS lookup resolved : (72.14.253.104 : www.google.com)

 > Remote DNS lookup resolved : (72.14.253.104 : www.google.com)

END, GMT: 2007-05-06 19:04:33

Figure E – Example of a log file section.

	# input rules

pass in on eth0proto udp from any port = 53 to any

pass in on eth0proto tcp from 66.35.250.150 port = 80 to 192.168.1.100

pass in on eth0proto tcp from 209.131.36.158 port = 80 to 192.168.1.100

pass in on eth0proto tcp from 127.0.0.1 port = 80 to 192.168.1.100

pass in on eth0proto tcp from 127.0.0.1 port = 80 to 192.168.1.100

pass in on eth0proto tcp from 128.198.1.212 port = 80 to 192.168.1.100

pass in on eth0proto tcp from 72.14.253.147 port = 80 to 192.168.1.100

pass in on eth0proto udp from any port = 67 to any port = 68

Figure F – Example of loaded filtering rules, including failed rules.

9.0 – Summary

This project's overall goal was to improve or learn about the limitations of the open-source Pktfilter firewall tool. From the overall goal, five key areas were identified: portability, rule mixing, logging problems, remote host IP address resolution, and local host IP address resolution. The project was successfully ported to the 64-bit version of Windows XP; however it couldn't be ported to the Windows Vista operating system due to system issues. Specifically the API does not exist on Windows Vista. Rule mixing and the logging problems could not be improved upon, due to larger system issues, specifically the design of the API and a security patch from Microsoft. In the end, remote host and local host IP address resolution was a success, using the Winsock library functions. Safeguards were implemented for handling the new syntax from the rules file, and logging was implemented to notify the administrator of actions taken when setting up the filtering rules.

Although several goals were not successful, research into the problem and the software in general covered many topics such as threading, service programming and process messaging in a Windows environment, and a model for bringing user defined rules to a firewall implementation. The research into DNS querying was valuable and demonstrates a technology that many applications rely on to function correctly on the Internet. Working with DNS queries with a security project raises questions about the safety of the DNS system and the likelihood that it could be used to maliciously affect a system's processes. DNS servers, like any system are vulnerable to compromise, as highlighted by the recent flaw in Microsoft server based DNS systems (11). However, because the local machine's DNS query ability should be intact if the system hasn't been compromised, and DNS is relied upon by many network services, the risk associated with the technology is acceptable for this project. In future revisions to the software, possible enhancements include keyword substitution for port numbers, so users won't have to specify the numeric value for all ports. Also, there is a flaw in the DNS query function of the current software. If the Pktfilter configuration doesn't allow communication on the DNS query port, UDP port 53, then DNS queries will timeout. The program doesn't handle the timeout situation well, due in part to the Winsock functions being used. A future enhancement would fix the DNS query timeout problem. Additional risks associated with relying on a tool such as Pktfilter include IP address spoofing, which will negate the benefit of analyzing packet headers. However, blocking all listening services from unknown remote host access is useful to dissuade attackers that use network scanning techniques to target vulnerable systems. A good Pktfilter configuration also blocks ICMP ping requests, so they machine is nearly invisible to most remote hosts.
The end result of this project will be of practical use, primarily because the IP address resolution allows a rulefile to accommodate network configuration changes. The modifications don't introduce additional vulnerabilities to users of the system, because the rules file resides in a protected directory. Relying on DNS query results can be risky, but is an acceptable solution at this time. In the future, a low level firewall such based on this design can be implemented for Windows Vista using the Windows Filtering Platform.

10.0 – References
1. Title: Sourceforge project site for original Pktfilter.
a. URL: http://sourceforge.net/projects/pktfilter/
2. Title: Windows network data and packet filtering introduction.
a. URL: http://www.ndis.com/papers/winpktfilter.htm
3. Title: Summary of Windows Firewall operation.
a. URL: http://technet2.microsoft.com/windowsserver/en/library/3ccb6af5-d960-4a8d-b12b-70692dc47bf41033.mspx?mfr=true
4. Title: Windows Filtering Platform introduction.
a. URL: http://www.microsoft.com/whdc/device/network/WFP.mspx
5. Title: Windows Filtering Platform details and MSDN header page.
a. URL: http://msdn2.microsoft.com/en-us/library/aa363967.aspx
6. Title: Archived MSDN articles for PfAddFiltersToInterface and PfCreateInterface.
a. URL: http://msdn2.microsoft.com/en-us/library/aa376640.aspx
b. URL: http://msdn2.microsoft.com/en-us/library/aa376646.aspx
7. Title: Logging problem information from Sourceforge site.
a. URL: http://sourceforge.net/tracker/index.php?func=detail&aid=700168&group_id=69960&atid=526260
8. Title: MSDN - DnsQuery function information

a. URL: http://msdn2.microsoft.com/en-us/library/ms682016.aspx
9. Title: MSDN – GetHostByName function information

a. URL: http://msdn2.microsoft.com/en-us/library/ms738524.aspx
10. Title: MSDN – GetAddrInfo function information

a. URL: http://msdn2.microsoft.com/en-us/library/ms738520.aspx
11. Title: Windows DNS server vulnerability, April 2007

a. URL: http://www.microsoft.com/technet/security/advisory/935964.mspx
PAGE
- 9 -
5/13/2007

