New Computer Security Threat
Ehab B. Ashary
Univ. of Colorado at Colorado Springs

CS591 Fall 2010

Email:eashary@uccs.edu

Abstract

As numbers of interactive web applications have grown rapidly over the last years, the quantity and impact of security vulnerabilities in such applications have increased as well. Moreover, those vulnerabilities have greater impact than vulnerabilities in other kinds of applications since their accessibly make them easy to abuse and attack. Clickjacking is a web-based attach that has recently received wide media coverage. In this type of attack, the attacker uses multiple transparent layers to trick a web user to click on embedded malicious code or script on a website, often by utilizing Iframe vulnerability.
This paper will provide an overview of ClickJacking attack and outline some of the defense technique against this type of attack.
1. Introduction

The ClickJacking technique was introduced in 2008 by Robert Hansen and Jeremiah Grossman as a way to perform cross-domain attacks by ‘hijacking’ a user mouse clicks to perform actions that the user did not intend [8]. To achieve this, an attacker will choose a clickable area on a website that the user is currently authenticated on, for example, Facebook, Twitter, webmail application, or a bank’s website. Moreover, a malicious website will load a page from the website inside an iframe, using Cascading Style Sheet (CSS) to hide all except the targeted area of the page. The targeted section might be displayed so that it appears to be part of the attacker’s site or fully transparent and layered on top of another element on the site. JavaScript may also be used to position the iframe under the mouse cursor, such that the user will click on the target no matter where they click on the malicious page[4].
ClickJacking attacks have so far targeting social sites such as Facebook [6] and Twitter [11]. However, it is not known whether more attacks are taking place. However, researchers show that framing attacks on mobile site can have devastating effect [3]. They develop a new attack called tap-attacking that uses features of mobile browsers to implement a strong ClickJacking attacks on phones. Therefore, ClickJacking attacks are not limited to desktop browsers.
Jeremiah Grossman suggested in his blog [5] that ClickJacking will not become a popular tool among attackers to utilize until other vulnerabilities such as Cross-Site Scripting and Request Frogy becomes less widespread. However, the problem should be taken seriously before it is too late.
2. ClickJacking Definition and Examples
Cross-side scripting as defined on OWASP the Open Web Application Security Project “is when an attacker uses multiple transparent or opaque layers to trick a user into clicking on a button or link on another page when they were intending to click on the top level page. Thus, the attacker is "hijacking" clicks meant for their page and routing them to other another page, most likely owned by another application, domain, or both. [7]”.
For example, the attacker may be interested in using Twitter to spread his malicious website by tricking the Twitter’s users to post his link on their Twitter profile [10]. To do so the attacker first has to create a website contains his malicious code, which will be explained later.
[image: image1.png]

Next, the attacker embeds Twitter.com within his website on a transparent Iframe. However, the “Don’t Click” button must be aligned with the invisible “Update” button of Twitter . See figure (1)

[image: image2.emf]
Figure 1 :Don’t click example
The user believes that, he clicked on the “Don’t Click” button, but in reality, he clicked on the transparent “update” one and added the malicious link to his profile. Notice that Twitter’s status can be populated from URL by using

http://twitter.com/home?status=Don’t Click: http://tinyurl.com/amgzs6
where” Don’t Click: http://tinyurl.com/amgzs6” is the massage that we want to post. See figure (2)

[image: image3.png]Twitter / Home - Windows Internet Explorer

ORIl 't/ twittercom status=Dont2e20Click2%20http: tinyurl com/amgzs

File Edit View Favorites Tools Help

* Norton- © search Q- @cwseons -

i Favorites | 3 Tuiter / Home

Confirm your email address to access all of Twitter's features. A confirmation messa
Resend confirmation - Update email address - Leam more »

What’s happening?

Dont Click: hitp:/tinyurl com/amgzse

103 Tweet

imeline @Mentions Retweets v Searches v Lists v

This is your homepage @eashary1

It's Iaoking mighty bare right now. When you fallow people their updates wil
appear here. 50 go find some Interesting people to follow!

“ou can tell the world what's happening in the bax above

Nete that your Tweets wil e avalable pubicly.
ou can make your Twveets private on your account page.

Figure (2) : Twitter’s status populated from URL
Following is the malicious code used by the attacker

<IFRAME style={

width: 550px; height: 228px;

top: -170px; left: -400px;

position: absolute; z-index: 2;

opacity: 0; filter: alpha(opacity=0);

}

scrolling="no"

src="http://twitter.com/home?status=Don’t Click: http://tinyurl.com/amgzs6">

</IFRAME>

<BUTTON style={

width: 120px; top: 10px; left: 10px;

position: absolute; z-index: 1;

}>

Don’t Click

</BUTTON>

The attacker uses the width and height properties to make the position absolute on the malicious page and the scrolling property set to “no” in order to avoid the occurrence of the scrolling bars. Moreover, the property opacity, which defines the visibility percentage of the iframe (1.0 means” complete visible” and 0.0 means “complete invisible”, set to 0. Furthermore, the attacker’s code specifies position tags to fit the visible page to the hidden one. However, JavaScript can be used to allow the attacker to dynamically align the framed content with the user’s mouse cursor. The z-index property specifies the stack order of an element. An element with greater stack order is always in front of an element with lower stack order. In other word, in our example, the invisible button will be placed on top of the visible one and clicking on it causes the malicious code to fire.

As exposed, ClickJacking unlike other web vulnerabilities is not a result of a bug in a web application. On the contrary, it is an outcome of misuse of some HTML/CSS features, combined with the way in which the browser allows the user to interact with the invisible parts of a website.
2. ClickJacking Defense
A number of techniques to mitigate the ClickJacking problem and control or prevent a website from being framed within other website have been implemented. This section explains and discuses two of the most used techniques and gives some advices and solutions to the Web application user in order to protect themselves form such attack.
2.1. The X-Frame-Options HTTP Response Header
Back in January of 2009, windows announced IE8’s support for X-Frame-Options that can be used to defense against ClickJacking attack [12]. Later on, other browsers such as Opera 10.50, Safari 4, Chrome 4.1.249.1042, and Firefox 3.6.9 start to support the new options. In order to check if your browser supports the x-frame-option the following link can be used.

http://www.enhanceie.com/test/clickjack/
If the permission of the frame is denied, IE8 and Opera will show a massage that allows the user to open the framed website in a new window. On the other hand, Safari and Chrome will render an empty frame.
Web developers can send the new frame as part of the HTTP response to restrict how their webpage may be framed. If the x-factor-option contains “DENY”, the browser will prevent the page from being rendered within a subframe no matter where the parent frame is located. Conversely, if the value contains the option “SAMEORIGIN”, the browser will block the page from being rendered only if the origin of the parent frame is different from the origin of the frame containing the x-frame-options instruction.
To configure Apache to send the x-frame-options header for all pages, the following should be added to .htaccess

Header append X-FRAME-OPTIONS "SAMEORIGIN"

Or

Header append X-FRAME-OPTIONS "DENY"

Both options cannot be used as the same time for the same page. In order to set up the x-frame-options under IIS, open up the Internet Service Manager, click the HTTP header tab, then click the add button in the Custom Headers section . In the text box for Customer Header Name enter “X-Frame-Options” and in the Custom Header enter “DENY” or “SAMEORIGIN” [1]
X-frame-options might be an effective method to mitigate from ClickJacking attack. However, the number of the sites that implemented this method is very low [9]. Moreover, the policy needs to be specified for every page. Furthermore, the current implementation dose not allows the use of a white-list of the domains that are allowed to frame the page. In other words, one domain is allowed to be used. Finally, web proxies can add and delete headers. Therefore, if a web proxy delete the x-frame-options head, the site losses its protection.
2.2. Frame-Breaker
Frame-Breaker or FrameKillier is the most common method to defend against ClickJacking. It is a JaveScript code that needs to be added to all pages that the developer wants to prevent from being framed within other pages. The typical source code for a frame-breaker script is:
<script> if (top!=self) top.location.href=self.location.href</script>
Frame-breaker is widely used to protect against ClickJacking. Unfortunately, it relies on the end-user’s browser enforcing their own security which would make it unreliable since the user could disable the JavaScript support on their client. Moreover, the user’s client would be modified by a virus or even flawed. Furthermore, many ways of defeating this technique have been made public. [2]. some will be outlined here

2.2.1. Double Framing
Some frame busting techniques navigate to the correct page by assigning a value to parent.location. This works well if the victim page is framed by a single page. However, if the attacker encloses the victim in one frame inside another (a double frame), then accessing parent.location becomes a security violation in all popular browsers, due to the descendant frame navigation policy. This security violation disables the counter-action navigation.
2.2.2. The onBeforeUnload Event

A user can manually cancel any navigation request submitted by a framed page. To exploit this, the framing page registers an onBeforeUnload handler which is called whenever the framing page is about to be unloaded due to navigation. The handler function returns a string that becomes part of a prompt displayed to the user. Say the attacker wants to frame PayPal. He registers an unload handler function that returns the string "Do you want to exit PayPal?” When this string is displayed to the user is likely to cancel the navigation, defeating PayPal's frame busting attempt.

The attacker mounts this attack by registering an unload event on the top page using the following code:
<script>

Window.onbeforunload =function()

{

Return “Do you want to exit PayPal?”;

}

</script>

<iframe src=”http://www.paypal.com>
2.2.3. Restricted Zones
Most frame busting relies on JavaScript in the framed page to detect framing and bust itself out. If JavaScript is disabled in the context of the subframe, the frame busting code will not run. There are unfortunately several ways of restricting JavaScript in a subframe:
<iframe src=http://example.com security= “restricted”></iframe>
The resulting frame will have JavaScript disabled causing the frame busting code not to run.
2.2.4. Mobile Sites

Many website serve a mobile version of their main pages. Most of these sites often deliver the same functionality of their main pages. However, most sites do not framebust their mobile sites due to the mobile browser limitation or poor design implementation. This enables the attacker to ClickJack the mobile site and gain control of both mobile and main versions.
2.3. Client Side Protection
Unfortunately, up to date there is no automatic detection for this attack within the current browsers .However other countermeasures could be using a non-graphical Web browsers such as Lynx .Moreover, install NoScript firefox’s plug-in that blocks embedded content from untreated domains. Furthermore, the user should always update his/her installed products with the latest security updates and use a trustful antivirus program. Finally, the user should be more carful while browsing and reading his/her email and stay away from any suspicious sites and emails.
I believe for an automatic detection , a new plug-in should be added to the current browser in order to check whether more frames from deferent domains is overlapped within the same page. Moreover, in order to trigger an alarm, one of the frame’s objects is invisible, clickable, and overlaps with the other visible and unclickable object. This solution should have little impact on user’s habits and a reasonable efficiency.
3. Conclusion
ClickJacking is one of the newest attacks on the internet and should be taken seriously by users, application developers, security companies, and browser developers before it could cause threats that are more dangerous.
This paper tries to highlight the threats behind ClickJacking attack and some of the methods to prevent them .However, Web developers should keep ClickJacking attack in their mind while developing to provide their clients with a more reliable and secure applications. Users should be aware of this kind of attack, and finally the security industry and universities should cooperate to investigate solutions that are more effective.
4. References
1. Blogging Techstacks A bacon saving resource for systems admins and site admins.

http://blog.techstacks.com/2009/06/set-x-frame-options-to-ward-off.html
2. Gustav Rydsted and others Busting Frame Busting: a Study of Clickjacking Vulnerabilities on Popular Sites
3. Gustav Rydstedt and others Framing Attacks on Smart Phones and Dumb Routers: Tap-jacking and Geo-localization Attacks

4. Insecure website

http://www.insecure.in/papers/clickjack-xss.txt
5. Jeremiah Grossman. Clickjacking 2017.

http://jeremiahgrossman.blogspot.com/2009/06/clickjacking-2017.html
6. Joey Tyson. Facebook Worm Uses Clickjacking in the Wild.

http://theharmonyguy.com/2009/11/23/facebook-worm-uses-clickjacking-in-the-
wild/

7.
OWASP the Open Web Application Security Project

http://www.owasp.org/index.php/Clickjacking
8. Robert Hansen and Jeremiah Grossman. Explanation of Clickjacking.

http://www.sectheory.com/clickjacking.htm
9. SANS Application Security Street Fighter Blog

http://blogs.sans.org/appsecstreetfighter/2009/10/15/adoption-of-x-frame-options-header/
10. Software As She’s Developed

http://softwareas.com/explaining-the-dont-click-clickjacking-tweetbomb
11. The Register. Twitter attack exposes awesome power of clickjacking

http://www.theregister.co.uk/2009/02/13/twitter_clickjack_attack/
12. Wikipedia the free encyclopedia

http://en.wikipedia.org/wiki/Clickjacking
PAGE
12

