RSA Problem and Inside PK Cryptography
Abdullah Sheneamer
University Of Colorado at Colorado Springs
Colorado Springs, CO USA

asheneam@uccs.edu

  Abstract- To prove the computational equivalence of solving the RSA problem and factoring integers is a longstanding open problem in cryptography. This paper will show that efficient generic ring algorithm wich solves the low-exponent RSA problem can be converted into an efficient factoring algorithm.
I.    INTRODUCTION

           RSA is an algorithm for public key cryptography which is discovered by Rivest, Shamir and Adleman in 1977 at MIT.
RSA algorithm is used for both public key encryption and digital signature. RSA’s keys have length is 1024-bits. 
The web servers and browsers use RSA algorithm to secure web traffic, the email use it to ensure privacy and authenticity, and it is used to secure remote login sessions.
       The goal of this paper shows RSA problem, the attacking the RSA and demonstrating some mathematical tools they use. And show some algorithms.
        The public key is (n, e) and the private key is (n, d), the values of p, q and φ(n) are private, e is the public or encryption exponent, and d is the private or decryption exponent. So, the RSA Key generation algorithm: choose two very large random prime integers: p and q, compute n and φ(n): n = pq and φ(n) = (p-1)(q-1), choose an integer e, 1 < e < φ(n) such that: gcd(e, φ(n)) = 1(where gcd means greatest common denominator),and Compute d, 1 < d < φ(n) such that: ed ≡ 1 (mod φ(n))

          To encrypt a plaintext M for reciver using receiver’s public key (n,e) by this equation : C = M^ e (mod n).[1]
To decrypt a ciphertext C for sender using sender’s private key (n,d) by this equation : M = C^ d (mod n)
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Figure1: RSA Keys
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Picture 1: Rivest,Shamir, and Adleman
II.   History
    In 1976, Stanford: Diffie, Hellman, and Merkle independently invent (and make public) a secret-key generation algorithm. In1977, MIT: Rivest, Shamir, and Adleman, based on difficulty of factoring large primes. In1978, Stanford: Merkle-Hellman public-key cryptosystem, based on knapsack (broken by Adi Shamir in 1982).

III. Relationship to Integer factoring

      III-I: Factorization Methods

           There are many methods to factor n to its prime factor. A) Trial Division: this method for factoring n is to divide the number by small prime numbers. If the reminder is zero, n is divisible by that prime number. This method works to repeat the procedure to look for all the prime numbers less than or equal to the square root of n that can divide n. B) pollard’s P-1: it’s discovered by John M. Pollard in 1974. It’s is relayed on Fermat’s Little Theorem which states that where a, p are integers that are relatively prime (i.e. GCD (a, p)=1).  a(p-1)=1 (mod p) and  2x=c (mod n), So Suppose n is composed of some prime factor p, the above congruence can be written as  2x=c+kn (where k is an integer) 2x=c+k(n/p)p 2x=c+k’p 2x=c (mod p) C) Quadratic Sieve: this algorithm  was the most effective general purpose factoring algorithm between 1980’s to 1990’s. This algorithm is an improvement over the Fermat’s method and Dixon’s random square method for performing factorization. It is the method of choice for factoring integers of between 50 and 100 digits.

The idea of this algorithm is to find solutions where 

x2=y2 (mod n). This would imply (x-y)(x+y)=0 (mod n). By calculating GCD((x-y), n) and GCD((x+y),n), it may be possible to find a non-trivial divisor of n. In particular, when n is the product of two prime numbers p and q, the probability of finding a non-trivial factor is 2/3. These are some methods of factorization.
      III-II: Factorization attacks on RSA

       Factoring is splitting an integer into a set of smaller integers (factors) which, when multiplied together, form the original integer. The problem of factoring is that to find 2 and 7 given 14. The Public key cryptosystem based on the Integer Factorization problem. So, this problem in factoring that an RSA modulus would allow an attacker to figure out the private key from the public key. 
To solve this problem we should choose two large primes with a larger modulus so, the primes become larger and so, the attacker needs more time to figure it out and Tow primes should be one is much smaller than other.see [2],[3]
If the two primes are extremely close or their difference is close to any predetermined amount, then there is a potential security risk, but the probability that two randomly chosen primes are so close is negligible.
IV: low public & private exponent RSA 

        The public exponent e is chosen to be a small value. A user genetrates an RSA modulus N and computes his secret exponent d to satisfy e*d =1 mod φ (N), where φ (N)=N+1-(p+q) is Euler’s phi function evaluated at N. low public exponent considered secure and in fact is in wide use because encryption operation x(x^e mod N can be performed very quickly.
Using a small public exponent makes the public key encryption and public key signature verification faster and more efficient. There are many RSA systems use e=3 to make encrypting faster. But there is vulnerability with this attack. If the same message is encrypted 3 times with different keys (that is same exponent, different modulo) then we can retrieve the message.[2]
How they Generalizing the exponent e ? 
Suppose we have two messages  m1,m2 related.

M2= α m1 + β

Suppose that messages are encrypted by RSA with exponent of 3 using a single public modulus N.
Ci = mi^3 mod N, i =1,2 then c1, c2, α, β, N 
The secret message should be calculated by this: [5]
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           m1  mod N1             
      The algebra is more transparent if we assume (without loss of generality) that α = β= 1
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      m  mod N1  
if the RSA exponent is e = 3 and we have k = 2 messages and polynomial relation of degree = 1, then we can recover the messages mi algebraically and When e = 5, setting c1 = m5 mod N and c2 = (m+1)^5 mod N , we can find
from the ciphertexts and the coefficients of the polynomial relation:       



m=

         The low private exponent RSA is not secure because when low exponent is used and a single message is encrypted by the sender directed for several recipients who have different public keys. By observing the ciphertexts only, an attacker can derive the plaintext without requiring any knowledge of any recipient's secret key This is called “ Hastad’s broadcast attack. 
We assume that the exponent d is small, for example d=3 and let the private keys be (n1,3) , (n2,3) , (n3,3), where each ni is a product of two large secret primes, and where the message m satisfies m<ni. Assume that n1,n2,n3 are pairwise relatively prime. Suppose that you send the same RSA encrypted message m to d=3 people. Assume m^3(mod n1) is intercepted, as is m^3(mod n2) and also m^3(mod n3). This assumption is a standard hypothesis when constructing an attack, since the encrypted messages are presumably traveling in the open). The Chinese remainder theorem allows one to determine m^3(mod n1 n2 n3).[2]
V: Recovering the private key
If the attacker has computed the private key (n,d) from public key (n,e). That the attacker could decrypt C using this  equation M= c^d (mod n).
The computing d could be solved by the attacker by using some the discrete logarithm problem.The attacker could recover the private key if d is less than 160 bits. By using baby step-gaint  step metho, that  is a series of well-defined steps to compute the discrete logarithm. The discrete log problem is of fundamental importance to the area of public key cryptography
If  the RSA parameters were chosen large enough , then the attacker cannot solve the RSA problem that computing the private key.

From one of the researches “Recovering RSA Private Keys using Faulty Signatures” Researchers at University of Michigan recently devised a method for recovering the RSA private key used for signing by sifting through a collection of faulty signatures produced by the key. A faulty  signature is one where the attacker has caused bits in the signature computation to be flipped from one to zero, or zero to one. Fault patterns that consist of just a single flipped bit permit an attacker to guess and verify a small piece of the private key (called a window), and to eventually recover the entire private key given a sufficient number of such faulty signatures. The researchers ran proof-of-concept experiments to demonstrate that a 1024-bit RSA private key can be recovered from a sample of just under 9,000 faulty signatures created by manipulating the voltage level to the processor computing the signatures.
There are two main ingredients to the attack: a method to recover information about the private key given some faulty signatures, and then a method to actually generate or induce the faulty signatures. We deal with the second point first.”[9],[10]
Figure 2: Overview of public key authentication and our faultbased attack
VI: Self-reducibility

Problem:

Given a public key (nA, eA) of user A:

Assume we are given an algorithm, called ALG, which given EA(m) ≡ meA (mod nA) can find the message m for 1/ 100 of the possible cryptograms. Then Show a polynomial random algorithm which given EA(m) ≡ meA (mod nA) finds the message m with probability ≥1

2 for every cryptogram in ZnA.

The Algorithm makes t iterations of the following: Randomly Choose z C ZnA, Calculates z^eA (mod na). Lets  x = ALG(m^eA.z^eA (mod nA)). If x^eA ≡ m^eA.z^eA (mod nA) then output x · z^−1 (mod nA) and finish.

Correctness:

If algorithm ALG succeeds, outputs x such that

X^eA ≡ (m.z)^eA ≡ m^eA · z^eA (mod nA)

Then, m ≡ x · z^−1 (mod nA).

For z C Zn  {z · x : x€ Zn} = z · Zn = Zn
because if x1, x2:

z · x1 ≡ z · x2 (mod n)  which implies: x1 ≡ z^−1 · z · x1 ≡ z^−1 · z · x2 ≡ x2 (mod n)

Thus, for every iteration we have 1/100 probability of success, thus in order to find m with probability ≥ 1/2, t must satisfy:

(99/100)^t ≤1/2

t log(99/100) ≤ log 1/2

Thus, t ≥ 69 suffices.

When the cryptogram EA(m) C Zn, then we can find either p or q. Thus, we can find d and then m. [2]
Note:

Let p be a prime and g be a generator of Zp .
Thus, for a C Zp there exists z such that g^z ≡ a (mod p). This z is called the discrete logarithm or index of a, modulo p, to the base of g. We denote this value as indp,g(a) or DLOGp,g(a). DLOG is also random self reducible given a generator g of Zp .
VII: Strong RSA Assumption

           The strong RSA assumption was introduced by Bric , Pfitzmann, Fujik, and Okamoto. [1]
The problem is that given an RSA modulus n and a random z C Zn and for finding r>1 and y C Zn such that y^r = z and the choice of r may be restricted in some cases that allows to occur the flexible RSA problem, so the strong RSA assumption is the assumption that this problem is hard to solve.

The random self reducible is one of the features about the RSA problem. It has fixed n and r. so the problem of computing y= z^1/r for arbitrary  z C zn could be reduced to problem of computing y= z^1/r for arbitrary  z  C zn.[2],[6]
VIII:Chinese remainder theorem

        The Chinese remainder theorem is a result about congruence in number theory and its generalizations in abstract algebra.

Suppose n1, n2, …, nk are positive integers which are pairwise coprime. Then, for any given set of integers a1,a2, …, ak, there exists an integer x solving the system of simultaneous congruences
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Figure 3: Chinese remainder theorem
Furthermore, all solutions x to this system are congruent modulo the product N = n1n2…nk.
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      Sometimes, the simultaneous congruences can be solved even if the ni's are not pairwise coprime. A solution x exists if and only if: [image: image7.png](mod ged(n;,n;))  for all 2 and j.





All solutions x are then congruent modulo the least common multiple of the ni.
IX: Modular/Clock Arithmetic
        The Modular Arithmetic is a system of arithmetic for integers, where numbers "wrap around" after they reach a certain value—the modulus.


Figure 4: Clock of Modular Arithmeticmodular arithmetic modular arithmetic modular arithmetic
It was discovered by Swiss mathematician Leonhard Euler in 1750.
The modular arithmetic is its use in the 12-hour clock, that our day is divided into two 12 hour periods. If the time is 5:00 now, then 9 hours later it will be 14:00. That means it will be 2:00 because 5+9=14 and 14-12=2. 

        Modular arithmetic can be treated mathematically by a congruence relation on the integers that is compatible with addition, subtraction, and modification. 

       The equation: a = b (mod n) where  n is the modulus, a is “congruent” to b, modulo n, a - b is divisible by n , and a % n = b % n

So, in addition : a =b (mod n), c=d (mod n) 

a - b = jn   c - d = kn 

a + c - (b + d) = (j + k) n

then : a + c = b + d (mod n) .

And in Multiplication: ac = bd (mod n) 

In the power: a = b (mod n) ( ak = bk (mod n)

By using induction, If ak = bk (mod n),  

a . ak = b . bk (mod n), by multiplication rule

then : ak+1 =bk+1  (mod n)

for Going n times around the clock 

a + kn =b (mod n)

For example: 
38= 14 (mod 12) because 38 − 14 = 24, which is a multiple of 12. For positive n and non-negative a and b, congruence of a and b can also be thought of as asserting that these two numbers have the same remainder after dividing by the modulus n. So, 38= 2(mod 12) because of both of numbers, when divided by 12, and the rest is the same (2). EQ, and cut off part of a full division from each of the numbers by 12 is the same: 0.1666 ... (38/12 = 3.1666 ..., 2 / 12 = 0.1666 ...). From the definition of prior and we also believe that their difference, a - b = 36, a whole number (integer) multiple (n = 12, 36/12 = 3) 12.
X: Euler’s Totient function
Euler's Totient Function denoted by lower case Phi [image: image8.png]


. Euler's Totient Function [image: image9.png]


(m) returns the number of Integers less than m, including 1 that are relatively prime to m. 
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(n) = Totient(n) = Count of integers <= n coprime to n

All numbers less than p are relatively prime and there are p - 1 of them.   [image: image11.png]


(p) = p – 1 this if p is a prime.
	


For example:  [image: image12.png]


(7) = 7 – 1=6 then: 1,2,3,4,5,6 are coprime to 7.

If  p is not a prime and p and q are prime then f(pq) = (p - 1)(q - 1) = f(p) . f(q)  such as 10 then we can compute that: [image: image13.png]


(10) =(5-1) * (2-1) = 4*1 =4 then : 1,3,7,9 are coprme to 10


Figure5: Totient Function
VI-I Computing Euler's function


where each pi is a distinct prime, then

This last formula is an Euler product and is often 
written in the equivalent form (multiplying top and bottom by )

with the product ranging only over the distinct primes p dividing n.

For example:  


XI: Factorization Software
Perhaps the attacker uses software to find out the d such as Factorizer tool. if he knows the public key, he can get prime factorization p and q. 
If public key is (e,n)=(31,3599), he can find the primes p and q, and he can find d from e and the primes. So, d= 3031 
X: Conclusion 
RSA problem is hard to solve when the modulous n is sufficiently large and randomly generated.

The RSA problem is the main or the basis for the security of RSA public key encryption and RSA digital signature schemes. RSA problem for very small exponents would be easier than integer factoring. All these methods accomplish are to tell us how to better implement RSA. Until now the RSA is safe.
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