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Abstract- Meter communication encryption and key management appliances can utilize the ZigBee specification as the communication protocol.  This paper will focus on a private home smart grid architecture designed to monitor electricity usage of individual appliances, such as a refrigerator washer/dryer, and heating system. To keep the wireless signal secure, elliptic curve cryptology will be investigated.  Unlike current proposals for the Smart Grid, this paper proposes that the appliance power consumption be communicated wirelessly to a central ZigBee Controller, which then utilizes secure landline connections to communicate to the electric company.  This method eliminates the need for a network of wireless communication towers located throughout a city, thus eliminating an obvious terrorist target.
I.    INTRODUCTION

    A smart grid delivers electricity from suppliers to consumers using digital technology to monitor (and optionally control) appliances at consumers' homes to save energy, reduce cost and increase reliability and transparency. The idea behind the smart grid is to utilize devices that connect a power source (e.g. a wall outlet) to the appliance. These devices would communicate and report to the electric companies the times an appliance was used, thus reporting the amount of energy consumed.  This data could then be used by the electric company to charge more for electricity being used during peak hours of late afternoon and early evening. Through some method not devised yet, the electric company will  know what appliances are plugged into each of your Smart Grid Devices (hereafter called SGDs).  In order to avoid a blackout or brownout, the electric company could selectively turn devices off in the home. This broad power given to the electric companies raises the question of privacy since, technically, the electric company would be able to know when and for how long you used each the appliances in your home.

B.  Current Research and Government Funding
    The US Government has awarded smart grid grants providing for the installation of more than 2.5 million smart meters which allow utility customers to access dynamic pricing information and avoid periods of peak electricity use, when power is most expensive. The grants will also support the installation of other smart grid components, including more than 1 million in-home energy displays, 170,000 smart thermostats, and 175,000 other load control devices to enable consumers to reduce their energy use. Much of the funding will support upgrades to the utility power grids, including the installation of more than 200,000 smart transformers, which will make it possible for power companies to replace units before they fail. Utilities will also install more than 850 sensors that will cover all of the electric grid in the contiguous United States, making it possible for grid operators to better monitor grid conditions and allowing them to take advantage of intermittent renewable energy, such as wind and solar power[1]
    Without any incentive to install them, power suppliers simply don't do it. Most utilities find it difficult to justify installing a communications infrastructure for a single application (e.g. meter reading). Because of this, a utility must typically identify several applications that will use the same communications infrastructure – for example, reading a meter, monitoring power quality, remote connection and disconnection of customers, enabling demand response, etc.

C.  Privacy Advocates Will Soon Enter the Picture
    Consumer electronics devices now consume over half the power in a typical US home. Accordingly, the ability to shut down or hibernate devices when they are not being used could be a major factor in cutting energy use, but this would mean the electric company has information on personal consumer habits.  In addition, the electric company could, in theory, begin making educated guesses on what appliances can be adjusted (e.g. turned on/off).   A problem then arises in how the electric company determines what can safely be turned off to save energy.  For example, if a computer is left on twenty-four hours a day, the electric company has no way of knowing if the computer is being used or if it simply has a screen saver on.  The electric company could, at their discretion, decide your computer is not being used and turn it off for you .
II.    RESIDENTIAL SMART GRID ARCHITECTURE
A.   Monitoring Device
   The residential networking scheme being presented in this paper is a basic client-server architecture.  The redundancy offered in other network schemes such as mesh networking is not necessary here.  If a monitoring device fails, it should not have an adverse effect on the rest of the network.  Instead, the server will raise an alarm informing the user and electric company of the failure.    
    The computing power of the residential SGD is minimal and must allow for potentially long periods of hibernation, depending upon the device being monitored.  To this end, the ZigBee End Device (see Fig. 1) is a logical choose for H/W.  The ZigBee End Device (ZED) contains just enough functionality to talk to the parent node, the ZigBee Coordinator (ZC); it cannot relay data from other devices as would be required in a mesh architecture.  This relationship allows the node to be asleep a significant amount of the time thereby giving long battery life. Also, a ZED requires a minimal amount of memory, thereby reducing cost. [2]
[image: image1.jpg]bhe




Fig. 1 - A ZigBee Module compared in size to a Euro, slightly less than one inch in diameter
    The purpose of the SGD is to monitor the electricity usage for whatever device it connects to the main power source and send  usage values via a  wireless message in real-time to a ZigBee Coordinator.  
 B.   The Controller
    The role of server in this client-server architecture will be played by the ZigBee Controller (ZC).  There is exactly one ZigBee coordinator in each network. It is able to store information about the network, including acting as the repository for security keys.  As SGDs report to the Controller, the data is sent to the electric company using a secure internet connection.  Unlike current smart grid architectures being presented today, this approach avoids sending utility usage wirelessly to collection towers located throughout a city and instead utilizes land lines already in place and secure.  The only wireless signals that need to be encrypted are those coming from the relatively short range SGDs.  
    The ZC optionally allows for power usage to be collected within the residence, allowing for historical trends to be viewed.  Depending upon tools available for reporting purposes, the home owner can view the usage, and therefore cost, of each home appliance being monitored.  Since all data is stored at the residence, energy costs can be calculated prior to the electric company's billing cycle.  This permits transparency when it comes to the billing process.
C.   Benefits of Receiving Energy Usage
    With all this effort and expense, one might well be asking what benefits would be experienced.  Some reasons for the Smart Grid initiative include: [3]
· Increase operational efficiencies by reading more meters in a shorter amount of time.

· Reduce operational costs by eliminating time spent on hard-to-access meters.

· Improve customer satisfaction by eliminating intrusive meter readings and maintaining more accurate and reliable meter data for billing and dispute resolution.

· Improve employee and customer safety.

· Improve the quality of your billing data by eliminating manual data entry errors, performing off-cycle reads and eliminating estimated readings.

· Identify energy theft and revenue loss due to meter tamper.

· Provide usage and load profiling data to customers, rate commissioners and to support energy conservation programs.

· Improve the ability to forecast and manage peak load.

· Provide customers with accurate energy balancing and settlements transactions.

· Improve distribution system planning by utilizing real usage data.

III.    THE IMPLICATIONS OF POOR SECURITY
A.   Hardwired Smart Grid
    Monitoring and controlling appliances, or even an entire house, could conceivably be done by utilizing the power lines themselves.  That is, assuming that appliances were given unique identification codes (like a computer NIC has a hard-coded identifier), each  identified appliance could be controlled by the electric company via the very wires supplying the power.  One such approach, X-10,  was introduced in 1978 for the Sears Home Control System and the Radio Shack Plug'n Power System. It uses power line wiring to send and receive commands. The X-10 PRO code format is the de facto standard for power line carrier transmission. [4]   The X-10 commands would enable the electric company to change the status of the appliance unit (turn it on or off), even controlling the status of a living room light (on, off, dim, bright).  
    On the surface, this would seem to be the ideal solution to the power grid problem.  Unfortunately, there are several drawbacks preventing this solution:

1. slow data transfer speeds, around 60 bps
2. low reliability, due to the potential of being removed by power line filters
3. lack of security
The main requirements for a residential network of SGDs are: 

· extremely low power consumption 

· ability to accommodate long hibernation times
· simplicity 

· low cost 

While Wi-Fi and Bluetooth provide a greater bandwidth, ZigBee's lower power consumption/long battery life more than make up for the slower 250 kbps.  
B.   Securing the Wireless SGDs
    While this paper relegates the wireless transmission of power usage to within the house, it still remains that personal information must be made secure.  A hacker might be able to falsify the demand for power within multiple neighborhoods, disrupting the load balance on the local power grid and causing a blackout. Such localized power outages could cascade to other parts of the grid, expanding the blackout.
    ZigBee leverages the security model of the IEEE 802.15.4 MAC sublayer which specifies four security services: [5]
· access control—the device maintains a list of trusted devices within the network 

· data encryption, which uses symmetric key 128-bit advanced encryption standard 

· frame integrity to protect data from being modified by parties without cryptographic keys 

· sequential freshness to reject data frames that have been replayed—the network controller compares the freshness value with the last known value from the device and rejects it if the freshness value has not been updated to a new value 

The actual security implementation can be tailored through a toolbox provided by ZigBee.  This paper suggests that the 128-bit symmetric key AES be replaced with the public key encryption known as Elliptic Curve.  
III.    The Elliptic Curve
A.   The Math Behind the Ellipse [6]
    An elliptic curve over real numbers may be defined as the set of points (x,y) which satisfy an elliptic curve equation of the form: 


y2 = x3 + ax + b, 
where x, y, a and b are reals.
Let constants  a= - 4 and b = 0.67, yielding the equation:


y2 = x3 - 4x + 0.67
Graphically, this looks like Figure 2.
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Fig. 2 - Graphical Representation of an Ellipse
If y2 = x3 + ax + b contains no repeated factors (that is, if 4a3 + 27b2 is not 0, then all roots are unique), then the elliptic curve y2 = x3 + ax + b  can be used to form a group. A group over real numbers consists of the points that satisfy the elliptic curve, including the point found at infinity

B.   Adding two points on ellipse

    Now let's consider a adding distinct points P and Q.   Suppose that P and Q are two distinct points on an elliptic curve such that the two points are not reflected across the x or y axis. To add the points P and Q, a line is drawn through the two points. This line will intersect the elliptic curve at exactly one point.  This intersection point is not the solution.  Instead, the negative of that point is the solution.  Let's  call this point -R (see Fig. 3). In our example, the point -R is reflected in the x-axis to the point R.  If you added P and Q to get R (i.e. P + Q = R), then this implies R - Q = P.  Unfortunately, the solution of R + Q is also P.  This states that R + Q = R - Q, which is clearly not possible when Q is not zero, which it isn't.  Thus, the law for addition in an elliptic curve group is P + Q = R, where R is a reflection of -R across the x-axis.  If you have a curve and one or two points on that curve, and the result of adding is not on the curve, then the curve is not an elliptic curve. 
C.   Adding two points on ellipse which are reflected across the x-axis

    Recall that the group identified by this elliptical problem included O, the point at infinity.  By definition, P + (-P) = O. As a result of this equation, P + O = P in the elliptic curve group. O is called the additive identity of the elliptic curve group; all elliptic curves have an additive identity.  See Fig. 4. 
[image: image3.png]P(235,-186)
©(0.1,0836)
-R (3.89,562)
R(389,-562)

P+Q=R=(389,-562).

» =T




Fig. 3 - adding two points on an ellipse
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Fig. 4 - adding two points reflected across the x-axis

D.   Doubling the point P

To add a point P to itself, a tangent line to the curve is drawn at the point P. If the y-coordinate is not 0, then the tangent line intersects the elliptic curve at exactly one other point, -R.  The point -R is then reflected in the x-axis to R (see Fig. 5). This operation is called doubling the point P; the law for doubling a point on an elliptic curve group is defined by:
P + P = 2P = R.
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Fig. 5 - Adding P to itself
E.   Doubling the point P when the y-coordinate is 0

    The tangent from P is always vertical if the y-component is zero.  In such a case, the tangent line to the elliptic curve at P is vertical and does not intersect the elliptic curve at any other point.  By definition, 2P = O for such a point P.  If one wanted to find 3P in this situation, one can add 2P + P. This becomes P + O = P.  Thus 3P = P.  Continuing in this fashion gives:

3P = P, 4P = O, 5P = P, 6P = O, 7P = P, etc
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Fig. 6 - Doubling P when y-coordinate is zero 
F.   Simplifying the Algebra
    Although the previous sections depict the elliptic solutions graphically, we need an algebraic solution.

1. Adding distinct points

When P = (xP,yP) and Q = (xQ,yQ) reflected across the x-axis, then we can write


R = P + Q.

We know the slope of the line connecting any two points is

s = (yP - yQ) / (xP - xQ)

Using this we can determine the x and y values for the point of interest, namely R.


xR = s2 - xP - xQ
yR = -yP + s(xP - xR) 


2.  Doubling the Point P

Recall from part D of Section III, adding a point P to itself involves drawing a tangent line to the curve at point P, identifying the line intersection on the elliptic curve, and finally reflecting this point, R', across the x-axis to give us our solution, R.

Assume that yP is not 0, we can write
2P = R.

However, since we only have one point, our equation for slope becomes

s = (3xP2 + a) / (2yP ) 
Recall that a is one of the parameters chosen in the general equation for the elliptic curve.  We can write the solution of our equation in terms of x and y:

xR = s2 - 2xP and yR = -yP + s(xP - xR) 
E.   Recap of the Math
    Recall that many cryptosystems often require the use of algebraic groups. This has been the motivation for generating elliptic curve groups.  A group is a set of elements with custom-defined arithmetic operations on those elements.  The operations we have been working with are 1) doubling a point, P, and 2) adding two points, P + Q.  Also, we have been working exclusively with the set of real numbers, but now we examine two specific elliptic curve groups with the underlying fields being Fp, where p is prime, and F2m, a binary representation with 2m elements.


IV.    Elliptic Curve Groups
A.   Finite Fields of Prime Numbers
    To be used in cryptography, it is essential that a group have a finite number of points  We now consider the field of prime numbers when solving our ellipse calculations.  Let us consider the prime number 23.  F23 represents the field composed of integers from 0 to 22, and any operation within this field will result in an integer also between 0 and 22.  
Our elliptic curve equation now includes all points (x,y) which satisfy the elliptic curve equation modulo p such that  x and y are numbers in Fp.  Stated another way, we can write:
 y2 mod p = x3 + ax + b mod p,
where a and b are in Fp.  

If we let a = 1 and b = 0, the elliptic curve equation over F23 becomes 
y2 = x3 + x.
Consider the point (9, 5): 
y2 mod p = x3 + x mod p
25 mod 23 = 729 + 9 mod 23 
25 mod 23 = 738 mod 23 
2 = 2 
We now have 23 points which satisfy this equation:

(0,0)       (1,5)      (1,18)    (9,5)       (9,18) 

(11,10)  (11,13)  (13,5)    (13,18)   (15,3) 
(15,20)  (16,8)    (16,15)  (17,10)   (17,13)
(18,10)  (18,13)  (19,1)    (19,22)   (20,4) 
(20,19)  (21,6)    (21,17)
Notice that none of the x, y values are greater than or equal to 23.  Plotting these points, we get:
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Fig. 7 - Plotting solution set of F23

At first glance these points may seem scattered, but upon further investigation we notice that each x-value has two corresponding y-values.  Notice that the two y-values add up to 23.  Furthermore, each pair of y-values are centered around y = 11.5, which happens to be 23 / 2.
Elliptic curve groups over Fp have a finite number of points, which is a desirable property for cryptographic purposes.  Another desired property is the lack of round off error that occurs when finding solutions for elliptic curves over real numbers.

A.   Finite Fields of Binary Representation

The Fp produced a finite number of solutions to our ellipse without any risk of round-off error, but necessary conditions to be used in cryptology.  Nevertheless, math computations are being performed, which requires processor time.  Our choice of the ZigBee architecture requires that we minimize computation intensity as much as possible.  To that end, we now consider a binary representation with 2m elements and call it F2m.  Since this approach operates on bit strings, our Zigbee processor can perform arithmetic in this field very efficiently.
    Our elliptic curve equation, after being adjusted for binary representation, is now written:

y2 + xy = x3 + ax2 + b
The only requirement for our constants is that b not be zero.  Consider a small example where m = 4 over f(x) = x4 + x + 1. 
Let g = (0010) be a generator for the field . The powers of g are: 

g0 = (0001 )  g1 = (0010)  g2 = (0100)  g3 = (1000) 
g4 = (0011)  g5 = (0110)   g6 = (1100)   g7 = (1011) 
g8 = (0101)  g9 = (1010)   g10 = (0111) g11 = (1110) 
g12 = (1111) g13 = (1101) g14 = (1001) g15 = (0001)
Now we consider the elliptic curve y2 + xy = x3 + g4x2 + 1, where a = g4 and b = g0 =1. (Remember, b cannot be 0).  The point (g5, g3) satisfies this equation over F24 : 

y2 + xy = x3 + g4x2 + 1

(g3)2 + g5g3 = (g5)3 + g4g10 + 1

g6 + g8 = g15 + g14 + 1
Looking back at the powers of g, we can write

(1100) + (0101) = (0001) + (1001) + (0001) 

(1001) = (1001)
The fifteen points which satisfy this equation are: 

(1, g13 )  (g3, g13)    (g5, g11)  (g6, g14)  (g9, g13) 
(g10, g8) (g12, g12)  (1, g6)     (g3, g8)     (g5, g3)
(g6, g8)   (g9, g10)    (g10, g)   (g12, 0)     (0, 1)
Note that in a truly secure system, m would be closer to 160 bits.

Plotting these points on a grid would like Figure 8.  
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Fig. 7 - Plotting solution set of F24
We now have a solution to an ellipse which avoids any potential round-off error, has a finite solution set, and can be solved very efficiently by a computer.  Recalling the two basic algebraic operations we have been utilizing so far, we now get the following two general formulas:
1) Adding distinct points, P and Q.

Let  P + Q = R.  As before, the slope of the line connecting P and Q is:

s = (yP - yQ) / (xP + xQ)
We can now calculate the coordinates of the point R.

xR = s2 + s + xP + xQ + a
and 
yR = s(xP + xR) + xR + yP
2) Doubling the Point P.
Provided that xP is not 0, we write


2P = R

The slope of this new line is


s = xP + yP / xP 

We compute the x and y coordinates of our new point, R:


xR = s2+ s + a
and 
yR = xP2 + (s + 1) * xR
V.    Using the Elliptic Curve in Cryptography
A.   The Discrete Logarithm Problem
    At the heart of every encryption/decryption system is a very difficult math problem.  The success of a cryptosystem lies in the extreme low probability that a hacker can solve the problem in a timely manner.  The Discrete Logarithm Problem (DLP) is such a mathematical problem and is the basis of the Elliptic Curve cryptosystem we have been developing.  Recall that the word "discrete" means that we are working with the math of integers only.
    Two mathematical operations have been developed in this paper: point addition and doubling.  By selecting a point in a elliptic curve group, we can double it to obtain the point 2P. We also have the necessary knowledge to add the point P to the point 2P to obtain the point 3P.  Continuing in this manner yields the point nP, where n is a scalar multiple of P.  The Elliptic Curve Discrete Logarithm Problem (ECDLP) is based upon the intractability of scalar multiplication products. 

    If we are given an elliptic curve group, we are interested in determining the elliptic curve discrete logarithm problem, which in our case is equivalent to finding a scalar multiple of a point P.  In other words, given points P and Q in the group, find a number, k, such that Pk = Q.  Here, the value k is called the discrete logarithm of Q to the base P. Putting this problem more succinctly, when the elliptic curve group is described using additive notation, the elliptic curve discrete logarithm problem is: given points P and Q in the group, find a number k such that Pk = Q. [7]  Let us consider some examples.

Let us consider the elliptic curve group defined by 

y2 = x3 + 9x + 17 over F23.

Now consider two points, Q = (4,5), and P = (16,5).

We must determine the discrete logarithm k.  
    Although intractable, this problem is small, so we can determine a solution by listing out the first few multiples of P until we come up with Q.  The first few multiples of P are: 

P = (16,5)        2P = (20,20)    3P = (14,14) 
4P = (19,20)    5P = (13,10)    6P = (7,3) 
7P = (8,7)        8P = (12,17)    9P = (4,5) 
Note that these points were determined using the formulas developed earlier in this paper.
Since 9P = (4,5) = Q, we can conclude that the discrete logarithm of Q to the base P is k = 9. 

    As another example, consider the elliptic curve group described by y2 = x3 - 5x +4.  We must find the discrete logarithm of the following points:
Qx = -.35, Qy = 2.39

Px = -1.65, Py = -2.79

See Figure below.
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The process is the same as the previous example.  Using point P, we then double this point to give 2P.  Then P + 2P = 3P.  We continue this process until we find (hopefully) the point Q, our final solution.  Leaving out the details, it just so happens that P + 6P = 7P = (-.35,2.39).  Therefore, the logarithm is 7.
B.  Using Discrete Logarithms as Public-Key 
Cryptography

    Much like Diffie-Hellman public-key encryption, we are presented with one equation in one unknown.  That is, given a curve, E, and two points, P and Q (all of which are publicly available), we are challenged to find d such that 

d * P = Q   inside E.

To this end it is vital that one remember that a special characteristic of ellipses is that if you add a point on the curve to another (or the same) point of the curve, the result is also a point on the curve.  Let's consider a brief example to show this.
    Let P0 be a point on the ellipse.  The sum P0 + P0 is another point on the curve; let's call it P1.  Now we add P0 to give a new point, P2.  This is, in effect, the same as finding P0 + P0 + P0 = P2.  It is worth mentioning at this point that scalar multiplication is a one-way function.  Let us assume that an ellipse, E, exists with a single point, P, on the curve.  Generating a random or pseudo-random scalar value (an integer) and call it d.  Multiplying P by d gives an answer that falls somewhere on the ellipse, call it Q.  At this point one can show the world your ellipse, E, and the two points, P and Q, found on ellipse E.   Due to the intractable nature of this problem, it is the task of the unscrupulous hacker to find the scalar value used to create Q.  This value, d, is the secret key.  The problem just described is known as the Elliptic Curve Discrete Log problem, and, as long as the curve is big enough, no one has found a way to solve it in a reasonable amount of time. [8]
B.  Example of Using Elliptical Curve Public-Key 
Cryptography

    Let us assume two people wish to exchange encrypted text files.  Mr. Bob generates an ellipse curve (EC) and identifies a point, P, on that curve.  Recall that solutions are all integers, since this is a discrete log problem.  With EC and P, Mr. Bob now randomly generates a scalar db and finds Q = db * P.  Mr. Bob now possesses a public key: EC, P, and Q.  His private key is db.  
    Mrs. Jane wishes to send Mr. Bob a message, so Mrs. Jane gets Mr. Bob's public key mentioned above.  Using the value of EC and either P or Q, Mrs. Jane generates her own value of dJ and creates a second pair of public/private keys; dJ here is the secret key.  Using this new key, Mrs. Jane calculates a new, secret point on the ellipse curve.  Using either the x- or y- coordinate, this will become a session id.  Mrs. Jane sends Mr. Bob an encrypted message and includes her session id.  Using Mrs. Jane's temporary P and Q public key values, Mr. Bob must now use his db and Mrs. Jane's temporary public key to generate the session key.  Now that the incoming message can be deciphered, communication can continue with this session id.
V.    Elliptic Curve in Cryptography in the ZigBee Architecture of the Smart Grid
A.   Assigning Appliances Unique Identifiers

    At this point we have identified a light-weight processor that can handle EC cryptology.  To avoid any type of misuse, intentional or otherwise, the ZigBee devices must be assigned specific electronic components/appliances.  This will prevent a customer from moving a SGD normally used with a refrigerator to a night light.  Clearly this is not an accurate reflection of power usage in a residence.  At some point in the near future, major power consuming devices such as washer/dryers, refrigerators, air conditioners, and pool heating systems are going to need a unique identifier assigned at the manufacturing plant, much a like a NIC receives a MAC number that is completely unique.  
    As the ZigBee Controller unit receives wireless signals, it can tag power consumption with the appropriate home appliance so trending analysis can be performed.  

B.   A Matter of Trust

    The acceptance of the Smart Grid will take years to be accepted by the general populace.  As a measure of billing contestation, the spinning-disk electric meters are going to need to remain in place for years to come.  While these old meters do not provide real-time feedback, they can still serve as a means of verifying just how much electricity was used for a given billing period.
V.    Conclusion
A.   The ZigBee Solution Utilizing Elliptic Curve 
Cryptography
    Unlike current approaches to Smart Grid implementation, this paper proposed that a distribution of ZigBee End Devices, very small, battery operated processors, be coupled with uniquely "branded" electrical appliances within the residential household.  Wireless signals from all appliances will be sent to a ZigBee Controller, a more powerful device capable of forwarding all electricity usage to the electric company.  Unlike using a series of towers located throughout a city designed to receive wireless signals from thousands of households, this architecture uses land lines to send data (for example, DSL or another dedicated phone company line completely divorced from a home's communication lines).  The risk of terrorist attacks on receiving towers is removed and the problem of securing wireless signals being sent from all homes to the localized towers is removed.  The ZigBee Controller can optionally send collected data to database within the home.  This would allow users to see their power consumption and make adjustments appropriately.  For example, most household really do not know how their electricity is being used.  If the electric company should begin to charge more for power consumed during peak times of the day (typically early evening), the ability to monitor power hungry devices would allow individual homeowners to reduce power usage until a time when rates drop.
B.   Why Use Elliptic Curve Encryption

    Regardless of the final Smart Grid Architecture, any wireless signal must be made secure.  Unlike RSA, Elliptic Curve Cryptosystems are based on a different hard mathematical problem.  The Elliptic Curve problem, simply stated, is as follows:

· Given two points on an elliptic curve (call these points P and Q).

· Let P = d * Q.

· d is a 160-bit secure key and represents a unique solution to this difficult math problem.

Unlike RSA of Diffie-Hellman public-key cryptography, the size of the key is much smaller due to the difficulty of solving the elliptic curve problem.  The same security of a 1024-bit RSA key can be found in a 160-bit Elliptic Curve key.  Hence, computations are generally faster and appropriate for the light-weight ZigBee End Device.
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