Security-Enhanced Linux Using SLIDE
Shane Jahnke
The University of Colorado at Colorado Springs
Colorado Springs, CO U.S.A.
sjahnke@uccs.edu
Abstract—This document is an introduction to Security-Enhanced Linux (SELinux) and the use of SELinux Policy Integrated Development Environment (SLIDE). The reader should have a basic understanding of the Linux operating system and experience with an IDE, e.g. Eclipse.
I. Introduction
Security-Enhanced Linux (SELinux) was developed by the National Security Agency (NSA) as a solution for operating system security by implementing Mandatory Access Controls (MAC). Most modern operating systems use a Discretionary Access Control (DAC) architecture which is fundamentally inadequate for strong system security. The MAC, based on the Flask control architecture, enforces the separation of information based on confidentiality and integrity.
SELinux is built into the Linux kernel and is driven by loadable policy rules. Operations are interrupted in the kernel by SELinux when security-relevant actions occur, such as when a process attempts to open a file. Policy decisions are cached using the Access Vector Cache (AVC). This caching mechanism decreased the amount of times a policy is checked and results in increased performance.

Many of the major Linux distributions now include SELinux by default, such as: Debian, Ubuntu, Red Hat Enterprise Linux, Fedora, and Gentoo. SELinux has even been ported to Solaris and FreeBSD.

SELinux should be considered an extra safeguard against threats of tampering and bypassing of application security mechanisms, not a complete replacement. It is still important to utilize security measures including: installing an antivirus solution, keeping software up-to-date, enabling firewalls, and using strong passwords.
The next section of the paper gives an overview of what SELinux is and covers some terminology that is needed for understanding SELinux. Section III discusses different methods of changing SELinux policies if a denial is logged. It is also important to discuss the reference policy which will be used heavily when writing custom policies with SLIDE. The reference policy will be discussed in section IV. Section V specifies what is needed for installing and configuring the Linux development environment. Additionally, sections VI will discuss the features of SLIDE and how to get started. Lastly, this document wraps-up with an example policy that could be used as a shippable and maintainable policy.
II. Security-Enhanced Linux
A. Mandatory Access Controls
The general purpose for the MAC is to allow an administrator the ability to define how applications and users can access different resources such as files, devices, networks, and inter-process communication [2]. Mandatory access control provides strong separation of applications with the use of domains which permits safe execution of untrustworthy applications.
B. Contexts

The most important security model in SELinux is type enforcement (TE). Type enforcement enforces access controls on types. Types are a way of classifying an application or resource. In a SELinux enabled system, every file, process, resource has a label, also known as a context. SELinux contexts follow the SELinux user:role:type:level syntax. An example of a context can be viewed using the ls –Z command:
 unconfined_u:object_r:user_home_t:s0
This example output provides a user (unconfined_u), a role (object_r), a type (user_home_t), and a level (s0).
Each user is mapped to a SELinux user via policy. In Fedora, the default user under SELinux is unconfined_u. The SELinux user limits which roles and levels are accessible.

The role is an attribute of the Role-Based Access Control (RBAC) security module. SELinux users are authorized for roles, and roles are authorized for domains. Roles are intermediaries between SELinux users and domains.
The type is an attribute of the Type Enforcement (TE) security model. The type defines a domain for processes and a type for files. Accessibility between types is defined by the SELinux policy. Policy allows domains to access types or other domains utilizing rules.
The level is an attribute of the Multi-Level Security (MLS) and Multi-Category Security (MCS) models. MLS ranges include a pair of levels, written as lowlevel-highlevel if the levels differ, or lowlevel if the levels are identical. MLS is beyond this paper’s scope. Therefore, for simplicity, s0 will be used in all examples.

III. Changing Policies

A. Booleans

Booleans provide system administrators options to configure SELinux policies at runtime, without any knowledge of policy writing [3]. There is no need to reload or recompile the policy into the kernel.
To obtain a list of Booleans use the getsebool command:

getsebool –a

To change a Boolean use the setsebool command:

setsebool <Boolean_name> on/off

B. Matching File Context with Domain

Frequently, policy denials are a result of files not labeled correctly with the right context. There are manuals for many daemons including: ftpd, named, rsync, httpd, nfs, samba, Kerberos, nis, and ypbind. For httpd, the command would be:
man httpd_selinux

C. Audit2allow
Policy rule denials are logged in the /var/log/audit/audit.log file. The “audit2allow” command generates SELinux policy allow rules from logs of denied operations [3]. This method should come after checking whether a Boolean is available or the file context security settings match. The following command will generate a private package for installation:
audit2allow –a
D. Create Policies
Sometimes using the previous options listed above lead to unintended vulnerabilities. It is possible a new security hole was introduced after changing a file context or allowing a denial from the audit logs.
What if a user wants to distribute an application in a SELinux targeted environment? It may make sense to package the policy with the application for distribution. Therefore, it is the responsibility of the developer to write a policy that only permits the application to access the objects it needs. This is where SLIDE comes into the picture.
IV. Reference Policy
The reference policy is based on NSA’s example policy and is currently developed and maintained by Tresys Technology. The reference policy is the origin for policies distributed with SELinux, e.g. targeted policy with Fedora, and the basis for creating other policies.
A. Modules

Modules are the smallest components in the Reference Policy. Each module has three component source files: 1) a private module policy (.te), 2) a set of external interfaces (.if), and 3) a file labeled policy (.fc). The private policy source file contains declarations and local rules to the module. The external interface file provides abstract access to types and attributes that are private to the module. The file labeling policy file contains file contexts statements.
B. Layers

Reference Policy layering is means for organizing modules into categories and easing user understandability. Layers are defined based on the function of the system. There are two types of layers within the Reference Policy, lower and higher layers. Lower layers are included with most system policies whereas higher layers tend to be more optional and included when the need arises. Examples of lower layer modules include: protecting kernel resources, and startup and shutdown the system. Higher level modules include: user application and network-based services. The layers defined in the Reference Policy are kernel, system, administration, services, and application.
V. Installation And Configuration
There are many ways to install SLIDE under the Linux operating system environment. First, a Linux distribution must be chosen. There are several supported and tested distributions including: Fedora (9, 10, 11), Red Hat Enterprise Linux (4,5), and CentOS 5. Tresys also states that SLIDE should work with other Linux distributions where Eclipse and SELinux can be installed. From the choices listed above, only two distributions are open-source. Therefore, Red Hat Enterprise Linux is ruled out for the environment used with this paper. The choice came down to which distribution had better documentation. Fedora has an excellent write-up on SELinux and includes easily accessible packages for getting SLIDE up and running. Fedora 12 was the latest distribution at the time of this project so I went with that.
A. Fedora 12 Installation

Downloading and installing using the Fedora 12 Live CD was straightforward. Live CDs provide a preview of how the distribution will run on a given system. Once the Live CD presents the user interface to the user, there is an option to install the distribution to the hard drive.

B. Installing Packages
The following dependencies are needed for SLIDE:
· Eclipse SDK 3.2 or later

· SETools 3.3.2

· CheckPolicy 1.28 or later

· SLIDE Remote (for policy testing)

· SSH Server (for policy testing with SLIDE Remote)

· Reference Policy (version should match selinux-policy version)

· SETools Console (for policy analysis command-line tools in SELinux)

Fedora package management does an excellent job of resolving dependencies of a desired package, e.g. eclipse-slide. Running the following command installs SLIDE and its dependencies:

yum install eclipse-slide
The only two items that are not direct dependencies of the “eclipse-slide” package are the SLIDE Remote and Reference Policy packages. The SLIDE Remote package is not available from the Fedora package repository. Therefore, the SLIDE Remote package must be downloaded from Tresys’ website. The “slideRemote-modular-1.2.5-1.i386.rpm” package was chosen to supports both modular and monolithic policies. To run the SLIDE Remote successfully, the SSH server service must be installed and running so that Eclipse can connect to it remotely.

It is important that the reference policy version matches the SELinux policy installed. Typing the following command will provide the version:

rpm –qa | grep selinux-policy

Version 3.6.32-49 was returned from the above command. There was now selinux-policy source package available. Therefore, it can be downloaded from http://koji.fedoraproject.org/koji/. The source package was downloaded and extracted to the workspace directory under the user’s home directory, e.g. /home/user/workspace.

The SETools Console package provides an easy-to-use graphical interface for managing SELinux policies. From this console, a user can control whether SELinux is enabled or not, toggle Booleans, file labeling, SELinux users and user mappings, network ports, policy modules, and process domains.
VI. SLIDE – SELinux IDE
SLIDE is an integrated development environment (IDE) for SELinux developers and integrators. This Eclipse-based plug-in provides features to make the task of SELinux policy development and testing easier. SLIDE provides wizards to automate basic common tasks and developer-friendly features. The Reference Policy is a must when designing SELinux policies within SLIDE.
A. Starting SLIDE for the first time

Starting Eclipse the first time requires the user to provide a workspace location for storing projects. Keeping the default location in the user’s home directory works well since the user most likely has permission to write to their own directory.
B. Creating a New Project

To start a new project within Eclipse, select ‘File -> New -> SLIDE Project’ from the menu. A dialog from the wizard is displayed as in Figure 1.
[image: image1.png]INew/SLIDE Project

New SLIDE Project
Create a Security Enhanced Linux Policy Project in the workspace

Project name: [policy-3.6.32-49

Use default location

Location: (/home/shant

orkspace/policy-3.6.32-49][Browse.. |

Project Type
O Policy Module Project

Use this option if this project will edit a policy module
@ [Full Reference Policy Project
Use this option if this project will edit a full policy

Figure 1. New SLIDE Project Wizard
In this example, select the Full Reference Policy Project option for a full graphical view of the Reference Policy. Click Next to select the location of the Reference Policy source that was previously extracted.

[image: image2.png]INew/SLIDE Project

New SLIDE Project Type %

Select the Security Enhanced Linux Reference Policy Location

[Reference Policy already exists
Check this option if reference policy files already exist in the project location.
This could be the case when getting project from source control or importing
an existing project into eclipse.

Reference Policy Location: [/home/shane/Desktop/serefpolicy-3.6.32

| [Browse...|

Figure 2. New SLIDE Project – Reference Policy Location
Provide the location of the extracted Reference Policy and click Finish. The project will take a minute or so to import. In the background the Reference Policy is copied from the provided location to the user’s workspace. By default, Eclipse will build (compile) the project automatically and notify the user of any errors within the Console View. The Console View is available in the provided screenshots at the end of this document.
C. Creating a New Policy
Similar to creating a new project, there is a wizard for creating a new policy module. Select ‘File -> New -> SLIDE Module’ from the menu. The user will be prompted with a dialog like the following figure.

[image: image3.png]New Policy Module
Create a Module L}
Create a new module in the project. @

Project:

Name:

Layer:

summary:

Version:

iIrssi Policy Module|
Description:

Figure 3. New Policy Module Wizard
The user must select which project to create the new policy module for. Additionally, a unique name and layer are required when creating a new module. For this example, the apps layer is selected for the irssi module.
[image: image4.png]NefJPolicy Module

Domain Access
“This will help you create a domain for your module @

o s e

fThis will not add any policy into your new module

Figure 4. New Policy Module - Domain Access

The Figure 4 dialog prompts the user for Domain Access details for the newly created policy module. Based on which type is selected from the drop-down box, there are options to specify the domain running the process, label executable, and configuration files. The Irssi tutorial from reference [6] skips this step and defines these options by hand in the code.
VII. Irssi TutorialExample

The Tresys open source project, SLIDE, provides great documentation on how to use all the features within the Eclipse plugin. However, there are no samples or tutorials available. After doing some research I found a comprehensive example done by Dominick “DOMG472” Grift. Grift created a tutorial with the Irssi application, a text-based IRC chat program.
This tutorial includes examples on how to create Booleans and access network port objects. My goal was to learn from this example and hopefully create a packaged policy I could install and test.
I have included the source code written from this tutorial at the end of this document. The source code was a method of understanding policy writing and all credit should be given to Dominick Grift.
VIII. Conclusions

I ran into some build issues after running through the tutorial and wasn’t able to test the policy. The author, Grift, states that there are probably syntax errors in his examples. The other possibility is the Reference Policy versions differ.

After doing this research, I feel I have only scratched the surface on what SELinux is capable of. The same holds true for SLIDE. There are additional plugins available that are built on SLIDE, such as Cross Domain Solutions (CDS).

Indeed, writing SELinux policies with SLIDE is easier than writing and building policies manually. SLIDE simplifies tasks such as compiling, packaging, and installing policies remotely.
References

[1] Security-Enhanced Linux – NSA/CSS (2009). Retrieved Dec. 5, 2009 from http://www.nsa.gov/research/selinux/
[2] SELinux Project Wiki (2009). Retrieved Dec. 5, 2009 from http://selinuxproject.org/page/Main_Page
[3] Fedora 11 Security-Enhanced Linux User Guide (2009., Retrieved Dec. 5, 2009 from http://docs.fedoraproject.org/selinux-user-guide/f11/en-US/
[4] SELinux Policy IDE (SLIDE). Retrieved Dec. 5, 2009 from http://oss.tresys.com/projects/slide
[5] Christopher J. PeBenito, Frank Mayer, and Karl MacMullan. Reference Policy for Security Enhanced Linux. Proceeding of the 2006 SELinux Symposium.
[6] Dominick “DOMG472” Grift. How to create, integrate and rebuild SELinux policy for Fedora 9 using Eclipse-Slide and rpmdevtools (2009), Retrieved Dec. 5, 2009 from http://domg472.blogspot.com/2008/05/how-to-create-integrate-and-rebuild.html
[image: image5.png]Fle Edt Novigate Seach Project fun Window Help
jr @& |6 0-ar|o | ilv © o 5
rige i hevia =8 st =) A ertaces 5 =a
policy_sodite(irssi, 10,61 » Y4 oamin38)
- Spoliy3s resserssssssssssesss s b s 45)
w el o L+ b Yexermel 13)
S Policy Explgher 4 oecarotons ot
< Saops b Yiservices 159)
ym& i s e dctration of th e of isst exeutnte il b Stopamce)
pronons Layell application executable._file(irrsi excc 1) b A macto 278)
Browstats
i #This 15 the declaration of the type of irssi configuration
Type irssi etc
B carecord Files_contis_ filaGirsst etc)
B etvome
4 utreqelecor
4 etherel
B4 exolution
B execmem
B trensiou
4 games
ot
gosis
grome b
na Editor Tal
en Ylodul
java
B kcumpoui
Bilivecd
loaskeys T Decloration [Problems| £ Aui| © Console & |
Blockder supe-auid
mono c Wl support/fc sort.c -o tap/fc sort =
B maia iR/ Te sort tap/ (1T contexts. tp e conterts
carep e O e ROLE ¢ USER file contexts ~ hosedi tesplate
1 mpayer Sed 4 e /HONE/d e /ROLE/A e /USEN/S fite contexts
Hrsphugin
4 ooenotice)
) wiabe et 14:30

Figure 5. SLIDE Layout with labels

[image: image6.png]irssi.fc

Here we label the location of the irssi executable with
the type irssi_exec_t that we declared in irssi.te
/usr/bin/irssi -- gen_context
(system_u:object_r:irssi_exec_t,s0)

Here we label the location of the irssi executable with
the type irssi_exec_t that we declared in irssi.te
/etc/irssi.conf -- gen_context
(system_u:object_r:irssi_etc_t,s0)

Here we label the user specific location of irssi objects
with the type user_irssi_home_t that we declared in irssi.if
HOME_DIR/\.irssi(/.*)? gen_context
(system_u:object_r:ROLE_irssi_home_t,s0)

[image: image7.png]irssi.te
policy module(irssi,1.0.0)

B e e i s e
#

Declarations

#

<desc>

<p>

Allow irssi to bind and connect to ports that it owns
for DCC server

Network port range: tcp 4990-5000, irdcc_port_t

</p>

</desc>

gen_tunable(irssi_can_dcc, false)

This is the declaration of the type of irssi executable
file in /usr/bin/irssi

type irssi_exec_t;
application_executable_file(irrsi_exec_t)

This is the declaration of the type of irssi
configuration file in /etc/irssi.conf

type irssi_etc_t;
files_config_file(irssi_etc_t)

[image: image8.png]irssi.if

<summary>Irssi Policy Module</summary>
<desc>

<p>

Irssi Policy Module

</p>

</desc>

B e e

<summary>

The per role template for the Irssi module.

</summary>

<desc>

<p>

This template creates derived domains which are used
for Irssi.

</p>

<p>

This template is invoked automatically for each user,
and

generally does not need to be invoked directly
by policy writers.

</p>

</desc>

<param name="userdomain_prefix">

<summary>

The prefix of the user domain (e.g., user

1is the prefix for user_t).

</summary>

</param>

<param name="user_domain">

<summary>

The type of the user domain.

Page 1

[image: image9.png]irssi.if

</summary>

</param>

<param name="user_role">

<summary>

The role associated with the user domain.
</summary>

</param>
template('irssi_per_role_template',"’

gen_require ("
Here we include access to the local types, e.g. types
we declared in irssi.te
type irssi_exec_t, irssi_etc_t;
)

#
Declarations
#

Here we declare a user specific domain type and how
it transitions. $1 represents the userdomain prefix of the
user that calls this.

$3 represents the user role

type $1_irssi_t;

application_domain($1_irssi_t,irssi_exec_t)

role $3 types $1_irssi_t;

Here we declare a user specific domain type and how
it transitions. $1 represents the userdomain prefix of the
user that calls this.

type $1_irssi_home_t;

files_poly_member($1_irssi_home_t)

Page 2

[image: image10.png]userhom

<des
<p>
Conf
</p>
</de:

irssi.if

_user_home_content($1,$1_irssi_home_t)
>
ine Irssi per user domain

SC>

Here we declare our 'irssi confine per userdomain’

boolean

gen_tunable(irssi_confine_$1, false)

#
Irssi
#

Allow
allow
allow
allow
getattr rea
allow
bind listen
allow
connect get

local policy

application internal communication
1_irrsi_t self:fifo_file rw_fifo_file_perms;
1_irrsi_t self:process signal;
1_irrsi_t self:netlink_route_socket { write
d bind create nlmsg_read };

1_irrsi_t self:tcp_socket { write accept getattr
setopt read getopt create connect };

1_irrsi_t self:udp_socket { write read create
attr };

Allow the application domain to interact with the

user domain
allow

1_irssi_t $2:process sigchld;

Allow the userdomain to interact with the application

domain proc

ess

Page 3

[image: image11.png]irssi.if

This is needed when a user wants to 'top' while
running $1_irssi_t in another thread
allow $2 $1_irssi_t:process { ptrace signal_perms };

Allow our domain to read and access our config file
in /etc/irssi.conf with the type of irssi_etc_t

files_read_etc_files($1_irssi_t)

allow $1_irssi_t irssi_etc_t:file { getattr read };

Set policy to allow our domain to manage its objects
in the user space
manage_dirs_pattern($1_irssi_t,$1_irssi_home_t,
$1_irssi_home_t)
manage_files_pattern($1_irssi_t,$1_irssi_home_t,
$1_irssi_home_t)
manage_lnk_files_pattern($1l_irssi_t,$1_irssi_home_t,
$1_irssi_home_t)
userdom_user_home_dir_filetrans($1,$1_irssi_t,
$1_irssi_home_t,{ dir file lnk_file })
userdom_search_user_home_dirs($1,$1_irssi_t)

Set policy to allow the userdomain to manage objects
owned by $1_irssi_t in the user space

manage_dirs_pattern($2,$1_irssi_home_t,$1_irssi_home_t)

manage_files_pattern($2,$1_irssi_home_t,$1_irssi_home_t)

manage_lnk_files_pattern($2,$1_irssi_home_t,
$1_irssi_home_t)

Set policy to allow the userdomain to relabel objects
owned by $1_irssi_t in the user space

relabel_dirs_pattern($2,$1_irssi_home_t,$1_irssi_home_t)

relabel_files_pattern($2,$1_irssi_home_t,

Page 4

[image: image12.png]irssi.if

$1_irssi_home_t)

relabel_lnk_files_pattern($2,$1_irssi_home_t,

$1_irssi_home_t)

irc

Allow domain to connect to irc port, send and receive
client packages
corenet_tcp_connect_ircd_port($1_irssi_t)
corenet_sendrecv_ircd_client_packets($1_irssi_t)

Set some default settings for our needs
corenet_all_recvfrom_netlabel($1l_irssi_t)
corenet_all_recvfrom_unlabeled($1_irssi_t)
corenet_tcp_sendrecv_all_if($1_irssi_t)
corenet_tcp_sendrecv_all_nodes($1_irssi_t)
corenet_tcp_bind_all_nodes($1_irssi_t)
corenet_udp_bind_all_nodes($1_irssi_t)

In case we use NFS or SAMBA home locations we will

allow this domain access to search for auto mountpoints

fs_search_auto_mountpoints($1_irssi_t)

Allow the userdomain to read the $1_irssi_t process
ps_process_pattern($2,$1_irssi_t)

sysnet_read_config($1_irssi_t)

libs_exec_lib_files($1_irssi_t)
libs_use_ld_so($1_irssi_t)

files_read_usr_files($1_irssi_t)

miscfiles_read_localization($1l_irssi_t)
nscd_read_pid($1_irssi_t)

Page 5

[image: image13.png]irssi.if

corecmd_search_bin($1_irssi_t)
corecmd_read_bin_symlinks($1_irssi_t)

Allow our domain to run from the terminal
userdom_use_user_terminals($1,$1_irssi_t)

If we use NIS (optional) then allow our domain access
to ypbind
optional_policy("
nis_use_ypbind($1_irssi_t)
)

tunable_policy(irssi_can_dcc',"
Here we set policy to allow our domain to connect
and bind to ports that it owns
We have declared this port range in the kernel/
corenetwork.te.in
We should now declare this boolean in irssi.te
corenet_tcp_bind_ircdcc_port($1l_irssi_t)
corenet_tcp_connect_ircdcc_port($1_irssi_t)
corenet_sendrecv_ircdcc_server_packets($1_irssi_t)
corenet_sendrecv_ircdcc_client_packets($1_irssi_t)
)

‘tunable_policy(irssi_can_unreserved_tcp_network',"

Here we set policy to allow our domain to connect
and bind access to all reserved ports, server and client
packets

corenet_tcp_bind_all_unreserved_ports($1_irssi_t)

corenet_tcp_connect_all_ports($1l_irssi_t)

corenet_sendrecv_all_server_packets($1_irssi_t)

Page 6

[image: image14.png]irssi.if

corenet_sendrecv_all_client_packets($1_irssi_t)
)
tunable_policy(irssi_confine_$1',"
if set then the userdomain may transition to the
application domain via the irssi_exec_t
domain_auto_trans($2,irssi_exec_t,$1_irssi_t)

if not set then the userdomain may only run irssi
from the user domain
can_exec($2,irssi_exec_t)
)

‘tunable_policy(use_nfs_home_dirs',"
Here we set policy for NFS home locations to be
tunable via booleans. Disabled unless set
fs_manage_nfs_dirs($1_irssi_t)
fs_manage_nfs_files($1_irssi_t)
fs_manage_nfs_symlinks($1_irssi_t)
)

‘tunable_policy(use_samba_home_dirs',"
Here we set policy for SAMBA home locations to be
tunable via booleans. Disabled unless set
fs_manage_cifs_dirs($1_irssi_t)
fs_manage_cifs_files($1_irssi_t)
fs_manage_cifs_symlinks($1_irssi_t)
)

Page 7

[image: image15.png]corenetwork.te.in

network_port(zebra, tcp,2600,s0, tcp,2601,s0, tcp,2602,s0,
tcp,2603,s0, tcp,2604,s0, tcp,2606,s0, udp,2600,s0,
udp,2601,s0, udp,2602,s0, udp,2603,s0, udp,2604,s0,
udp,2606,s0)

network_port(zope, tcp,8021,s0)

network_port(ircdcc, tcp,4990,s0, tcp,4991,s0, tcp,4992,s0,
tcp,4993,s0, tcp,4994,s0, tcp,4995,s0, tcp,4996,s0,
tcp,4997,s0, tcp,4998,s0, tcp,4999,s0, tcp,5000,s0)

