Microsoft Windows® Communication Foundation

“WCF & Certificate Processing via the Identity Model”

Phillip Sanchez-Vasquez

UCCS Master’s Candidate psanvas@gmail.com

ABSTRACT
In today's world, with service orientation (SO) continuing to become more and more prevalent, Microsoft has build a remarkably simple API for building messaging communication infrastructures over distributed networks with Microsoft Windows® Communication Foundation (WCF) [1]. As in most common messaging infrastructures, WCF supports x.509 digital certificates to sign, encode, and authenticate servers-client relationships [2]. This paper starts off, in section 2, by briefly presenting a case for service orientation while warning of the security vulnerabilities associated with SO. In section 3, a general explanation is given on what a digital certificate is and then the discussion is expanded upon by concentrating on the concepts of the WCF Identity Model in section 4; this is done in order to provide an understanding of how the WCF framework deals with digital certificate within the WCF Identity Model assembly in section 5. This paper will conclude with a quick explanation of how these mechanisms support the confidentiality and integrity basic security services. The reader of this paper should be left with a general understanding of what a digital certificate is and a more detailed explanation of how the WCF Identity Model processes the concepts behind these entities.
1. INTRODUCTION

Generally speaking, a digital certificate is a portion of an electronic document that is used to digitally sign the document and associate an identity to a public key within a public key infrastructure (PKI) [3]. Information such as a subject, issuer, signature, and public key is contained within a certificate, which is used to associate an identity (authentication) and right (access) to an entity. In WCF, this information is processed as a "claim" [2]. This claim-based model within WCF is commonly called the Identity Model, which is used to create claims for incoming messages [5]. This paper is aimed at exploring this model at a high level and then narrowing discussion down to explore, more specifically, how the Identity Model processes claims for certificates with the WCF framework.
2. WHY SERVICE ORIENTATION

Service Orientation is a loosely coupled application architectural that uses messages and contracts in a way that SO applications describe the messages they interact with via the contracts that are expressed in formats easily understood by other applications; thus reducing coupling at the implementation level. This all makes sense for a number of reasons including maintainability, interoperability, and flexibility. Yet, another great value provided by SO comes in the form of allowing pieces of software to aggregate together to form a software enterprise system, which can then have its subsystems versioned independently rather than incurring to cost of having to choreograph system-wide upgrade [1]. However, with all the value that SO brings, it also is inherently vulnerable to security loopholes as is any process that exposes information over the public Internet domain. Fortify Software Inc., which is a software company that provides applications aimed at identifying and removing security vulnerabilities from software implementations, has identified a number of security related issues in service oriented architectures (SOA) that included weak authentication, vulnerability to replay attack, and XPath injections. According to Fortify Software Inc.’s co-founder and chief scientist, Brian Chess, weak encryption create vulnerabilities as data transactions move back and forth from web service to web service in an SOA [6]. Hence, it is not hard to imagine that SO does in fact bring opportunity for exploits with all the value that it provides.

3. DIGITAL CERTIFICATES

As stated in section 1, a digital certificate is a portion of an electronic document that is used to digitally sign the document and associate an identity to a public key within a public key infrastructure [3]. However, to truly understand what a digital certificate is, one must grasp the general concepts behind a PKI and what the private/public key relationship is and how each is used. Along with an understanding of a PKI, we must also understand the function of a digital signature.
3.1 Public Key Infrastructure (PKI) [7]
A PKI utilizes asymmetric cryptography technology, which offers the ability for two keys to be generated, a public key and a private key, such that any data encrypted with the public key can only be decrypted with the private key. Furthermore, the private key cannot be discovered from the public key. Each key in a PKI is rather large being 512 bits in length or more. In a typical PKI, a receiver can publicize its public key while keeping its private key private. A sender can obtain the public key and use it to encrypt a message and only the receiver can decrypted the message since the receiver is the only entity with the private key. Thus, if two parties generate private/public key pairs and exchange there public keys, they can theoretically exchange messages over the public internet domain in a secure manner. In reality however, a PKI is not normally use to encrypt secure messages since private/public keys are very large and PKI computations inherently require public keys to be published each time a new pair is generated. Using a symmetric cryptography technology, which allows data to be encrypted with some shared key but requires the same shared key to decrypt the data, allows for a much more efficient manner of generating a key. However, since this shared key is required to decrypt any data that was encrypted using it, it is much less secure since the key must be shared; and thus, can be stole as it is sent into the public domain in order that the valid party receives it. This is when a PKI comes into play… The following is a typical PKI transaction [7]:

· A symmetric key is generated
· A message is encrypted using the symmetric key

· The symmetric key is encrypted using the public key of the PKI (again, which is one of two asymmetric keys)
· The encrypted symmetric key is attached to the message payload
· The “symmetric key encrypted message” along with the attached “PKI public key encrypted symmetric key” is sent to the receiver
· Since the receiver is assumed to have the PKI private key (the other asymmetric key), the receiver can use the private key to decrypted the symmetric key and then use the decrypted symmetric key to decrypted the message
NOTE: Since a new symmetric key is generated for each transaction, if this smaller, more vulnerable, and easier to guess symmetric key is guessed; only a single transaction is compromised [7].
3.2 Digital Signature
Encryption is simply not enough since anyone with a party’s public key can send an encrypted message to that party; that party does not know for sure if the sender is who the sender ought to be. Digital signatures provide a means to allow a party to know that it is receiving an encrypted message from a valid sender and/or receiving a valid message at all. Generally speaking a digital signature is a hash of the original message that is then encrypted using the senders own private key; this encrypted hash is then attached to the message payload and sent along with the message. The receiver of the message uses the sender’s public key, since it is publicly know, to decrypt the attached hash; the receiving party than recalculates a new hash of the message using the same hash function; the receiving party that compares the two hashes and knows if the message was altered or encrypted with the wrong private key, the two hashes will not be the same; and the receiving party also knows that if the two hashes are the same then the message is unaltered and was signed by the right private key. Thus, an invalid sender can alter a valid message or send a message that is signed by an invalid private key, but in both cases, the receiver will recalculate a new hash that will not match; thus indicating an un-trustable message [7]. FIGURE 1, which is borrowed from Wikipedia, shows a graphical representation of digitally signing and verifying process. Furthermore, a digital signature provides two of the three basic security services, authenticity and integrity. Since the hash is encrypted with the sending party’s private key, authenticity is obtained since only the public key can decrypt; thus showing that it came from the one who owns the private key. Moreover, if the content of the message is changed, the signature will become invalid. This is important because encryption only hides a message’s content but most encryption algorithms do not stop changes to the message –i.e. it is still possible to change the message content even it you can read the messages content. [4].
FIGURE 1 borrowed from Wikipedia [4]
[image: image1.png]Signing Verification

— Hash
—— | | function 101100110101
Hash e —
Data
Encrypt hash

Digitally signed data

wsing siner's

plikiinh J/ AN

= Emwnumu

™0
Signature
EUUOHUH‘O
Certificate Signature Data Decrypt
using signer's
- publc ey
0o
Attach
to data ?
101100110101 f— 101100110101
Hash Hash

— If the hashes are equal, the signature is valid.

Digitally signed data

3.3 Digital Certificate more in depth [7]
Digital certificates provide some level of confidence that a public key of a PKI is published or distributed from the correct or valid entity and not by some other entity masquerading as the valid party. Hence, certificates make it highly improbable for some invalid party to distribute a public key and acquire the ability to decrypted messages that were intended for some other “valid” party; if this were to happen, the sender would send an encrypted message but the masquerading party would actually have the other asymmetric key (the paired private key), which is required to decrypt the message; this also means that the actual intended party or any other party would not be able to decrypt the message –only the party that has the private key. To solve this vulnerability, public keys are not publicized in their raw form but are rather embedded within a Certificate. A typical certificate contains at least the following data [7]:
· Subject, which is the organization that the certificate belongs to.
· Public key, which is the public key of the subject.
· Issuer, which is the Certificate Authority (CA) that has issued the certificate.
· Signature, which is the digital signature for the Subject, Public Key, and Issuer and is encrypted with the issuer’s private key.
3.3.1 Certificate Authority (CA) [7]
CA’s are trusted authorities figures in certificate issuing and most of them are well known to the public. Each party involved (senders & receivers) needs to trust the CA and each party needs to know the public key of the CA. However, most popular CA’s are publicly acknowledged and trusted even to the point that most modern browsers and mail clients come with a built in list of trusted authorities and their corresponding public keys. Thus, when a certificate is received, the receiver can verify that the certificate was issued from a trusted CA by checking the issuer name and using the already know public key of the CA to verify the signature. If the issuer value or name is of a trusted authority and the signature verifies as valid, then the receiving party can trust that the public key embedded within the certificate does in fact belong to the entity specified in the subject of the certificate [7].
IDENTITY MODEL OVERVIEW [5]
As alluded to earlier, WCF uses the Identity Model, which is a “claims” based model, for managing the components of a digital certificate. Within the Identity model, all capabilities of an entity within a system are modeled as a “claim” [5].
3.4 What is a Claim

A claim describes each capability of each entity in a system, which is most commonly a user of a system. Through claims, an entity is able to gain access to a protected resource of a system. A claim expresses a right (such as read, write, execute) to a particular value; a value being a specific file, database, mailbox, property, etc. Furthermore, each claim is composed of a Claim Type, which specifies the type of entity the value of the claim is. For example, if a claim is composed of the following [5];
· Claim Type: File

· Right: Read

· Value: HelloWold.txt

then an entity that has this claim associated with it has read-access to the file, HelloWold.txt. Moreover, if a claim is composed of the following [5];
· Claim Type: Name
· Right: PossessProperty
· Value: Phillip
then, an entity that has this claim associated with it possesses a name property with the value of Phillip. Alternatively, a claim can be composed of [5];
· Claim Type: User Principle Name (UPN)
· Right: Identity
· Value: jose@brownside.com
which, indicates the identity, Jose, in the Brownside domain. All claims are issued by some entity in the system; even if that entity is it own self. Claims are grouped together to form a claim-set and each of these claim-sets are issued from an issuer. An issuer is itself, just a claim-set as indicated in FIGURE 2, which is borrowed from the Microsoft Corporation [5].

FIGURE 2 borrowed from the Microsoft Corporation [5]
[image: image2.png]f

Setof daims

Claim

System claim set
System idertly
caim
Setof caims
lssued by
Claim
Issued by

L

3.4.1.1 Where Do Claims Come From [5]
Claims come from many different origins; however, commonly, they are passed in within a message as credentials of a user. As each claim is processed and validated, the claim will be added to the claim-set associated with that entity –in this case the user; however, the entity can be a resource such as the operating system, CLR, another distributed service, or other protected resource. Claims can be generated by one-to-n authorization policies as each policy is evaluated by an authorization manager, which results in an authorization context. As a policy interrogates existing claim-sets (which can be an empty claim-set –i.e. a claim-set with not claims), the policy can generate and add new claims based on information that the policy can access or based on existing claims in a non empty claim-set; this allows for a mapping mechanism between claims. In other words, existing claims influence an authorization policy’s behavior of adding more claims to the context. For example –borrowed from the Microsoft Corporation [5], if an authorization policy accesses a database that stores dates of birth of various users, the policy can use that information to associate an “over18” claim to the user entity. However, it should be noted that the semantics of the “over18” claim needs to well defined and interpreted correctly by both the authorization policy that created the claim as well as any code that interrogates the claim. Theses ideas are summed up in FIGURE 3, which is again borrowed from the Microsoft Corporation [5].
FIGURE 3 borrowed from the Microsoft Corporation [5]
[image: image3.png]Authorization Domain

— Authorization
54
Gty
pr=———
ot
"
-
v
Gty
pr——
R s S Gamsa
P) M | —
ey i pts
[S R A
:
e Sworane
Seerone
o
o

3.5 Summing Up the Identity Model [5]
The claim based Identity Model affectively acts as a logical key to unlock protected resources of a distributed system. In this analogy, each claim within the sets of claims that make up an authorization context is a logical tooth on the key; consequently, the collection of claims affectively makes up the shape of the logical key. This key is used to unlock or grant access to protected resources by a mechanism of comparing the claims within the authorization context with the set of claims required to access the resource [5]. How certificates fit into WCF’s claim based Identity Model is discussed in the following section.
4. CERTS & THE IDENTITY MODEL [8]
As indicated by Michele Bustamante, normally certificate authorization is done by placing the certificate’s public key into the Trusted People store of the LocalMachine on some server. All participates must have their certificate’s corresponding public key in the store or they will not be authorized [8]. Authentication and Authorization features can be handled in a number of different manners including using Windows or UserName Authentication and Authorization mechanisms; using Certificates for these features is just one solution [8]. That being said, even a Custom mechanism being implemented to handle these features may be a qualifying solution in many circumstances [8]. However, from the point of view of the Identity Model, all such features of any of these mechanisms and their corresponding counterparts will ultimately be mapped and processes as a “claim” at the Service since WCF uses the rich claim-based identity model of the System.IdentityModel assembly [8].
4.1 Using the Identity Model within WCF [8]
4.1.1 Service (Server) Side

4.1.1.1 Configuration
In WCF, the following snippet shows a portion of a configuration file of a WCF web service specifying the service credentials:

.

.

.
 <bindings>

 <netTcpBinding>

 <binding name ="netTcpCert">

 <security mode="Transport">

 <transport
clientCredentialType="Certificate" />

 </security>

 </binding>

 </netTcpBinding>

 </bindings>

 <behaviors>

 <serviceBehaviors>

 <behavior name="serviceBehavior">

<serviceCredentials>

 <serviceCertificate

findValue="RPKey"

storeLocation="LocalMachine"

storeName="My"

x509FindType="FindBySubjectName" />

 </serviceCredentials>

</behavior>

 </serviceBehaviors>

 </behaviors>

.

.

.
In this configuration, the service is configured with a certificate in the Personal certificate store on the LocalMachine, and that certificate has a Subject of RPKey; this is the certificate used by this WCF service. This configuration also indicates that the client’s credential type must be a certificate.
4.1.1.2 Service Validation Code [8]
After a client sends a message request to a WCF service and the service code begins to execute, the Context of the Authorization of the requesting party is provided to service code via an instance of the ServiceSecurityContext class, which is in the System.ServiceModel assembly of the .Net framework. From this class, service code can get the current instance of an AuthorizationContext class, which is also part of the System.ServiceModel assembly. The following statement shows how this is accomplished:

AuthorizationContext authContext = null;

authContext = ServiceSecurityContext.Current.AuthorizationContext;
The AuthorizationContext, authContext, instance will now contain all the claim sets provided from the client based on the client configuration. The service code can now interrogate all the claims within each claimSet within the AuthorizationContext current instance, and compare the client or requester claims with the required certificate claim (or any required service claims) to decide whether or not to authorize and authenticate the requesting party. The following code sample, in LISTING 1, shows a simple but informational implementation of such interrogation:
LISTING 1
 private void ValidateCertificatesWithValidCertificate(string subjectKey)

 {

 AuthorizationContext authContext = null;

authContext = ServiceSecurityContext.Current.AuthorizationContext;

 X509CertificateClaimSet certClaims = null;

 foreach (ClaimSet claimSet in authContext.ClaimSets)

 {

 certClaims = claimSet as X509CertificateClaimSet;

 if (certClaims != null)

 break;

 }

 if (certClaims == null)

 throw new SecurityException(
"Access is denied. X509CertificateClaimSet is” +
“ required.");

 if (!certClaims.ContainsClaim(Claim.CreateDnsClaim(subjectKey)))

 {

 string exceptionMessage = String.Format("Access is denied.")
 throw new SecurityException(exceptionMessage);

 }

 }

LISTING 1 shows how the service code ensures that the client credentials provided a certificate (X.509) and that the ”client-claimed” DNS is in fact from the DNS that the service required. Going back to the analogy of the identity model acting as a logical key to unlock protected resources in section 4.2, each claim that come from the client and ends up in the AuthorizationContext current instance, acts as a tooth on the logical key; thus, each tooth is used to unlock or validate a service authorization policy requirement –in the case of LISTING 1, the service requirement is a specific DNS within the client certificate.
4.1.2 Client Side
4.1.2.1 Configuration
In the type of a service configuration explained in section 5.1.1, one possible client configuration is shown below:
.

.

.

<bindings>

 <netTcpBinding>

 <binding name="NetTcpBinding_IOracleService" … />

.

.

.
 <security mode="Transport">

 <transport
clientCredentialType="Certificate"
protectionLevel="EncryptAndSign" />

 <message clientCredentialType=" Certificate" />

 </security>

 </binding>

 </netTcpBinding>

 </bindings>

 <behaviors>

 <endpointBehaviors>

 <behavior name="clientBehavior">

 <clientCredentials>

 <clientCertificate
findValue="SubjectKey"
storeLocation="CurrentUser"
storeName="My"
x509FindType="FindBySubjectName"/>

 </clientCredentials>

 </behavior>

 </endpointBehaviors>

 </behaviors>

 <client>

 <endpoint
 address="net.tcp://localhost:9000/"
 binding="netTcpBinding"
 behaviorConfiguration="clientBehavior"

 bindingConfiguration="NetTcpBinding_IOracleService"
 contract="OracleServiceReference.IOracleService"

 name="NetTcpBinding_IOracleService">
 <identity>

 <dns value="RPKey" />

 </identity>

 </endpoint>

 </client>

.

.

.

In this configuration, the client, is configured to use a certificate from the Personal certificate store on the LocalMachine, and that certificate has a Subject of RPKey.
NOTE: The client configuration indicates that the client endpoint is configured with an Identity specifying a DNS of “RPKey”; this is not the DNS of the client but rather that of the service in which this client application is configured to communicate with. The actual certificate that this configuration will use actually has a DNS of “SubjectKey” but this value is embedded within the certificate itself –not in the configuration file of the web service client.

NOTE: I will leave it up to the reader to investigate the exact meaning and purpose of each element in a WCF configuration file as this would depart from the topic of this paper. Furthermore, the configurations provided in section 5.1.1.1 as well as this section are only partial configurations –showing only the parts prudent to our discussion. What I will say, however, is that in WCF, a service is specified via a concept that is term as an endpoint. An endpoint consists of 3 parts –an address, which indicates location, a contract, which indicates what the service exposes as functionality and data, and finally a binding, which in conjunction with behaviors indicates how messages will be transferred –i.e. what transport protocol, what security credentials are used, etc…
4.1.2.2 Client Request Code

There is not much to the Client code that implements communication to a service endpoint. Once a client is configured to communicate to a service and has a service reference, which generates a service proxy that exposes all operation and data contracts to client code, communicating with the service is as easy as instantiating an instance of this proxy class and de-referencing its operation and data contract methods and data fields as if they were regular CLR type members. LISTING 2 shows an example of C# code that exposes a WCF service:

LISTING 2

 protected void GetAnswerButtonOnClick(object sender, EventArgs e)

 {

 _answerVisible = true;

 using (OracleServiceClient oracleServiceClient = new
OracleServiceClient("NetTcpBinding_IOracleService"))

 {

 if(_useCertsCheckBox.Checked)

 oracleServiceClient.EnableCertificateValidation();
 else

 oracleServiceClient.DisableCertificateValidation();
 if(_useGoodCertCheckBox.Checked)

 oracleServiceClient.EnableValidCertificateSubject();
 else

 oracleServiceClient.DisableValidCertificateSubject();
 try

 {

 _answerLabel.Text =
oracleServiceClient.GetAnswer(_questionTextBox.Text);

 }

 catch (Exception exception)

 {

 ResetPage();

 Response.Write("<script type=\"text/javascript\">alert('" +
exception.Message + "');</script>");

 }

 }

 _answerP.Visible = _answerVisible;

 }

In the example shown in LISTING 2, the WCF web service, OracleService, is exposed through the proxy class, OracleServiceClient. This type (the OracleServiceClient type) is an OracleService abstraction present at the client. The OracleService is a simple WCF web service that I built during my research for this paper. The method, GetAnswerButtonOnClick(…), is an ASP.NET event handler that communicates to the OracleService via the OracleServiceClient proxy and uses the value returned from the OracleService’s GetAnswer(…) method to set the text of a control (_answerLabel) on the ASP.NET web page. Notice from LISTING 2 that the OracleServiceClient proxy is instantiated with the name of its endpoint, NetTcpBinding_IOracleService, from configuration file presented in section 5.1.2.1 –the endpoint specifies the communication configuration. Each time the dot operator (.) is used to de-reference a OperationContract on the OracleServiceClient proxy, the WCF framework does the rest of the inter process communication work from the proxy to the actual service until the message gets to the service code and the AuthorizationContext current instance needs to be interrogated so that client claims can be validated against the services authorization policy requirements as indicated in section 5.1.1. As indicated by the yellow highlighted portions of LISTING 2, the OracleServiceClient proxy exposes the following Operationcontracts of the OracleService service (this web service has no DataContracts):
· void EnableCertificateValidation(void);
· void DisableCertificateValidation(void);
· void EnableValidCertificateSubject(void);
· void DisableValidCertificateSubject(void);
· String GetAnswer(String);
The first 4 contracts were implemented to configure the WCF service from the ASP.NET web page to explore different scenarios –i.e. have the service: validate the client certificate, not to validate the client certificate, validate with a the right DNS, and validate with the wrong DNS; this was all done to simulate a successful service authorization, an unsuccessful service authorization, and communication to the service without any service authorization at all. I used this functionality to observe how the Identity model works. Finally, the last contract, GetAnswer, was used to allow the user of the ASP.NET website to ask a yes/no question to the OracleService, which is a WCF web service, and receive an simple “funny” response/answer to the questions –i.e. the Oracle’s answer to the question –just a simple and silly web application to exercise WCF’s Identity Model mechanisms with clients certificates and Authorization.
5. CONCLUSION
The WCF Identity Model provides a rich claim based mechanism to validate client certificates that can be extended to validate far beyond just certificates but can also be extended to n number of very complex service authorization policies. I have only presented a very simple example to explain the mechanisms and power behind the Identity Model and how it can be use to validate client certificates as a “claim”. This model can even allow different types of privileges to different service clients based of smaller atomic parts of a single certificate; hence the Identity model provides a much finer and granular control over basic security services like confidentiality and integrity.
6. ACKNOWLEDGMENTS

[1] Phillip Sanchez-Vasquez, Microsoft Windows Communication Foundation, In the Channel Layer. 2008. CS526. UCCS

[2] Microsoft Corporation, Working with Certificates. 2009. http://msdn.microsoft.com/en-us/library/ms731899.aspx.

[3] Wikipedia, The Free Encyclopedia. Public key certificate. http://en.wikipedia.org/wiki/Public_key_certificate.

[4] Wikipedia, The Free Encyclopedia. Digital Signature. http://en.wikipedia.org/wiki/Digital_signature.

[5] Microsoft Corporation, Managing Claims and Authorization with the Identity Model. 2009. http://msdn.microsoft.com/en-us/library/ms729851.aspx.

[6] TechTarget, Weak encryption creates SOA vulnerabilities. 2009. http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1327354,00.html.

[7] Stalker Software, Inc, CommuniGate® Pro Guide, 2009. https://webmail.uccs.edu/Guide/WebSMIME.html.
[8] Bustamante, Michele Leroux. Learning WCF, 1st Edition. O’Reilly Media. 2007

NOTE: The Identity Model does not allow claim-sets to form a loop such that claim-set-A is issued by claim-set-B while claim-set-B is issued by claim-set-A unless claim-set-A and claim-set-B are the same claim-set, which is the case when a claim-set is its own issuer [5].

Endpoint Name

PAGE

