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Abstract
Recent threats of Distributed Denial of Service (DDoS) attacks have been focusing on small business and home offices. Those are the small and medium size networks that lack the incentives, expertise, resources, and knowledge to defend themselves. Ms. Angela Cearns’ thesis designs a defense tool for these small businesses and home offices. It is called Autonomous Anti-DDoS Network (A2D2) which integrates and improves on existing DDoS mitigation technologies. “A2D2 provides an affordable and manageable solution to small and medium networks, and enables small office and home office (SOHO) networks to take control of their own defense within their own network boundary”. [Cearns].  “Test-bed results show that A2D2 is highly effective in ensuring Quality of Service (QoS) during bandwidth consumption DDoS attacks. The A2D2 test-bed has demonstrated significant intrusion tolerance against attacks of various types, including UDP, ICMP and TCP based DDoS attacks”. [Cearns].
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1 Introduction

Since 2002, the number of Distributed Denial of Service (DDoS) attacks has increased tremendously [Cearns] for both large and small business including small office home office (SOHO). Angela Cearns, in her thesis paper in 2002 at University of Colorado at Colorado Springs (UCCS), prosoped a solution to DDoS which is called Autonomous Anti-DDoS Network Design (A2D2). Since the commercial systems against DDoS are expensive, A2D2’s target audience is small networks and small to medium size businesses who might not have the knowledge, resources, and finacial means to defend themselves. 
2 DDoS Defence Research

“In general, DDoS defense research can be roughly categorized into three areas: intrusion prevention, intrusion detection, and intrusion response. Intrusion prevention focuses on stopping attacks before attack packets reach the target victim. Intrusion detection explores the various techniques used to detect attack incidents as they occur. Intrusion response research investigates various techniques to handle an attack once the attack is discovered. In addition to these three research areas, intrusion tolerance, once a sub-field of intrusion response, is emerging as a critical research domain. Intrusion tolerance responds to attacks by minimizing the attack impact. This section reviews key research in each of these four areas.” [Cearns]

2.1 Intrusion Prevention 

General Security: “A security policy defines the set of laws, rules, and practices that regulate how an organization implements, manages, protects, and distributes computing resources to achieve security objectives.” [CERT98].  “Security policies help organizations to define the type of DDoS and other threats they choose to guard against and to incorporate various advisories to prevent these threats.” [Cearns].
Ingress and Egress Filtering: In DDoS, one of these two things may occur: “Many DDoS tools alter the source IP addresses of attack packets to illegitimate addresses in the Internet” or “the source addresses of the attack packets can be changed to that of a victim’s so that the real victim will be identified as the attacker”. [Cearns]. “IP spoofing has made it impossible to track down the attack source”. [Cearns]. A router implementing ingress filtering can also restrict transit traffic that originates from a downstream network to known prefixes [IET00]. In egress filtering, network routers will only route packets with addresses from its own assigned IP addresses space to the Internet [San00]. “Ingress filtering denies all traffic with addresses nonconforming to the Internet Address space from entering a network”. [Cearns].
2.2 Intrusion Detection

Anomaly Detection: “By observing past history and collecting data of legitimate behavior over a period of time, network administrators can obtain a behavior baseline of normal activities”. [Cearns]. Unusual behaviors are then monitored and quantified against the baselined behaviors to detect possible intrusions. Examples of “unusual behaviors” are login frequency by day, time and location, execution frequency, or program resource utilization. 
Misuse Detection: Misuse detection identifies well-defined patterns of known exploits and then looks out for the occurrences of such patterns. 

2.3 Intrusion Response 
“Once an attack is identified, the immediate response is to identify the attack source and block its traffic accordingly. Improving attack source identification techniques can expedite the capture of attackers and deter other attack attempts”. [Cearns]. “Source identification research investigates techniques to efficiently and effectively identify the attack source despite spoofing and distributed tools”. [Cearns].
2.4 Intrusion Tolerance 
“Many advances in intrusion tolerance are developed based on two disciplines: fault tolerance and quality of service (QoS)”. [Cearns].
2.4.1 Fault Tolerance

“There are three levels at which fault tolerance can be applied: hardware, software and system. Hardware fault tolerance represents the traditional fault tolerant measures where extra hardware resources are used to continue operations in an event of hardware faults. Software fault tolerance introduces mechanisms such as checkpoint restart and recovery blocks to compensate for design errors or data structure faults. System fault tolerance compensates failures in other system facilities that are not computer-based [NIST95] and ensures availability of the entire network and system”. [Cearns].
2.4.2 Quality of Service (QoS)

QoS “describes the assurance of the ability of a network to deliver predictable results and services for certain types of applications or traffic [Comp, ZOS00]. Network elements within the scope of QoS include availability (uptime), bandwidth (throughput), latency (delay), and error rate (packet loss rate) [Comp]. Among the most standard QoS techniques used to mitigate DDoS are rate-limiting and class-based queuing [Cis02, HMP+01]. These techniques are explained in the next sections.
3 The Proposed Autonomous Anti-DDoS Network (A2D2) Design
Because A2D2’s target audience is home networks and small to medium sized companies, the A2D2 design follows four main guiding principles: Affordable, Manageable, Configurable, and Portable. 
The design of the A2D2 network will be divided into three main areas:

· Intrusion Detection

· Intrusion Response: Intrusion Tolerance – Quality of Service 

· Autonomy System

3.1 Intrusion Detection

3.1.1 Snort Overview


Among all the well recognized and broadly deployed IDSes, Snort is the only free, open source lightweight intrusion detection system and is selected to be the detection component of A2D2. Snort's network monitoring mechanism is based on the pcap packet capture library, which makes Snort's code portable among various platforms that support libpcap. Currently Snort is run on Linux, Net/Open/FreeBSD, Solaris, SunOS 4.1, HP-UX, AIX, IRIX, Tru64, MacOS X Server and the Win9x/NT/2000 platform [Cearns]. 


Snort can be operated in three modes: a straight packet sniffer similar to tcpdump, a packet logger, or as a full-blown network intrusion detection system. As an IDS, Snort performs real-time protocol analysis, content searching and matching, and real-time alert. Attack detection is mainly based on a signature recognition detection engine as well as a modular plugin architecture for more sophisticated behavior analysis. 

3.1.2 Snort Detection Engine


The Snort detection engine is based on signature recognition techniques. Signatures are classified into different types such as DoS type or ICMP type and then defined in the rule files of the specific classification such as ddos.rules or icmp.rules. Content searching and matching functions are defined within the detection engine processors. The processors test an aspect of the current packet and report the findings. These functions are accessed from the rules file as standard rule options and may be called many times per packet with different arguments. Rules are checked in sequence according to the order the rules are specified in the rule file.

3.1.3 Snort Module Plugin - Preprocessors


In addition to the detection engine, Snort provides a modular plugin architecture that enables more complex analysis on collective packet behavior and performs sophisticated decoding of packet contents. Module plugin preprocessors are not accessed through rules. Instead, raw packets are submitted to the various preprocessors sequentially. Each preprocessor performs some functions once for each packet, then evaluates the condition and alerts if a suspected attack behavior is observed. A preprocessor does not modify the packet information. Packets go through the preprocessors before being passed to the detection engine and being matched against Snort rules. 

Preprocessors are important since many attacks cannot be detected merely by matching a simple pattern in a packet header or payload. For example, with preprocessors, Snort is able to perform IP defragmentation and then determine if a fragmentation attack is launched.    


3.1.4 A2D2 Snort Module Plugin – Flood Preprocessor

 
A2D2 is required to detect generic flooding attack independent of specific DDoS tools. Unlike pattern or signature matching, flood detection needs to be designed as a preprocessor modular plugin. The flood preprocessor will perform an “x packets over y time” logic evaluation. If x packets arrive within y seconds from the attack source, an attack alarm will be raised. Administrators or users can set an incoming packet rate threshold (x packet over y time) that deviates from their normal network traffic significantly. This flood threshold is set in the snort.conf file and provides a flexible configuration channel compatible with existing preprocessors of Snort.

3.1.4.1 Flood Threshold

Flood threshold differs depending on the type of services provided from the network, the nature of the company, the size of the network, and the time of the day. The flood threshold has to be determined at each network independently. The A2D2 design allows administrator to configure the threshold to be reflective of his or her network traffic. Before a threshold is determined, administrators should collect average bandwidth usage over a period of time. This baseline evaluation should be conducted over a period of months at the minimum to take into account usage surges during specific hours in a day or specific occasions.

3.1.4.2 Flood Preprocessor Initiation


Snort has specific directions as to how new preprocessor plugin modules can be incorporated. The A2D2 generic flood detection preprocessor is named spp_flood.c and is accompanied by the spp_flood.h header file. The followings describes the initiation steps required to add the spp_flood preprocessor to Snort:

1. Add to the snort plugbase.h file

#include “spp_flood.h”


2. Add the following lines to the snort plugbase.c file


void InitPreprocessor()


 {


SetupFlood();


 }

3. Add the following lines to the snort.conf file

preprocessor flood: $HOME_NET <threshold # packets> <threshold # time period> <logfilename>

4. Create two flood-plugin files:

· spp_flood.h

· spp_flood.c

5. In spp_flood.h, add
void SetupFlood();

void FloodInit(u_char *);

# The FloodInit function creates the preprocessor data structure 

6. In spp_flood.c, register the preprocessors by adding the following function:

void SetupFlood(void)

{

    


RegisterPreprocessor("flood", FloodInit);

}
3.1.4.3 Flood Preprocessor Data Structure


The flood preprocessor floodList maintains the packet rate utilizing a three-dimensional double-linked list:  

· floodList ( sourceInfo (match source ip)

· destinationInfo (match destination ip)

· connectionInfo (match port info)

The first level list sourceInfo registers the packet source address. For each source, the packet’s destination is recorded and counted in destinationInfo. For each source-destination connection, the packet’s port information is recorded and incremented.  Key data structures used for flood detection are presented below:


           Figure 3.1 - Flood Preprocessor Key Data Structure

                           (Figure Continues on Next Page)


3.1.4.4 Subnet Flood Detection

Nowadays, almost all bandwidth consumption DDoS attackers spoof the source IP addresses of the attack machines. Widespread practice of ingress and egress filtering has effectively prevented spoofing of illegitimate IP sources or of addresses of the victim domain. Spoofing is limited to those addresses that reside within the same subnets of the attacker so that attack packets can pass through ingress and egress filtering. To make an attack more efficient, a DDoS attack agent can send attack packets with an array of randomly generated source addresses, all of them within the subnet of the attack agent. Each spoofed address is used in a limited number of packets to reduce suspicion. These spoofed DDoS attacks are illustrated in the figure below:
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                         Figure 3.2 - DDoS IP Spoofing Each Attack Agent


To counter DDoS IP Spoofing, A2D2 is designed to detect subnet flooding as well as individual host flooding. The three types of generic flooding that are being detected are:

· Individual attack host against individual victim host

· Subnet attack agents against individual victim host

· Subnet attack agents against victim subnet hosts

With current technology, it is still impossible to identify from which subnet a packet initiated. Therefore, certain design assumptions have been made regarding subnet flooding detection. For subnet flood detection, A2D2 will assume packets come from a /24 network based on the Classless Inter-Domain Routing (CIDR) addressing scheme [RL93]. A /24 network is equivalent to a traditional Class C network with 253 host addresses and three other addresses for network, broadcast and gateway identification. In this thesis, it is assumed that most attack tools will not forge source IP beyond the realm of the /24 network in order to ensure that attack packets will pass through ingress and egress filtering.


Considerations have been given to /22 and /16 subnet flood detection. There are 1021 hosts in a /22 network and 65,533 hosts in a /16 network respectively. These networks can legitimately generate a large amount of traffic. A /22 and /16 subnet flood detection adds extra reassurance but may also produce more false positives. In practice, most existing networks are partitioned in smaller subnets with less than 253 hosts such as /25, /26, /27 networks. Therefore, the A2D2 design will assume a /24 subnet flood detection. Another assumption made in the design of A2D2 subnet detection is that many networks are implementing ingress and egress filtering so that most spoof packets beyond the IP addresses of a /24 subnet will be discarded.

3.1.4.5 Flood Preprocessor Logic Flow

 
Complete features and functions of the A2D2 Snort flood preprocessor will not be described in detail in this document. Instead, key functions of the spp_flood.c module are abstracted to illustrate the flood detection logic. These functions are:

· void FloodPreprocFunction(Packet *p)

· void ExpireFloodConnections(FloodList * floodlist, struct spp_timeval watchPeriod, struct spp_timeval currentTime)

· int NewFlood(FloodList * floodList, Packet * p, FloodType floodType)

· int CheckSubnetIndFlood(FloodList * floodList, Packet * p, FloodType floodType, int *subnet)

· int CheckSubnetFlood(FloodList * floodList, Packet * p, FloodType floodType, int *subnet)


The main function of the flood preprocessor, void FloodPreprocFunction (Packet *p), controls the logic flows and other key function calls.

3.1.5 A2D2 Snort Module Plugin Add-on – Flood IgnoreHosts Preprocessor


It is common that administrators may perform bandwidth measurement tasks or other administrative and diagnostic functions that require sending out a large number of packets to the network and an IDS may identify such activities as floods. In other cases, a certain service may be provided to a valued-customer at a special occasion that will generate significantly more than “normal” connection request traffic from a large /16 subnet with 65,536 hosts simultaneously. To accommodate such situations, A2D2 IDS detection includes another preprocessor add-on FloodIgnoreHosts. The FloodIgnoreHosts preprocessor is added to the base spp_flood.c preprocessor so that Snort will ignore counting the number of packets generated from a particular server IP or a particular network. The setup of the FloodIgnoreHosts preprocessor is similar to the setup of the flood preprocessor. 

A separate data structure is created to keep track of what servers or subnets the IDS should ignore:


         Figure 3.3 – FloodIgnoreHosts Preprocessor Add-on Key Data Structure

 The IgnoreFloodHost function int IsFloodServer(Packet *p) is called immediately after a packet is checked and prepared in void FloodPreprocFunction. The function returns 1 if the source address of the packet is in the “flood-ignored” serverList and returns 0 otherwise. If a 1 is returned, the FloodPreprocFunction is exited and the subsequent incoming packet will be passed to FloodPreprocFucntion for processing.
3.2 Intrusion Response: 
Besides the general secruity policy, the other two dominant techniques of intrusion response are Class-Based Queuing (CBQ) and Multi-Level Rate Limiting. 
3.2.1 Security Policy

The principal security policy applied is the separation of public services from the private network. Indeed, the design of A2D2 centers on the design of the anti-DDoS Demilitarized Zone (DMZ). [Cearns]. A DMZ is a small network inserted as a "neutral zone" between a company's private network and the outside public network [Whatis]. A typical DMZ and its Intrusion Detection System (IDS) placement are illustrated in Figure 3‑1 below. 

[image: image2.wmf]    LAN

DMZ

Internet

Firewall

Router

External IDS

DMZ IDS

Router

Only permits traffic to and responses from DMZ

No traffic initiation from DMZ

Web

Server

DNS

Server

Multi-Media

          Server

Internal LAN IDS

Workstation

Workstation

Workstation


                       Figure 3.4 – A Typical DMZ and its IDS Placement

 The firewall implements a set of rules or chains based on the network security policy.

3.2.2 Class-based Queuing (CBQ)

CBQ is a network router queueing method that allows traffic to share bandwidth equally, after being grouped by classes. The classes can be based upon a variety of parameters, such as priority, interface, or originating program. The concept of CBQ can be best illustrated by Figure 3‑2 below. “Assume that an administrator of a certain network analyzes the traffic pattern and decides that HTTP traffic should be guaranteed at least 70% of the available bandwidth while mail services be allowed 20% of the network link. The administrator then divides the remaining bandwidth between news services (5%), and TCP-SYN and ICMP traffic (5%). As a packet arrives at the network interface, the kernel discards the packet, forwards the packet or marks it as a certain class to be passed on to the queuing disciplines such as CBQ or First-in-first-out (FIFO). CBQ supports a maximum of eight separate queues, or classes. Each queue or class can then be assigned a policy that identifies the priority, bandwidth allocation, bounded, or queue size. A bounded queue is constricted by the assigned bandwidth but an unbounded queue can “borrow” bandwidth from another queue with extra bandwidth” [Cearns].
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Figure 3.5 – Bandwidth Assignment Example by CBQ

3.2.3  Multi-level Rate-Limiting

Rate limiting is used to control the rate of traffic sent or received on a network interface. Traffic that is less than or equal to the specified rate is sent, whereas traffic that exceeds the rate is dropped or delayed. “A network may generate a sudden burst of connection traffic. Such a burst lasts for a very short period of time while the connection is established. Traffic from initiating network hosts taper off over time as the abundance of traffic should flow from the servers serving files or streaming video to the clients. A multi-level rate limiting mechanism imposes stricter limits as the confidence that a source is malicious increases.” [Cearns]. Table 3‑1 below describes the Multi-level Rate-Limiting. It contains the number of levels, the rate associated with each level, and the duration for which each rate level will be effective. 

	Level
	Rate (number of packets/sec)

(Maximum level = 0)

(Block level = -1)
	Duration

(days:hours:mins:secs)

	L4
	0
	02:00:00:00

	L3
	100
	00:00:30:00

	L2
	50
	00:01:00:00

	L1
	-1
	00:06:30:00

	L0
	-1
	01:12:00:00


Table 3‑1 Multi-Level Rate-Limiting

For example, a computer named Titan specifies five levels: L4, L3, L2, L1, and L0. The maximum level is L4 which is technically not a “rate-limiting” level, but a log level. At L4, no packet is blocked. If the suspicious source uses the maximum allowable rate, the firewall can further restrict the incoming packet rate to 100 packets per second for 30 minutes. If the suspicious source continues to send out the maximum allowable rate, the firewall can further restrict the incoming packet rate to 50 packets per second for one hour, etc… until the block level (L0) is reached. 

At the end of the period, the rate limiting rule will be deleted and packets will be allowed to access the network without limitations unless flooding is detected again.
3.3 Autonomy System
3.3.1 Rate Limiting Configuration & Expiration 

A rate-limiting configuration file is setup to enable administrators to define the basic parameters based on which rate-limiting can be automatically applied. 
3.3.2 Snort Customization – FloodRateLimiter Preprocessor
“To enable automatic rate-limiting, a FloodRateLimiter preprocessor add-on needs to be created for the flood preprocessor. After an attack source surpasses the initial flood threshold, an initial flood alert is sent to the firewall. The firewall applies rate-limiting as defined in the rateif.conf file against the attack source. The role of the FloodRateLimiter preprocessor is to keep track of the incoming packet rate of the presumed attack source after rate-limiting is applied. If the arrival rate of the attack source continues to reach the maximum allowable rate, another alert is sent to the firewall, which will apply a stricter rate-limiting level until the block level is reached.” [Cearns].
3.3.3 Alert Interface

Snort is directed to send alert messages to a UNIX socket using the command ./snort –A UNSOCK. An interface program is written to accept the Snort’s alert messages on the Snort hosts and to send the messages to the specific port of the firewall machine. Once the message is received, the alert message is parsed for the source IP address of the attack host or subnet. Multi-level rate-limiting is then applied to the IP address.
4 A2D2 Implementation
4.1 A2D2 Test-bed

The A2D2 implementation test-bed is divided into three zones (as illustrated in Figure 4‑1 below)
•
The attack network

•
The autonomous defense network (A2D2)

•
The client network
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Figure 4.1 – A2D2 Implementation Test-bed

The attack network is made up of five Red Hat Linux machines. The DDoS tool chosen in the test-bed is Stacheldraht version 4.0. These four computers are connected to the A2D2 DMZ. The computer “Saturn” is used for attack coordination. Saturn assumes the dual roles of the “Master client” and “Handler”.

The autonomous defense network (A2D2): A simple DMZ is set up with two Linux computers. The gateway computer “Titan” is configured as a Linux router and serves as the firewall at the entry of the DMZ. Inside the private subnet, one server “Pluto” is installed with the RealServer application and the web server “Apache”. The RealServer connects to Titan. For simplicity, the open source IDS Snort is also configured in Pluto in this test-bed.

The client network: consists of three RealPlayer clients from three different networks. These clients access the RealServer (Pluto). Two Linux hosts and one Windows 2000 system are used as clients.

4.2 A2D2 Implementation Tools and Support Tools
· Attack Tool: StacheldrahtV4 is chosen to be the A2D2 attack tool because it is considered stable and sophisticated and is able to launch attacks in ICMP, UDP and TCP protocols. Stacheldraht can be downloaded freely from the Internet [ASTA00]. 

· Client Bandwidth Measurement Tool: plot.pl is written and installed in Linux clients to capture bandwidth usage information.
· Data Collection Tool: the tools used for data collection at these hosts are IPTraf.

· Drawing Tool: gnuplot version 3.7.1 [Gnuplot] is used to plot the results. 

5 Performance Results and Analysis

5.1 Test Scenarios
1. Baseline

2. Short 1-minute attack with no mitigation strategy

3. Non-stop attack with no mitigation strategy

4. Non-stop UDP attack with security policy

5. Non-stop ICMP attack with security policy

6. Non-stop ICMP attack with security policy and CBQ

7. Non-stop TCP-SYN attack with security policy and CBQ

8. Non-stop TCP-SYN attack with security policy, CBQ, and autonomous multi-level rate-limiting

5.2 Test Data Collection:
The information collected at the Linux A2D2 client, A2D2 gateway firewall and the A2D2 RealServer is:

· Peak total activity in number of packets per second

· Peak incoming rate in number of packets per second

· Peak outgoing rate in number of packets per second

· Average rate total in number of packets per second

· Average Incoming rate in number of packets per second

· Average Outgoing rate in number of packets per second

In addition to the above parameters, the following information is registered at the Linux A2D2 RealClient:

· The number of packets received per second at the A2D2 client including RealPlayer traffic and non-RealPlayer traffic

· RealPlayer Statistics: The total number of packets received by the RealPlayer when playing the simpsons.rm video clip for about 10 minutes.

· RealPlayer Statistics: The total number of packets recovered (received after retransmission requests were sent) by the RealPlayer for the duration of each test run.

· RealPlayer Statistics: The total number of packets lost by the RealPlayer for the duration of each test run.

· RealPlayer Statistics: The total number of retransmission requests made by the RealPlayer during each test scenario.

· RealPlayer Statistics: The total number of retransmissions received by the RealPlayer during each test scenario.

· RealPlayer connection time-out conditions and screen quality.

5.3 Test Results and Analysis
The peak number of incoming packets received by the A2D2 client should be just over 100 packets per second while the average incoming rate was around 39 to 40 packets per second. During the 1-minute attack, the initial traffic pattern of the A2D2 clients resembled the baseline pattern. But later packet reception was completely interrupted. Minimum packets were received and it showed a slight burst of traffic around 180 seconds attempting to refill the RealPlayer buffer. The normal traffic experienced by the A2D2 clients and traffic during the 1-minute attack test scenario are graphically presented in Figure 5.1 and Figure 5.2.
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Figure 5.1 – QoS Experienced by A2D2 Client During Normal Traffic
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Figure 5.2 – QoS Experienced by A2D2 Client During 1-Minute DDoS Attack


 During a non-stop DDoS attack, all RealPlayer clients were timed out due to the substantial loss of packets. A total of about 8000 packets were received by the RealPlayer. Only 35 packets were recovered out of 2,592 retransmission requests. The average incoming rate of the RealPlayer dropped to 17.37 packets. The severely degraded QoS experienced by the RealPlayer client can be observed from Figure 5.3.

The effectiveness of the A2D2 security policy is evidenced by the fourth test scenario where an UDP DDoS attack was launched against the A2D2 with a tight UDP policy enabled. Only port 22, 8080, 7070 and a few administrative ports were opened for UDP traffic. The base firewall policy was set as “DENY”.As shown in Figure 5.4, the A2D2 client enjoys QoS similar to that of the baseline scenario. 
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Figure 5.3 - Non-stop UDP Attack with No Mitigation Strategy
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Figure 5.4 - Non-stop UDP Attack with Security Policy Enabled


     The fifth test scenario launched an ICMP DDoS attack against the A2D2. Since the A2D2 did not have a specific policy governing ICMP packets, the ICMP DDoS attack interrupted the A2D2 QoS entirely as shown in Figure 5.5.  By enabling CBQ, the QoS experienced by A2D2 RealClient was returned to that of the baseline condition as showed in Figure 5.6. The A2D2 RealClient was able to receive all 23,000 packets related to the video clip without retransmission requests.
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Figure 5.5 – Non-stop ICMP Attack with Security Policy
	[image: image10.jpg]- Gnuplot

(DI-IES

packsts/sec
120

Bandiuidth Usage

100

0

60

40

2

50

Tine in secs

“data, tet” using 1:2 ——





Figure 5.6 – Non-stop ICMP Attack with security policy and CBQ


To ensure that A2D2 can mitigate a large variety of DDoS attacks known to date, a TCP-SYN DDoS attack was launched with Stacheldraht against A2D2 with Firewall Policy and CBQ enabled. The A2D2 Client QoS was evaluated. Figure 5.7 did not indicate severe QoS degradation but showed slight fluctuations in packet reception. 

To test the intrusion tolerance of the A2D2 network, the final test scenario enabled all features of the A2D2 network, including firewall policy, CBQ, Snort IDS detection, autonomous alert communication between IDS and firewall and multi-level rate-limiting. Figure 5.8 showed that the fully equipped A2D2 network further improved QoS during TCP-SYN attacks. A total of 23,444 packets were received by the A2D2 RealPlayer Client similar to those received by the baseline test scenario.
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Figure 5.7 - Non-stop TCP-SYN Attack with security policy and CBQ
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Figure 5.8 - Non-stop TCP-SYN Attack with security policy, CBQ and Multi-level Rate Limiting


6 Test-bed Limitations and Future Works
6.1 Firewall Processing Speed

One of the main limitations of the A2D2 test-bed is the processing speed of the firewall computer (Titan). This computing power limitation poses two important issues:

· The accuracy of the IPTraf log data for the two network interfaces of the firewall computer (Titan).

· The delay between the time when a flood alert is raised and the time when the rate-limiting rule is applied.

Although the effectiveness of the A2D2 network can be inferred from information collected from the A2D2 RealPlayer Clients and the A2D2 RealServer (Pluto), the IPTraf information from the firewall (Titan) can provide a complete picture of all activities related to the operations of the A2D2 network.

6.2 Alternate Route Technique

 
Since the speed at which rate-limiting rules is applied directly impacts the QoS experienced by the A2D2 clients, it is worthwhile to explore various techniques that may facilitate communications between the IDS and firewall. Currently, the IDS often reported a “Failed to Connect to Rate-Limiter” message during DDoS attacks.

6.3 TCP-SYN Attack

While ICMP and UDP bandwidth consumption attacks can be completely countered by the A2D2 firewall policy and CBQ, TCP-SYN attack requires autonomous multi-level rate limiting to achieve a similar level of QoS.

The intrusion tolerance capability of A2D2 can be further verified by studying additional DDoS attacks of various types and natures using the A2D2 test-bed. 

6.4 Scalability

The current study of the A2D2 test-bed focuses on the QoS provided by the streaming video RealServer. However, the A2D2 CBQ configuration has taken into account of the common services available in a generic DMZ set-up, such as telnet, ssh, www, and smtp services. Additional tests can be performed to fine-tune the intrusion tolerance of the A2D2 network with respects to other services. Three A2D2 clients were used in the existing A2D2 implementation. The number of A2D2 clients can also be increased for future studies.

6.5 Anomaly Detection

The study of anomaly detection is beyond the scope of this project. Nonetheless, flood detection with the Snort IDS is a critical component of the A2D2 design. The current A2D2 design provides administrators with a flexible way to define the flood thresholds for their specific network. Adding an anomaly detection feature to the flood detection will be one valuable enhancement to the A2D2 and can assist administrators in determining a more accurate flood threshold. 

6.6 Fault Tolerant

The design of the A2D2 network targets the QoS aspect of intrusion tolerance. The current A2D2 design does not incorporate another key area of intrusion tolerance: fault tolerant and its principles of replication and duplication.

7 Conclusion

The design of A2D2 provides a micro approach where individual Internet users can address the DDoS problems in relatively manageable and affordable ways. The A2D2 network allows SOHO users to utilize existing and free technologies and to take control of their own defense within their own network boundary. A2D2 effectively combines firewall policy, CBQ, multi-level rate-limiting and DDoS flood detection in an autonomous architecture. Test-bed results clearly show that the A2D2 design demonstrates tolerance against bandwidth consumption attacks of various types, including UDP, ICMP and TCP-based DDoS attacks. When one type of mitigation technique, such as a firewall policy, fails to completely handle an attack, another technique such as CBQ or rate-limiting will automatically provide added protection. Regardless of the types of DDoS attacks, A2D2 clients enjoy QoS similar to the level of service they experience during normal network activities.

It is hopeful that with continual enhancements, the proposed A2D2 network design can be deployed in mass numbers among small and medium-sized networks, thereby improving the overall Internet security against DDoS bandwidth consumption attacks.

Bibliography

[Cearns]     http://cs.uccs.edu/~gsc/pub/master/aCearns/

[CERT98]
CERT Coordination Center. “Determine contractor ability to comply with your organization's security policy”. http://www.cert.org/security-improvement/practices/p019.html

[Cis02]
Cisco Systems. Policing and Shaping Overview. Cisco IOS Release 12.0 Quality of Service Solutions Configuration Guide. http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/12cgcr/qos_c/

[Comp]
Computer Networking Glossary. http://compnetworking.about.com/library/glossary/bldef-qos.htm?terms=QoS

[Gnuplot]
Gnuplot Central. http://www.gnuplot.info/

[IET00] 
IETF – Internet Engineering Task Force. Request for Comments: 2827. Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing. May 2000. http://www.ietf.org/rfc/rfc2827.txt.

[San00]
Scott C. Sanchez. IDS Zone Theory Diagram. 2000. http://www.snort.org/docs/scott_c_sanchez_cissp-ids-zone-theory-diagram.pdf

[Whatis]
Whatis?com. http://whatis.techtarget.com/definition/
serverList





nextNode





serverNode











serverNode











typedef struct_serverNode


{


	IpAddrSet *address;


	char ignoreFlags;


	struct _serverNode *nextNode;


}		ServerNode;
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typedef struct_sourceInfo


{


	struct in_addr saddr;


	int numberOfConnections;


	int totalNumberOfDestinations;


	int totalNumberOfTCPConnections;


	int totalNumberOfUDPConnections;


	struct spp_timeval firstPacketTime;


	struct spp_timeval lastPacketTime;


	int floodDetected;


	struct spp_timeval reportTime;


	DestinationInfo *destinationsList;


	u_int32_t event_id;


	struct _sourceInfo *prevNode;


	struct _sourceInfo *nextNode;


}		SourceInfo;
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typedef struct_connectionInfo


{


	FloodType floodType;


	int numberOfTCPConnections;


	int numberOfUDPConnections;


	int numberOfICMPConnections;


	u_short sport;


	u_short dport;


	struct spp_timeval timestamp;


	char tcpFlags[9]; /*8flags+a null*/


	u_char *packetData;


	struct _connectionInfo *prevNode;


	struct _connectionInfo *nextNode;


} 		ConnectionInfo;
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typedef struct_destinationInfo


{


	struct in_addr saddr;


	int numberOfConnections;


	ConnectionInfo *connectionsList;


	struct _destinationInfo *prevNode;


	struct _destinationInfo *nextNode;


}		DestinationInfo;





typedef struct_floodList


{


	SourceInfo *listHead;


	SourceInfo *last Source;


	long numberOfSources;


}		FloodList;





sourceinfo





CI





typedef enum_log level


{


	lNone = 0,


	lFILE = 1,


	lEXTENDED = 2,


	lPACKET = 4,


}		LogLevel;





typedef enum_floodType


{


	sNone = 0,


	sUDP = 1,


	sSYN = 2,


	sSYNACK = 4,


	sICMP = 8


}		FloodType;





struct spp_timeval


{


	time_t tv_sec;


	time_t tv_usec;


};
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