A Dominant Gene Genetic Algorithm
for a Substitution Cipher in
Cryptography

Derrick Erickson and Michael Hausman

University of Colorado at Colorado Springs

CS 591

Substitution Cipher

I. Remove all but the letters in the original
text (NO formatting, spaces, punctuation)

2. Create a character mapping for each
letter

Cipher/Key

Original letters: a,b,c,d,e,f,g,h,i,j,k,1,m,.. , z
Encrypted letters:q,z,y,m,h,j,b,x,0,a,£,i,p,.., t

Example

Original Message: iamasubstitutioncipher
Encrypted Message: ogqpqgvzglolvlodkyonxhw

Overview of Genetic Algorithms

* Based on Darwin’s Theory of Evolution

o Take several solutions and use them to make “better”
solutions over time

» Steps to a Genetic Algorithm
|, Start with a set of solutions (It Generation)

2. Take original “parent” solutions and combine them
with each other to create a new set of “child”

solutions (Mating)

3. Somehow measure the solutions (Cost Function) and
only keep the “better” half of the solutions

o Some may be from “parent” set, others are from “child” set

4. Introduce some random changes in case solutions
are “stuck’” or are all the same (Mutation)

5. Repeat starting with Step 2

Cost Function (Initialization Table)

Made Custom Gram Table
Program

Two Cost Function Tables

Find top N grams from Bible
> All Unigrams

> Top N bigrams

> Top N trigrams

> Top N four-grams

Scores proportional to
occurrence

Scores proportional to gram
SIZE

> Score * 2 for bigram

o Score * 3 for trigram

> Score * 4 for four-gram

Table |: Top 100 gram table

Gram Score
e I
t 0.686449195
o) 0.648787116
th 200
he 185.2286915
an 88.3373248
the 300
and 112.6185938
you 73.82056059
will 400
nthe 389.8032989

Cost Function (Run Table)

Table 2: Top 10 gram per letter table

e Also from Custom Gram Table
Program

e Find top 10 grams for each
letter
> Top 10 bigrams with an a, b, etc
o Top 10 trigrams with an a, b, etc
> Top 10 four-grams with an a, b, etc

* Scores proportional to
occurrence

e Scores proportional to gram
SIZ¢E
> Score * 2 for bigram
o Score * 3 for trigram
> Score * 4 for four-gram

Gram Score
an 88.3373248
ea 53.84633505
ha 49 59365553
at 44 90440108
but 14.07204436
bec 10.39076377
heb 9.59472339
lIb 9.51349478
nthe 389.8032989
dthe 373.8908
thel 368.8100909

Initialization of First Generation

e The first set of solutions

e 5 ways to create a solution:

I. Unigrams 10%
2. Bi-grams 10%

3. Tri-grams 10%
4. Four-grams 10%
5. Random 60%

e The solutions are built by ranking the unigrams,
bi-grams, etc from the cipher text and matching
them with the unigrams, bi-grams, etc in the
initialization table

o |If top trigram is “xqz” then that represents “the”

Mating Selection

e Mating finds new solutions
o Similar to solutions in current generation
° Potentially closer to “real” solution

* Select solutions by the total “cost”

> Look at all of the bigrams, trigrams, etc. in the cipher text
and add the score of all the grams found in the run table

> Higher scores represent a better solution

e Randomly mate two chromosomes from the top half
of each generation (Elitism)

» Both parents and both children inserted into new
generation

> Keeps the best solution
o “Children” should be better or just as good as “parents”

Genetic Algorithm Mating

|. Add up the number of occurrences of each gram in the run
table for each letter

2. Find Dominant Genes

Parentl: q e t v p r ... Parent2: z vy gd i..

Gene Cost:11 12 3 24 15 4 Gene Cost: 2515 5 10 8 14
Select the upper 1/3 Select the upper 2/3

Dom. Genes: v, p, etc Dom. Genes: z, v, i, g, etc

3. Place Dominant Genes Based on First Parent

Child I: * * * v P *

Child 2: z v * g * i
4. Fill in Blanks from Second Parent

Child I: z v * v p i

Child 2: z v * g P i

5. Fill in any Remaining Blanks from First Parent
Child I: z v t v P i
Child 2: z v y g P i

Mutation Selection

* Modify solutions
> Keeps a generation from having the same solution

> Potentially opens up new solutions not found
through mating

» Mutate everything but the top solution
e The Mutation Randomly swaps two letters
o Original: abcdef...z

o Mutated: abfdec...z
> Swap Positions:00 1 001 ... 0

¢ If the solution has a higher score than before
the mutation it is kept!

* Otherwise a second mutation is applied

Results

Table 3: Number of Letters Correct

Letters

200
400
600
800
1000

10 68
14.06
11.58
15.82

12

19
20
20

Nubmer Correc

18

16

14

12

10

o] £~y ey 5]

Averages of Number of Chararcters Correct

1 3 5 7 91113151719212325272931333537394143454749

Genera tion

200
400

600
— 800

w1000

e Values are number of correct letters in key

e Over 50 iterations of 100 solutions over 50

generations

* In general, the more cipher text available, the

better the results

Results Continued

Table 4: Percentage of cipher text correct

Letters

200 o4, 67

400 66.7 34.25 92.5
600 79.76 44.33 93.66
800 649 34.12 95.37
1000 86.77 604 943

* Percentage of text correct is not equivalent number of

letters correct in key

t Corre

100

90

80

70

60

50

40 -

30

20

10

Averages of Correct Text Percent

1 35 7 91113151719212325272931333537394143454749

Genera tion

200
—400
600
800
w1000

e 15.82 letters correct in key is 86.77% of the output text

on average

* Some letters appear more often
> Better to get some common letters (e, t, h,a) than many

uncommon ones (q, X, W, Z)

Conclusion

* Dominant Gene Algorithm
> Keeps best letters

> Uses gram statistics to determine “better”
solutions

> Gets a high percentage of cipher text correct

* Works by

> Using cost function on the gene level
> Using dominant genes in mating

° Improving recessive genes in mutation

Questions!

a, /§> 2
g

More Results

Percent Text Correct

Percent Text Correct

1 4 7 10131619222528313437404346149

Generation

100 120
% T TTMITTT
_——— LT 100
80 _‘,I ’,-—-4' o
/’ ""‘— —
70] ’.-4" 80 I-----\"
i) LT 8 ™
¢ 60 . % M
E — Average of RightPercent - =
= v A f RightP s m
o W 5 L
Y 5o LA 1000 9 &g |t
€ t APEREES — Average of RightPercent - 800
5] P - @ LT
E 20 A\ Max of RightPercent - 1000 g 41 Max of RightPercent - 800
[-% [-%
40 ~
30 Min of RightPercent - 1000 Min of RightPercent - 800
20
20
10
0 0
1 4 7 10131619 22 25 28 31 34 37 40 43 46 49 1 4 7 10131619 22252831343740434649
Generation Generation
Percent Text Correct Percent Text Correct
120 100
90 /'_\
100 = T
| T\ 80 ™
ATTT ATTTT
=TT —
30 ST 70 o i
5 { 1 5 .../ LU=
0 ot ot
& LT g 60 AR
‘6 / 1 ’.——"' é ’-’ _—-u—"
) ffeetet
£ 60 H — Average of RightPercent - 600 ‘5 50 7 I LT —— Average of RightPercent - 400
] 1 Lt
5 = Max of RightPercent - 600 S 40 ——Max of RightPercent - 400
a (-9
40 - - Min of RightPercent - 600 30 Min of RightPercent - 400
20
20
10
0 0

1 4 7 1013161922252831343740434649

Generation

