
A Dominant Gene Genetic Algorithm

for a Substitution Cipher in

Cryptography

Derrick Erickson and Michael Hausman

University of Colorado at Colorado Springs

CS 591

Substitution Cipher

1. Remove all but the letters in the original

text (NO formatting, spaces, punctuation)

2. Create a character mapping for each

letter

2

Cipher/Key

Original letters: a,b,c,d,e,f,g,h,i,j,k,l,m,…,z

Encrypted letters: q,z,y,m,h,j,b,x,o,a,f,i,p,…,t

Example

Original Message: iamasubstitutioncipher

Encrypted Message: oqpqgvzglolvlodkyonxhw

Overview of Genetic Algorithms
 Based on Darwin’s Theory of Evolution

◦ Take several solutions and use them to make “better”
solutions over time

 Steps to a Genetic Algorithm

1. Start with a set of solutions (1st Generation)

2. Take original “parent” solutions and combine them
with each other to create a new set of “child”
solutions (Mating)

3. Somehow measure the solutions (Cost Function) and
only keep the “better” half of the solutions

◦ Some may be from “parent” set, others are from “child” set

4. Introduce some random changes in case solutions
are “stuck” or are all the same (Mutation)

5. Repeat starting with Step 2
3

Cost Function (Initialization Table)

 Made Custom Gram Table
Program

 Two Cost Function Tables

 Find top N grams from Bible
◦ All Unigrams

◦ Top N bigrams

◦ Top N trigrams

◦ Top N four-grams

 Scores proportional to
occurrence

 Scores proportional to gram
size
◦ Score * 2 for bigram

◦ Score * 3 for trigram

◦ Score * 4 for four-gram

Gram Score

e 1

t 0.686449195

o 0.648787116

… …

th 200

he 185.2286915

an 88.3373248

… …

the 300

and 112.6185938

you 73.82056059

… …

will 400

nthe 389.8032989

… …
4

Table 1: Top 100 gram table

Cost Function (Run Table)
 Also from Custom Gram Table

Program

 Find top 10 grams for each
letter

◦ Top 10 bigrams with an a, b, etc

◦ Top 10 trigrams with an a, b, etc

◦ Top 10 four-grams with an a, b, etc

 Scores proportional to
occurrence

 Scores proportional to gram
size

◦ Score * 2 for bigram

◦ Score * 3 for trigram

◦ Score * 4 for four-gram

Gram Score

an 88.3373248

ea 53.84633505

ha 49.59365553

at 44.90440108

… …

but 14.07204436

bec 10.39076377

heb 9.59472339

llb 9.51349478

… …

nthe 389.8032989

dthe 373.8908

thel 368.8100909

… …
5

Table 2: Top 10 gram per letter table

Initialization of First Generation

 The first set of solutions

 5 ways to create a solution:

1. Unigrams 10%

2. Bi-grams 10%

3. Tri-grams 10%

4. Four-grams 10%

5. Random 60%

 The solutions are built by ranking the unigrams,
bi-grams, etc from the cipher text and matching
them with the unigrams, bi-grams, etc in the
initialization table

◦ If top trigram is “xqz” then that represents “the”

6

Mating Selection

 Mating finds new solutions

◦ Similar to solutions in current generation

◦ Potentially closer to “real” solution

 Select solutions by the total “cost”

◦ Look at all of the bigrams, trigrams, etc. in the cipher text
and add the score of all the grams found in the run table

◦ Higher scores represent a better solution

 Randomly mate two chromosomes from the top half
of each generation (Elitism)

 Both parents and both children inserted into new
generation

◦ Keeps the best solution

◦ “Children” should be better or just as good as “parents”

7

Genetic Algorithm Mating
1. Add up the number of occurrences of each gram in the run

table for each letter

2. Find Dominant Genes
Parent 1: q e t v p r … Parent 2: z v y g d i …
Gene Cost: 11 12 3 24 15 4 Gene Cost: 25 15 5 10 8 14

Select the upper 1/3 Select the upper 2/3
Dom. Genes: v, p, etc Dom. Genes: z, v, i, g, etc

3. Place Dominant Genes Based on First Parent
Child 1: * * * v p * …

Child 2: z v * g * i …

4. Fill in Blanks from Second Parent
Child 1: z v * v p i …

Child 2: z v * g p i …

5. Fill in any Remaining Blanks from First Parent
Child 1: z v t v p i …

Child 2: z v y g p i …
8

Mutation Selection
 Modify solutions

◦ Keeps a generation from having the same solution

◦ Potentially opens up new solutions not found

through mating

 Mutate everything but the top solution

 The Mutation Randomly swaps two letters

◦ Original: a b c d e f … z

◦ Mutated: a b f d e c … z

◦ Swap Positions: 0 0 1 0 0 1 … 0

 If the solution has a higher score than before

the mutation it is kept!

 Otherwise a second mutation is applied
9

Results

 Values are number of correct letters in key

 Over 50 iterations of 100 solutions over 50
generations

 In general, the more cipher text available, the
better the results

10

Table 3: Number of Letters Correct

Cipher Text

Letters

Average Min Max

200 7.9 3 16

400 10.68 5 19

600 14.06 5 19

800 11.58 5 20

1000 15.82 12 20

Results Continued

 Percentage of text correct is not equivalent number of
letters correct in key

 15.82 letters correct in key is 86.77% of the output text
on average

 Some letters appear more often
◦ Better to get some common letters (e, t, h, a) than many

uncommon ones (q, x, w, z)
11

Table 4: Percentage of cipher text correct

Cipher Text

Letters

Average

%

Min

%

Max

%

200 54.67 35 86

400 66.7 34.25 92.5

600 79.76 44.33 93.66

800 64.9 34.12 95.37

1000 86.77 60.4 94.3

Conclusion

 Dominant Gene Algorithm

◦ Keeps best letters

◦ Uses gram statistics to determine “better”

solutions

◦ Gets a high percentage of cipher text correct

 Works by

◦ Using cost function on the gene level

◦ Using dominant genes in mating

◦ Improving recessive genes in mutation

12

Questions?

13

More Results

14

