Code Access Security in the Microsoft .NET Framework

John Magby

University of Colorado
Colorado Springs
jmagby@uccs.edu

ABSTRACT
With the ubiquity of network access and the desire to exploit distributed resources, the demand for network-enabled applications continues to escalate. Unfortunately, these same factors have facilitated the exploit of vulnerable programs, resulting in several high-profile cases of compromises to high value systems. The effect has been to cast a pall on the trust individuals are willing to give to online systems. In light of these realities, software developers are challenged with meeting ever greater demands for ensuring the security of their applications – a competence traditionally only attainable by the most sophisticated programmers. To place these capabilities within the reach of a greater audience, Microsoft developed the .NET framework with security as a principle objective. This paper will endeavor to elaborate on the principles of code access security (CAS) as it is implemented in the .NET framework and how CAS meets the challenges of developing distributed applications.

Keywords
.NET, CLR, code access security, role-based security, stack walk.

1. Windows Computer Security Prior to .NET
Computer security is a discipline of computer system design that seeks to ensure the integrity and confidentiality of information and services provided by computer systems while ensuring their availability to authorized users. When personal computers first came into vogue in the 1980’s, computer security was virtually unknown to the public. Even for programmers of these early computers, issues of security were of little concern. Instead, software vendors sought to capitalize on the potential of computers and hence focused their efforts on maximizing features. Consequently, systems based on these naïve rationales were severely unprepared to adequately face the hostile environment foisted upon them in the form of the Internet. The personal computing industry suddenly was faced with the need to incorporate computer security into their designs.

Owning to their dominance in the world of personal computing software, Microsoft bore the brunt of criticism of the failure to adequately address security needs. In spite of this, Microsoft continued to place application capabilities ahead of security. The evidence of this can be seen in the explosion of successful attacks exploiting a vast array of vulnerabilities in Microsoft’s first Internet aware operating systems, Windows 95/98 and Windows NT. Of the early versions of Windows operating systems, only Windows NT provided any true implementation of computer security. The model which was employed, role-based security, was a model frequently used in the computer industry.

Role-based security (RBS) defines the concepts of user identity (principal), group membership, and security policy to restrict the privileges granted to users. The identity of a user is attached to the knowledge of user credentials, usually in the form of a username and password. The process of establishing this identity is called authentication. Administrators of RBS systems define the policies that in turn specify what access and operations users had to various system resources, a process known as authorization. Fundamentally, RBS establishes that trust of the system hinges squarely on the authentication and authorization of principals.

While RBS provided much needed control over systems, it also failed to completely satisfy the needs of computer security. First, this model requires administrators to place absolute trust in the programs running on the system. In cases where users were granted powerful privileges, the potential for damage resulting from running malicious programs by these users could be spectacular. Out of these fears grew the tendency to distrust computer systems. One such manifestation of this distrust was the practice of system administrators to become extremely tightfisted with regard to granting access. At the opposite extreme of this continuum is the other weakness of RBS – the challenge to authoring code that could meet the growing demands of application functionality without in turn requiring the elevated privileges for which administrators were reluctant to grant. Developers were faced with either practicing conservatism with regard to their applications or else risk building applications that required few restrictions. Since the tendency was toward the latter, security failures continued to prevail – Internet Explorer and ActiveX are two notable examples.

In an effort to salvage Microsoft’s deteriorating image, senior vice president Craig Mundie announced the “Trustworthy Computing” initiative in January 2002. As stated in the initiative, Microsoft committed to retooling itself to be prepared to deliver on the demands of the emerging technological revolution. In the following month, the first iteration of the .NET Framework was released. Built from the ground up with security as a principal concern and implementing a new security model – code access security, .NET promised the possibility of a framework upon which software could be based which would finally deliver the goals of computer security in Windows.
2. .NET Code Access Security Overview
In contrast to role base security, code access security (CAS) specifies a means to attach identity to programs as well as restrict the operations such programs can perform based on their identity. By combining the capabilities of both RBS and CAS, the .NET framework uses a defense-in-depth approach to security and offers a robust set of options for authoring programs that are able to exploit powerful capabilities but at the same time facilitate mechanisms to ensure they do not violate security principles. The idea of code access security was not introduced by .NET; Java applets utilized a similar concept that is known as “sandboxing”. What was new, however, was the scale to which .NET exploited this concept.

Code access security in the .NET framework begins on the foundation of code trust. At the core of the framework is the Common Language Runtime (CLR) which specifies a comprehensive set of rules for all .NET applications; all code based on the .NET framework which adhere to these rules acquire the special designation “managed code” or “type-safe code”. Among this set of rules is the directive that no code in the application shall access resources in a manner other than permitted by the framework. The result is that an increased level of confidence can be placed in managed code knowing that it cannot act in manner inconsistent with the restrictions placed upon it.

Knowing that managed code is obligated to follow security policy, it now becomes a matter of establishing the identity of code and restricting its behavior accordingly. In .NET, code identity is linked to various facts that can be known about the code which are given the designation evidence. Evidence falls into two primary categories: host evidence and assembly evidence (an assembly is the designation given to a unit of .NET code delivered in the form of an executable file (DLL or EXE)). Host evidence provides facts about where a piece of code originated whereas assembly evidence represents facts attached to the assembly itself.

Finally, .NET provides security policy tools that enable administrators to configure restrictions on applications based on the evidence they present. The way this mapping occurs is through entities known as code groups and name permission sets. Code groups contain rules that specify the evidence an assembly must present to earn membership in the code group. Code groups in turn specify the permission set – a collection of specific privileges granted to members of the code group. Security policy is organized in a hierarchical manner that permits configuration at various levels ranging from the enterprise to the user.

Among its greatest features, the .NET framework provides the ability for developers to extend the security framework. Custom evidence types and permissions can be created to meet the needs not provided in the base implementation. Further, a vast array of programming constructs is provided which facilitate a number of other advanced security techniques. The following section will elaborate on the details of the classes that define various security entities and explain how these are used to achieve specific security goals.

The figure below illustrates how .NET extends traditional role-base security with code access security. The arrows indicate that access to resources depends on the layers of security established by CAS and RAS. For unmanaged code, only RBS applies which is determined solely by the identity of the user running the program. Managed code, however, must first clear the restrictions imposed by CAS which derives its identity from the code itself. Even access to unmanaged code is constrained by CAS.
 [image: image1.png]Code Idently

User dentty

Managed Code

cas

Res

Focess

Resources.

Unmanaged Code.

Aocess

Aocess

Fig. 1 Code Access Security extends Role-Based Security.
3. Elements of .NET Code Access Security
3.1 Application Isolation
Before an in-depth discussion of code access security can proceed, it is first necessary to understand how .NET differs from the typical organization of security with regard to processes. Normally, application isolation in Windows is established at the process level wherein all segments of code in the process share memory and other resources. Isolation is achieved because the operating system prevents processes from accessing the memory and resources of other processes.

Unfortunately, this isolation comes at a price – applications that need some level of isolation but still have need to exchange data with other processes incur significant performance penalties. An alternative is to load the applications into a single process but the tradeoff here is a sacrifice in isolation; any of the applications in the process can cause the process to terminate. To address this problem, the .NET framework subdivides processes into entities known as application domains.

3.1.1 Application Domains

Application domains can be thought of as lightweight processes in the sense that they provide much of the behavior of processes. The key difference between processes and domains – the ability to run multiple domains in a single process – provides the means for information sharing between applications without the cost of inter-process communication. In each process hosting a .NET application, an instance of the CLR (Common Language Runtime) is loaded into which all domains are subsequently loaded. While multiple domains can be loaded into a single process, applications are able to specify different security attributes for each of the domains. Moreover, because managed code is guaranteed to access memory only in limited ways, isolation between domains is achieved without the cost of inter-process communication.

3.1.2 Assemblies

Assemblies, units of code in .NET usually occurring as DLL or EXE files, further divide the granularity of security. When a domain is loaded for an application, its assemblies are loaded into the domain. Because security attributes are configurable at the assembly level, an application can achieve a high degree of isolation. This ability is significant when considering the possibility of integrating third-party assemblies into an application. The Fig. 2 illustrates the concepts of isolation in a .NET application.
[image: image2.png]Hosting Process

CLR Runime

‘Appication Domain 1

‘Application Domain 2

Assembly3

Fig. 2 .NET Application Isolation
3.2 Code Identity and Evidence
In order to enforce the goals of code access security, the identity of the running code must first be established. In contrast to user identity, which is established by proving knowledge of specific credentials, code identity is established from characteristics of the code. Two broad categories of information are used to derive the identity of an assembly: the origin of the code and attributes attached to the code by its author. In the .NET framework, this type of information is designated as evidence.

As of version 3.5 of the .NET framework, eight standard types of evidence are defined as classes in the in the System.Secury.Policy namespace. The classes ApplicationDirectory, GacInstalled, Site, Url, and Zone specify code identity from the perspective of origin while Hash, Publisher, and StrongName occur as characteristics embedded in an assembly. The specifics of each of these classes are as follows:

3.2.1 Host Evidence

When an assembly is loaded into a domain, the CLR attaches evidence specifying the origin of the assembly, which can be either a local file or a network resource. In either case, the resource is specified by a protocol and a resource identifier, which in turn identifies the Url evidence of the assembly. For a local file, ApplicationDirectory evidence will be supplied which identifies the directory in which the file is located. A local file can also be registered in the global assembly cache (GAC, a special directory for registering assemblies for system-wide use), and in this case GacInstalled evidence will be supplied. For resources obtained as a network resource, Site and Zone evidence will be supplied as well. Site evidence specifies the fully qualified host name portion of the URL whereas zone relates directly to zones as defined by Internet Explorer.

3.2.2 Assembly Evidence

When an assembly is constructed, its author has the option to attach evidence that is independent of the way the assembly is loaded. All assemblies contain Hash evidence, a characteristic that uniquely identifies the contents of an assembly. Two assemblies will contain very different hash values even if they differ by only a single line of code. When an assembly is signed using an Authenticode X.509 digital certificate, Publisher evidence will be supplied which proves to consumers the identity of an assembly’s creator. The integrity of the code in an assembly can be assured when the author creates the assembly with a strong name. Such an assembly will load with the additional StrongName evidence. With the combination of Hash, Publisher, and StrongName evidence, the recipient holds convincing proof that the code is genuinely the unaltered product of its author.
3.3 Permissions
The .NET framework supplies a wide range of permission types that can be applied to an assembly to control the behaviors in which it can engage. As with evidence, permissions are defined using a set of classes in the System.Security.Permissions namespace. All of these classes descend from the class CodeAccessPermission and are sealed to prevent attempts to circumvent security enforcement. CodeAccessPermission defines a common interface for these classes, which supplies fine-grained control over the behavior of the permissions (discussed later under Altering Security Behavior). Currently, more than thirty permission classes exist that can be grouped by their usage: permissions associated with evidence types, permissions describing access to named resources (file system, registry), permissions describing access to general resources (sockets, database systems, user interface, etc).
3.3.1 Permission Sets

While the variety of permission classes enables a high degree of selectivity in the application of resource permissions, they also increase the complexity of managing permissions. The .NET framework answers this dilemma with permission sets. Permission sets are to code access security what user groups are to role-based security – a device for aggregating collections of permission into a single unit. By using permission sets, the behaviors encapsulated in individual permissions are enacted upon as a whole. While permission sets can be created programmatically (via the PermissionSet class), their typical use is in the form of named permission set – permission sets predefined at the machine or enterprise level. Six named permission sets come built into the framework: Nothing (an empty permission set), Execution (a permission set that grants only permission to run), Internet (limited set of permissions for assemblies of unknown origin), LocalIntranet (assemblies from the local enterprise), Everything (all permissions except permission to skip verification), FullTrust (full, unrestrained access to all resources).
As with user groups, the real power of named permission rests in the ability to easily manage the permissions of applications based on security policy; this is the topic of the next section.
3.4 Security Policy
.NET security policy combines several the entities discussed so far – evidence, permissions, and named permission sets – with a couple of new entities – policy levels and code groups – into a highly flexible set of rules governing permissions granted to managed applications. The principal tool for managing security policy is the .NET Framework 2.0 Configuration application (typically listed in Administrative Tools).
3.4.1 Policy Levels

Policy levels are logical groupings of security rules organized in a hierarchical manner. This organization simplifies management of security by establishing policy broadly at the higher levels and limiting specific rules at lower levels. While four levels are defined, only three of these are available in the configuration application.
Enterprise level policy defines rules that apply to all computers in the enterprise. Machine level policy defines rules in effect for code on the local computer. User level policy specifies rules for code run by the currently logged on user. Policy can be defined at the domain level but the .NET Framework configuration tool cannot be used to manage these. Instead, applications that support domain level policy provide custom tools for managing the settings. For example, the configuration tool for Internet Information Service (IIS) provides an interface for specifying settings for application domains used to host ASP.NET websites.
3.4.2 Code Groups

Security policy is ultimately defined in entities known as code groups, which occur as a hierarchical collection within the policy level files. Code groups describe security policy through two attributes. First, all code groups specify a named permission set that establishes the permissions granted by the code group. In order to determine which code groups will apply to a given assembly, security policy consults the second attribute known as a membership condition.
The purpose of membership conditions is to define what evidence must be presented by an assembly before it is granted the permissions defined by the code group. Each of the standard evidence types defines an equivalent membership condition that defines a rule specific to the evidence. For example, to create a code group which is to grant permissions to assemblies loaded from the website “www.mysite.com” (SiteEvidence), the site membership condition (class SiteEvidenceMembership) would chosen and then the site name filter would be assigned the value “www.mysite.com”. Some membership conditions do not contain filter conditions; an example is the AllMembershipCondition class that intended for use in code groups that apply to all assemblies regardless of evidence.
3.4.3 Policy Resolution

The process of mapping assembly evidence to granted permissions is known as policy resolution. Every time an assembly is loaded, the CLR starts the policy resolution process by checking the root level code group in the Enterprise level policy file. By default, the only code group in this level specifies the All Code membership condition and grants the Full Trust permission set. However, this does not imply that all code enjoys unrestricted privileges. Instead, this configuration indicates only that the Enterprise level does not impose any restrictions. The reason this is the case is that policy resolution continues through the remaining levels and produces as the result an intersection of the permissions granted at each level. Consequently, each successive policy level can only remove permissions granted at the higher and can never add permissions that were not already granted. Given that in the default configuration the Enterprise level grants all code full permissions, it effectively defers resolution of permissions to lower level policy levels.
During the evaluation of a given policy level, the membership condition of the root code group is first tested (every policy level contains at a minimum a root code group). If the evidence presented by the assembly satisfies the membership condition, the child code groups are then evaluated recursively until either a membership condition fails or no more child code groups exist. As each qualifying code group is encountered, a collective set of permissions is built from the union of permissions granted by each.
Figure 3 provides an example to illustrate the subtractive nature of policy resolution across policy levels. In figure 3, the Enterprise level policy file grants permissions P1 through P5. However, as the resolution process proceeds, P5 is excluded at the machine level, P2 from the user level and P4 at the domain level. The net effect is that only permissions P1 and P3 are granted to the assembly.
[image: image3.png]P1 P2 3 Po Ps
- -P‘. ..PZ..-.Pa .- N- Pﬁ
P1 P2 P3 Py Ps
P1 P2 P3 Py Ps
P1 P2 Ps Py Ps

Enterprise Level

Machine Level

User Level

Domain Level

Effective
Permissions

Fig.3 Policy Level Effects on Permissions
Figure 4 provides an example of the hierarchical nature of membership conditions. Three cases are shown for the permissions granted based on the evidence an assembly presents. In the first case, the only evidence is that the assembly was loaded from the “Internet” Zone and hence only acquires the permission set “Internet”, a very limited set of permissions. For the second case, the assembly is further identified as originating from the site “www.trustedsite.com” and hence is granted the additional permissions FileI/O and Registry as defined in the “Custom” permission set. Finally, if the assembly originates from the “Internet” Zone and is signed with the key “<trustedkey>”, it obtains full trust.
 [image: image4.png]Al Code
Membership: All Code.
Permission Set: None

Membership: Zone where
Zone = Inemet
Permission Set: Interet

Loaded from Internet

Loaded from Internet site “w rustedoode cor’

Loaded from nternet and signed with <trustedkey>

h 4

Trusted_Sites_Code.
Membership: Sife where
St
“ww rustedsite com”
Permission Set: Custom =
FilflO Registry

Trusted_Name_Cods.
Membership: Strong Name.
‘where Name =
<ustediey>
Permission Se: Full Trust

Fig.4 Membership Condition Effects on Permissions
3.5 Alerting Security Behavior

While the foregoing description of the behavior of .NET code access security is adequate for most scenarios, the framework provides mechanisms to adjust permissions in certain situations. In .NET code access security, the enforcement of permission to access a secured resource is accomplished by the issuance of a corresponding permission demand (each permission type implements the method Demand). If the specified permission is available in the current security context – the permission set granted to the running code – access to the resource is granted. If the security context does not contain the required permission, a security exception is raised and access to the resource is blocked. A complication to this behavior arises when one considers what frequently happens in the course of a single procedure call. Since a procedure call in any part of an application can result in a long chain of subsequent procedure calls, – calls that may cross assembly boundaries – it becomes clear that the security context can change at each level of the call stack.
3.5.1 Stack Walks

To accommodate this situation and to prevent the possibility of a luring attack – an attempt by lesser-privileged code to exploit permissions of more privileged calling code, the CLR performs a stack walk to verify all callers in the chain have the necessary permissions. Starting from the code encountering a secured resource, a security demand is issued for each caller in the chain until either the end of the chain is encountered or else a context is found which cannot satisfy the demand. If any caller in the chain is unable to satisfy the demand, the access is denied. Because stack walks incur some cost to performance as well as potentially limit some desired functionality, all .NET permission classes implement methods for changing the standard behavior.
3.5.2 Overriding Stack Walk Behavior

One method, Assert, blocks a stack walk from examining all callers and instead determines whether to grant access based on the security context of the code that calls Assert. If the code can satisfy the security demand, access to the resource will be granted regardless of the security context of the callers. In effect, a program that calls Assert vouches for the right of its callers to access the resource. Clearly, this is a perfect setup for a luring attack and should be used with great discretion. Often, the only safe way to use Assert is to first make a Demand for a custom permission; doing so establishes that the callers meet at least some known level of privileges.
To complement Assert, the Deny method terminates a stack walk from proceeding in the event a demand is in effect for a resource that should not be permitted even if all callers in the stack have been granted permission. Deny effectively represents a refusal of the executing code to participate in the access of a protected resource and can be used to limit programmer liability in the event of overly permissive permissions granted to assemblies. The method PermitOnly is similar to Deny except that instead of specifying a permission the code refuses to grant, specifies rather a finite set of permissions that are granted. This can be useful if blocking certain permissions can be more readily stated as the compliment of a small set of allowed permissions.
Since stack overrides are usually intended for transitory sequences of code, permissions also implement methods to re-enable the standard stack walk behavior. Corresponding to each override method, these are RevertAssert, RevertDeny, and RevertPermitOnly. As its name implies, RevertAll turns off all stack overrides in effect. Its import to understand that reverting overrides is not a matter of convenience but can have profound effects on security. Should an Assert override be left intact after the target action has completed, vulnerability will be opened up to all code running in the affected method. A particularly subtle way this can occur is if the code raises events or throws exceptions handled by untrusted code.
3.5.3 Permission Requests

While Assert, Deny, and PermitOnly allow fine-grained control of permissions at the method level, .NET allows programmers a set of attributes, known as permission requests, to alter resolution of security permissions at the assembly level. Unlike stack walk overrides, permission requests control whether an assembly will even be allowed to load into a domain. As its name suggests, the attribute RequestMinimum establishes the minimum permission grant necessary for the correct functioning of the assembly. Because permission request attributes are exposed to consumers of an assembly, administrators can use RequestMinimum attributes to assure an application will perform correctly. By using the RequestOptional attribute, assemblies can specify permissions they would prefer to obtain but are willing to do without. To correctly use optional permissions, methods in the assembly should test for the optional permissions and fail gracefully when they are not present. Finally, the RequestRefuse attribute specifies permissions that the assembly does not want granted even if they would be under the security policy; RequestRefuse is equivalent to assembly level Deny.
4. Weaknesses and Future Direction of .NET Code Access Security
The foregoing description of code access security in the .NET framework demonstrates a vast range of capabilities. However, as is often the case, more does not always translate into better. Experience has shown that the intricacies of the security model can lead to challenges to correctly configuring security for an enterprise with the consequences ranging from breaking otherwise completely valid systems to opening up vulnerabilities to malicious code.
While security policy in .NET aims to simplify configuration by defining permissions based on evidence, in practice this can become troublesome. One reason can be linked to the number of different applications that may be encountered and uncertainty to the degree of restrictions that can be imposed without unduly causing applications to fail. This pattern is often linked with the unfortunate practice granting full trust to all applications and hence completely nullifies the benefits of code access security. A second problem is that .NET security policy is unable to impose any restrictions on unmanaged applications.
Besides the difficulties associated with configuring security policy, another weakness can be traced to bad practices of developers of .NET assemblies. Because assemblies targeted for use as library resources in other applications typically must interoperate with untrusted code, design changes have to be made. Specifically, the AllowPartiallyTrustedCallersAttribute must be applied to the assembly. Unfortunately, developers are not always aware of or interested in knowing the implications of doing this and consequently, easily fell into practices that left their assemblies vulnerable to exploits by the calling applications. Similarly, improper use of stack overrides could unintentionally grant elevated privileges to untrusted code. As was mentioned previously, event delegates and exception are particularly subtle vectors for these vulnerabilities.
4.1 Microsoft .NET Version 4.0

In light of these weaknesses, Microsoft has begun to make changes to address them. As of Beta 2 of version 4.0 of the .NET framework, significant changes are being made to code access security. First, the enforcement of CAS through the application of security policy has been disabled. Second, the security model has been extended to encourage developers to use sandboxing techniques for restricting untrusted code.
With the abandonment of security policy for code access security, Microsoft is instead admonishing the use of Windows Software Restriction Policies (SRP). Introduced with Windows XP and Windows 2003, SRP is an administrative tool for describing the capabilities of applications regardless of their architecture. By moving to SRP, administrators reap the benefits of having a single system for configuring application security. It should be pointed out that while .NET security policy is being disabled, all of the underlying architecture (evidence, permission sets, stack walks, etc) remains in place and participates in the makeup of code access security.
While introduced in version 2.0, a security model based on transparency has been extended to become the default security enforcement mechanism in .NET 4.0. The purpose of this model is to draw a clear distinction between code designed to support application functionality from code that runs as part of the system infrastructure. Code is designated as either security-critical or security transparent. Security-critical code is able to utilize security functions to affect the application of permissions. As its name suggest, security transparent code has no ability to participate in actions that would alter the security context. Specifically, code marked as transparent cannot perform permission assertions, directly call critical or native code, or inherit from critical code types.
The primary benefit of transparency security is the simplification of code development. Developers can now designate code as security transparent, which allows it to interact with untrusted code while still offering assurance that the code cannot be used to circumvent security. Under .NET 4.0, the primary mechanism for restricting untrusted code then becomes the creation of sandboxed domains. Consequently, developers are allowed to focus their security efforts to the few assemblies that will perform security critical activities.

With the advent of code access security, developers are armed with another layer of protection against the threats of malicious code while still empowered to utilize the full capabilities of the operating system. This paper has endeavored to address the key concepts of code access security and to increase an understanding of how CAS can be used to build secure applications. In spite of its weaknesses, .NET code access security has laid a sound foundation for code development. And as future versions are released, the ability to succeed in these endeavors will increase.
5. REFERENCES

[1] Mundie, C., de Vries, P., Haynes, P., Corwine, M. 2002. Trustworthy Computing. Microsoft White Paper. Microsoft Corporation. http://download.microsoft.com/download/a/f/2/af22fd56-7f19-47aa-8167-4b1d73cd3c57/twc_mundie.doc
[2] Freeman A. and Jones A. 2003. .NET Security. O’Reilly & Associates, Sebastopol, CA.

[3] Meier, J.D., Mackman, A., Vasireddy, S., Dunner, M. Escarnilla, R., and Murkan, A. 2003 Improving Web Application Security, Threats and Countermeasures. Microsoft Corporation. http://msdn.microsoft.com/en-us/library/ms994921.aspx
[4] Brown, K. 2004. The .NET Developer’s Guide to Windows Security. Pearson Education. Boston, MA.

PAGE

