
Unlocking the Power of SELinux by Utilizing the CDS
Framework IDE

Benjamin Stroud
CS591

Fundamentals of Computer/
Network Security

Fall 2009
bstroud@uccs.edu

Abstract-- SELinux (Security Enhanced Linux) is fast
becoming a popular and powerful tool for large and
small businesses as well as many government
organizations. The CDS (Cross Domain Solution)
Framework IDE allows developers and Information
Technology professionals to harness this radical new
power without having to delve deep within the
architecture of the system. The overarching goal of this
paper is to explore the CDS Framework IDE and present
its capabilities and limitations. I will touch on the
history behind the framework and give some background
on SELinux in general. I cover some of the benefits of
using the Framework. There will be a section exploring
how to setup the framework and how to create policies as
well as how the development environment translates a
user's project into a functioning SELinux policy. I will
explore alternatives to this solution and what new
directions the creators are planning to take. Finally there
will be a discussion of ideas my ideas for improvements
to the Framework as well as a presentation of my overall
conclusions.

 Keywords – CDS Framework IDE, SELinux,
policy editor, Cross Domain Solution, Secure Linux,
Linux, TreSys, Open Source Tool, GUI Policy Editor

I. INTRODUCTION

SE(Security Enhanced)Linux is a powerful tool for
organizations concerned with information security. It is
often seen, however, as extremely daunting from a
management standpoint. Administrators believe that
SELinux and its policies can only be used by security experts
and that without an in-depth knowledge of the inner
workings of SELinux one cannot hope to use it effectively. I
will show through the exploration of the CDS(Cross Domain
Solution) Framework IDE(Integrated Development
Environment) that not only does the use of this framework
make SELinux more accessible, but it also makes it more
powerful by giving an administrator the ability to directly
translate an intuitive understanding of how information
should flow securely through a system, and then directly

translate that understanding into usable SELinux policies.

In this paper I will discuss (1) what SELinux is (2)
how policies are used and what their advantages and
limitations include, (3) what a Cross Domain Solution is and
how SELinux makes them possible, (4) what the CDS
Framework is, (5) what its benefits include, (6) how it is
used, (7) some available alternatives, (8) and some criticisms
of Cross Domain Solutions in general. There will also be a
final section reviewing and summarizing my findings as well
as presenting ideas for future improvements to the project.

II.WHAT IS SELINUX?

A common misconception about SELinux is that it
is a stand-alone operating system, when in fact it is a security
enhancement to Linux which gives the administrator the
ability to control which users and more importantly, which
applications and services, can access which resources. Like
most modern operating systems, Linux traditionally has used
access controls such as file permissions or modes that are
modifiable by various levels of users. SELinux, however,
gives us the ability to define access controls via a system
wide policy that can't be changed by careless users or
malicious applications[1].

SELinux also gives an administrator a much more
fine-tuned ability to restrict access. For example, rather than
being able to just control who can read , write or execute a
file, SELinux policies allow an administrator to specify if
someone (or something) can move, only append to, or unlink
a file. Policies apply not only to files on the system, but
almost any other system resource, such as network resources
and IPCs (Inter-Process Communications)[1] such as
sockets, pipes, or signals[2]

III. WHAT IS A CROSS DOMAIN SOLUTION?

A CDS is essentially a way to transfer data from one
domain to another. Within the context of the CDS
Framework domains are defined as containers within a
system that form groups of entities (processes, resources,
etc) with the same security level and access to the same
resources. So a CDS gives an administrator the ability to

define a secure environment in which data from one security
level can be transmitted to another[3].

A. Example Architecture

In the following section I present a typical scenario
that will illustrate when a CDS can be of use, and through
this example I will clarify what a CDS is. The goal of the
administrator in this example is to connect a machine with
sensitive data (Domain B) to the Internet (Domain A) for the
purpose of receiving emails[3].

The administrator or system architect must filter the
traffic through several gatekeeper processes that perform
various inspections of the incoming data, without allowing
any compromise of the trusted information zone's integrity
due to the transfer of untrusted data. The traffic must travel
through a virus filter, a spam filter, a content filter, as well as
the basic mail service running on the system as seen in figure
(1). Each of these services has its own unique task and
requirements to function within the system [3].

B. Goals of the Example Architecture

The administrator's goal is to minimize the amount
of responsibility and therefore trust that is given to the
intermediate processes. If any of these processes were to
become compromised a properly designed CDS would
minimize the amount of damage that could be done to the
system by controlling the data flow from one zone to another
and restricting what each process can do. The combination
of SELinux and the CDS Framework IDE is what gives the
administrator the power to create this solution [3].

IV. WHAT IS THE CDS FRAMEWORK IDE?

The CDS Framework is an open source tool that
allows system administrators to create Cross Domain
Solutions and edit SELinux policies without requiring a deep
and intimate knowledge of the underlying details of SELinux
policy creation or editing. The CDS Framework is GUI
driven software solution that allows a system designer to
drag and drop objects representative of system components
into a workspace and arrange those objects in an intuitive
way that is then translated into a functional SELinux
policy[4]. The arrangement of the design components in the
CDS Framework project represent how data should flow
through a system and where the domain boundaries lie[5].

The framework is a plug-in to Eclipse[5] which is a
popular open source java based IDE[6]. The CDS
Framework was created by Tresys Technology who also built
SLIDE (SELinux Policy IDE)[6] which is the basis for the
framework[5] and will be discussed in the following section.

A. SLIDE as it relates to the CDS Framework IDE

SLIDE, like the CDS Framework IDE, was
designed as a plug-in for Eclipse. It is a text based, rather
than graphics based IDE. Much like the CDS Framework
IDE, SLIDE allows for a user to create and edit SELinux
policies[5]. Before the CDS Framework can output an
SELinux binary file the graphical representation of the
policy must first be converted into a language that SLIDE
can understand, at which point SLIDE is responsible for
actually compiling the higher level output of the Framework
into a usable SELinux policy[7]. I give a more detailed
description of this process in a later section.

B. CDS Framework Concepts and How They Relate to
SELinux

Within this paper I use SELinux related terms (such
as domains, policies, etc.) from the perspective of the CDS
Framework and how they are defined by the creators and
used within the tool since the Framework is my primary
focus. In this section I want to take a moment to point out
some of the differences between how the CDS Framework
and its creators define - or even add additional - terms that
refer to concepts that originated within the realm of
SELinux.

1) Domains: The CDS Framework IDE creators
define domains as containers within a system that form
groups of entities (processes, resources, etc.) with the same
security level and access to the same resources[5]. In
SELinux the concept of domains are that they are simply
types associated with particular processes which control
what access a process has to the system[8].

2) Decomposing Domains: This paper makes
reference to decomposed domains within the CDS
Framework. Decomposing a domain is defined as breaking
domains into sub-domains. Sub-domains are bound by the
same rules as their parent domains and can only interact
through shared resources (defined below). Decomposing
domains helps to further isolate access to objects within the

Figure 1: Example CDS Architecture[3]

domain. SELinux does not have any concept of
decomposing domains[5]. This is due to the difference in the
way domains are defined within the context of the
Framework and SELinux as discussed above.

3) Shared Resources: The CDS Framework uses a
higher conceptual idea to define shared resources than
SELinux. Shared resources are entities shared across
different domains which allow for information to pass
between them. Within the Framework a single shared
resource can include multiple system objects (pipes, sockets,
etc.) which are treated as one entity. In SELinux the single
conceptual object would be broken down into each of its
system object classes. While each of these objects
individually would still be referred to shared resources in
SELinux, the higher level grouping does not exist[5].

4) Access: In general accesses are the interaction
between domains and their shared resources. They define
the way data can flow through the separate domains. In the
CDS Framework accesses are limited to read, write, and
readwrite. SELinux allows for much more flexibility as
mentioned in section II. The higher level accesses used by
the CDS Framework must be mapped to multiple SELinux
permissions in order to capture the intuitive meaning of the
access granted. When dealing with a file for example, write
in the CDS Framework maps to both random access writing
and appending to a file in the actual SELinux policy.
Different resource accesses will mean different mappings.
The mappings for a socket will be different than the
mappings for a file [5].

5) Base Domains and Base Resources: The CDS
Framework allows a user to use the concept of Base
Domains and Base Resources to interact with the SELinux
Reference Policy[5]. An SELinux Reference Policy is a
generic system policy for SELinux that all the custom
policies in the environment are built upon[9].

6) Entrypoints: An Entrypoint is a concept unique
to the CDS Framework. It is a way for the user to define
what is known in SELinux as a domain transition. A domain
transition allows the domain type of a process to change
during execution, giving it more or less privileges. A classic
example is a user of the SELinux enabled system imputing a
password when prompted. If the password is correct, the
process is promoted to a higher access level.

The entrypoints in the CDS Framework consist of a
source domain, a target domain, and the entrypoint itself
which is positioned between the source and target in the
graphical editor[5].

 V. THE BENEFITS OF USING THE CDS
FRAMEWORK IDE

For many the primary reason for using the CDS
Framework IDE is the ability to take advantage of the higher
level abstraction that the GUI based editor provides. As

shown in figure (2), a user can create a very intuitive CDS
that will be directly translated into an SELinux policy. In
figure (2) we can very quickly grasp how data flows through
the defined accesses (the arrows) as it passes from resource
to resource and from domain to domain. The flow of
information starts from the network resource (denoted by the
circular arrows) labeled “In” into the domain (represented by
a square) labeled “Low”, first flowing to sub-domain “L1”,
then the shared resource (circle) “R1” then to domain “L2”
and so on until it reaches the resource shared between the
two main domains “Midd” which then passes the data into
the parent domain “High”. The information travels through
High's various sub domains and internal shared resources
until the data exits the CDS through the network resource
“Out”[5]. So as the reader can plainly see with just a simple
key decoding the meanings of the symbols we can ascertain
at a glance how the data flows through the CDS.

The ease with which a system designer can
understand the language of the CDS Framework IDE leads
us to the next major reason people are interested in using the
CDS Framework. A system administrator can begin using
the Framework to create and edit complex SELinux policies
without an in depth or extremely detailed understanding of
the nuances of policy manipulation[5]. Many people who
are new to the world of SELinux are daunted by the amount
of background knowledge needed to begin making the
simplest policy changes. With the breakthrough of the CDS
Framework IDE the knowledge needed to begin effectively
utilizing the power of SELinux is significantly reduced.

VI. HOW TO USE THE CDS FRAMEWORK IDE

A. Overview

The CDS Framework has the familiar look and feel
of many popular IDEs. As stated above it is an Eclipse plug-
in so anyone familiar with Eclipse, or any modern IDE,
should be comfortable working with the CDS Framework. A
CDS has to be part of an Eclipse project so a user must

Figure 2: Example of CDS Framework Project[5]

create a new project or work from an existing project.
Within the project one or more systems will be defined.
Once the project and its related systems are setup the user
can begin modifying the CDS through the graphical editor
before finally compiling it into an SELinux policy binary[5].

B. Installation

As explained above, the CDS Framework is built
upon several layers all of which must be installed before the
IDE will be usable. I list the required dependencies below.
For a detailed description of the installation process please
see [10].

• Eclipse 3.4.1 or later
• SLIDE version 1.3.14 or later
• SETools version 3.3.2.2 or later
• Base Reference Policy
• CDS Plug-in[10]

C. Major Components of the IDE and How They are Used

1) Framework Navigator: The Navigator is
essentially a hierarchical tree based view of the Framework
that the user is manipulating. As shown in figure (3) the
framework navigator consists of (1) the Project, (2) the
System, (3) the Policy Items, and (4) the Custom Additions
folder.

As mentioned in part A of this section the project
being modified can contain several systems and each system
is made up of all the domains and resources – or policy items
– of the CDS. In this example the system “guard” has two
parent domains, “High” and “Low”. High is expanded and
we see its sub-domains and internal shared resources. Low
has also been decomposed but the elements remain collapsed
within the navigator. The “Custom Additions” folder in the

navigator view displays the custom base domains, base
resources, and abilities of the members of the domains
included in the project. Custom additions are links to the
SELinux Reference Policy[5] defined in section IV
subsection B part 5.

2) Graphical Editor: The Graphical Editor is
presented in Figure (2). It is the work area of the IDE where
items from the Palette (discussed below) can be placed and
arranged to define the details of the CDS being created[5].

3) Tool Palette: The Palette component of the IDE
presents the user with a list of graphical representations of
the Framework components mentioned throughout this
paper. It also gives the user two modes of selecting the
components within the editor. To add a component to the
editor, first select a component by clicking on it and then
click within the Graphical Editor. The Access and Enter
items are used to form connections between the components
within the Editor[5]. The Palette is shown in Figure (4)
below.

4) Properties: In Figure (5) the reader can see the
Properties View for the IDE. It displays all the properties for
any selected component in the Graphical Editor. The item's
properties can be edited using this view. As with most IDEs
the properties displayed will change depending on the item
selected. A user has the ability to select multiple items in the
Graphical editor and modify all the properties those items
share simultaneously [5].

5) Problems: The Problems view in the CDS
Framework IDE functions much like the error outputs
available in most advanced IDEs. It displays to the user all
errors detected when the user attempts to compile his or her
CDS into a binary policy. Selecting an error within the
problems view will automatically select the item within the

Figure 3: The Framework
Navigator[5]

Figure 4: Tool Palette[5]

Graphical Editor that is the source of the error. This view
also offers a “quick fix” option for some common
problems[5]. A sample error output is displayed in Figure
(6).

VII. HOW THE GRAPHICAL REPRESENTATION OF
THE CDS IS TRANSLATED INTO

SELINUX POLICIES

A. Overview

The basic concept of how the Framework translates
the graphical specifications of the CDS into an SELinux
policy is as follows. The CDS Framework converts the
layout into a format acceptable to the SLIDE plug-in. This is
done via the CDS's translator module. SLIDE is then
responsible for compiling this output into an SELinux binary
file[7]. I explore the details of this process in the next
several sections.

B. Converting the CDS graphic into SLIDE input

The graphical layout of the policy is also
represented by a text based Framework Policy (.fpol) file[5].
This file is generated based on the rules within the CDS
textual policy language. This text file is the bridge between
the visual policy created by the user and the input required
by the translator [7].

The CDS Translator takes the text file generated by
the CDS Framework IDE and converts it into a SLIDE
compatible text file. It does this by referencing the
Dictionary (.fdic)[5] file[7].

C. Converting SLIDE file into Binary SELinux Policy

The SLIDE build tools within the SLIDE SDK are
responsible for creating the Binary SELinux policy. This is
done using the same process as when a designer builds a
policy using SLIDE directly. SLIDE calls “make” using the
SELinux reference policy which creates the binary policy[7].

An overview of this processes can be seen in Figure
(7) on the following page.

VIII. ALTERNATIVES TO THE CDS FRAMEWORK IDE

A. SLIDE

Instead of using the more abstracted CDS

Framework IDE a system administrator might utilize the
SLIDE plug-in that the Framework is built upon. The
advantage of this approach is that the user gains a finer
control over the details of the policy being generated while
still having access to all the tools included with a full
featured IDE[11].

The disadvantage of this approach is that the
background knowledge required to effectively use SLIDE is
greater than that of the Framework IDE[11]. The textual
input is less intuitive and therefore it may take longer to
implement the desired CDS.

Figure 5: Properties View[5]

Figure 6: Problems View[5]

B. SELinux Policy Editor (SEEdit)

SEEdit is an alternative IDE that, like SLIDE, is
designed to assist users wishing to edit or create their own
SELinux policies[12]. Again, with this approach the user
gains more control over the details of the policy being
created while retaining the beings of using an IDE, but loses
the intuitiveness of the CDS Framework. SEEdit does
however, provide a layer of abstraction which hides some of
the details of raw policy editing. This is done via SEEdit's
custom policy editing language SPDL or Simplified Policy
Description Language[13].

C. Create or Edit the Policy in a Text Editor

The administrator also has the option of opening the
plain text policy in an editor, making changes, and then
compiling the policy from the command line using the
makefile in the policy source directory[8].

The advantages of this solution are that the
administrator has absolute control over exactly what the
makeup of the policy will be and does not have to learn how
to use a potentially unfamiliar IDE.

The major disadvantage of this approach lies in the
difficulty involved. To create a complex CDS using this
method would take large amounts of background knowledge
and experience in SELinux. In addition the chance for error
is greatly increased using this approach. The safety nets the
IDEs provide in the form of error and warning outputs are
lacking. As with the IDE based approaches the ability to
conceptually design a CDS and directly translate it into a
policy is lost.

IX. CRITICISMS OF THE CDS CONCEPT

There are some who say that using a CDS is a
detriment to the security of the overall system and should be
avoided. These critics make the argument that a CDS is
contrary to the original idea of Mandatory Access Control
(MAC) which tries to force rigid security rules without room
for different interpretations depending on the situation. A
CDS by its very definition adds additional rules to the secure
environment to allow the transfer of data from another
domain which may be potentially insecure[14].

Critics point out that implementing a CDS allows
the well meaning administrator to push through system
modifications while focused narrowly on the current
problem at hand, potentially overlooking larger system wide
security concerns. The micro view of trying to move data
from point A to point B could compromise the macro system
and should just be avoided altogether[14].

Towards the center of the issue are people who are
not completely apposed to using a CDS, but state that it
should only be used as a last resort when there are no
alternatives for accomplishing a critical task[14]. If what the
administrator is trying to achieve is not critical, or if there is
a way of reaching his or her goal within the boundaries of
MAC then they maintain that using a CDS should be
avoided.

X. CONCLUSION

A. Summary

In this paper I have explored the CDS Framework
IDE and shown how someone who is interested in SELinux
but may not be an SELinux expert can use the Framework
accomplish their goals quickly and safely. I have given an
overview of SELinux as well as the concept of the Cross
Domain Solution. I have also covered some of the
alternatives to the CDS Framework and discussed some
criticisms of the CDS concept.

B. Advantages and Disadvantages

The main appeal of the CDS Framework IDE to
someone considering implementing a CDS is the fact that the
graphics based language is so intuitive. The designer can
translate a basic data flow diagram and translate it directly
into an SELinux policy without having a huge wealth of
background knowledge of SELinux and management of its
policies. The major disadvantage to using the Framework is
that an administrator may not be able to make use of the fine
grain control that SELinux has to offer.

C. Future Work

1)Allow for Finer Access Controls: One of the
major disadvantages of using the CDS Framework
mentioned in this paper – the lack of fine tuned control -
could be mitigated significantly by giving the access objects
in the Framework the ability to use all the accesses available

Figure 7: Process of translating CDS Graphic into Binary
Policy

in SELinux. For example, rather than just read and write
ability an object could have the ability to read and append
only.

2)A Framework Policy Analysis Module: The
creators of the framework have suggested adding a Policy
Analysis Module that will guide the policy creator during the
editing process and inform him or her as to whether the
policy being created conforms to relevant security
principles[15]. This addition would lead to the creation of a
more secure system for less experienced users.

3)Macros for the Policy Editor: The developers
have also put forth the idea of adding a Macro recorder to the
IDE so that repetitive actions necessary to create a policy can
be captured once and then repeated at the discretion of the
user[15].

4) Automatic Graph Layout: Another idea for the
IDE is to allow the user to select an automatic layout for the
diagram that has been created[15]. Often when making a
complex policy the layout of the diagram can become
cluttered and difficult to decipher. The automatic layout
feature would allow the user to potentially skip the arduous
process of attempting to rearrange all of the elements into a
more aesthetically pleasing configuration. The IDE would
attempt to rearrange the graph based on simple user input
such as “circular graph,” “spiral,” or “tree”. The IDE would
then apply a layout algorithm to the existing graph. This
could speed up the policy creation process even further and
lead to more clear and reusable CDS layouts.

REFERENCES
[1] “What is SELinux,” SELinux Project .Org, [Online].

Available: http://selinuxproject.org/page/Main_Page [Last
Accessed: Dec. 6 2009].

[2] D. Rusling, “The Linux Kernal,” The Linux Documentation
Project, [Online]. Available: http://tldp.org/LDP/tlk/
ipc/ipc.html [Last Accessed Dec 7 2009]

[3] K. MacMillan, et al., “Lessons Learned Developing Cross-
Domain Solutions on SELinux," treysys.com, March 2,
2006. [Online]. Available: http://www.tresys.com/pdf/
Lessons-Learned-in-CDS.pdf. [Last Accessed: Dec. 5
2009].

[4] “CDS Framework IDE,“ [Online]. Available:
http://oss.tresys.com/projects/cdsframework/. [Last
Accessed: Dec. 5 2009].

[5] Tresys Technology, LLC, “CDS Framework Toolkit
Documentation," treysys.com, May. 7, 2009. [Online].
Available: http://oss.tresys.com/projects/cdsframework/
chrome/site/helpfiles/webdocs.html. [Last Accessed: Dec.
6 2009].

[6] “What is Eclipse?” Eclipse.Org, 2009 [Online].
Available: http://www.eclipse.org/home/newcomers.php
[Last Accessed: Dec. 8 2009].

[7] Personal Email Communication, Dave Sugar, Dec 12, 2009.
Tresys Technology, LLC.

[8] F. Coker “Guide to Writing SELinux Policy,” Linuxtopia.Org,
18 March 2004. [Online]. Available:
http://www.linuxtopia.org/online_books/
writing_SELinux_policy_guide/index.html [Last

Accessed: Dec. 6 2009].
[9] C. PeBenito, F. Mayer, K MacMillan ., “Reference Policy for

Security Enhanced Linux," Tresys Technology, 2006.
[Online]. Available: http://selinux-symposium.org/
2006/papers/05-refpol.pdf. [Last Accessed: Dec. 5 2009].

[10] “CDS Framework Download and Installation Instructions,“
[Online]. Available: http://oss.tresys.com/projects/
cdsframework/wiki/download. [Last Accessed: Dec. 5
2009].

[11] “SLIDE Introduction,“ [Online]. Available:
http://oss.tresys.com/projects/slide/. [Last Accessed: Dec.
5 2009].

[12] Y. Nakamura and Y. Sameshima, “SELinuxfor Consumer
Electronics Devices," Linux Symposium, July 23rd, 2008.
[Online]. Available:
http://ols.fedoraproject.org/OLS/Reprints-2008/
nakamura-reprint.pdf. [Last Accessed: Dec. 5 2009].

[13] “SELinuxPolicy Editor,” SEEdit, Aug 27, 2008. [Online].
Available: http://seedit.sourceforge.net/ [Last Accessed:
Dec. 6 2009].

[14] “Cross Domain Solutions,” Academic dictionaries and
encyclopedias, [Online]. Available:
http://en.academic.ru/dic.nsf/enwiki/3986437 [Last
Accessed: Dec. 6 2009].

[15] “Active Tickets,“ Tresys Technology[Online]. Available:
http://oss.tresys.com/projects/ cdsframework/report/8. [Last
Accessed: Dec. 12, 2009].

