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Abstract— Many hacking tools and intrusive methods have 

appeared along with a widespread use of computer networks. 

Using an intrusion detection system (IDS) is one way of dealing 

with suspicious activities within a network. It monitors activities 

of a given environment and decides whether these activities are 

malicious (intrusive) or legitimate (normal). Intrusion detection 

in general is either anomaly based or misuse based. In both cases, 

an IDS needs to make an intelligent decision usually based on 

pattern recognition and probabilistic reasoning. With this 

motivation, a lot of research efforts have explored the use of soft 

computing in the intrusion detection field. Soft computing is an 

innovative approach to construct a computationally intelligent 

system which parallels the extraordinary ability of the human 

mind to reason and learn in an environment of uncertainty and 

imprecision. Typically, soft computing consists of several 

computing paradigms, including neural networks, fuzzy sets, 

approximate reasoning, genetic algorithms, simulated annealing, 

etc. This paper will present an overview of various soft 

computing techniques used for intrusion detection and elaborate 

on a few recently applied techniques. 

 
Index Terms— Intrusion Detection, Soft computing, SVM, DT, 

Fuzzy, LGP, Classifier 

 

I. INTRODUCTION 

 

  

he first level of protection techniques in computer and 

network security used in various organizations are user 

authentication, data encryption, avoiding programming errors 

and firewalls. As network attacks have increased in number 

and severity over the past few years, the security infrastructure 

mentioned above  are not sufficient to provide the level of 

security needed. Therefore, intrusion detection  is required as 

an additional wall for protecting systems despite the 

prevention techniques. Intrusion detection is the process of 

monitoring the events occurring in a computer system or 

network and analyzing them for signs of intrusions, defined as 

attempts to compromise the confidentiality, integrity, 

availability, or to bypass the security mechanisms of a 

computer or network.  

 

Intrusion detection systems (IDSs) are software or hardware 

systems that automate the process of monitoring the events 

occurring in a computer system or network, analyzing them 

for signs of security problems.  Many ISDs available in the 

 
 

literature contain mainly three functional components. A) 

information sources B) Analysis C) Response/Notification. 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1: Components of IDS 

 

Information Sources: The different sources of event 

information can be used to determine whether an intrusion has 

taken place. The information can be extracted from different 

levels of sources like network, host , application monitoring. 

 

Analysis: This is the component of intrusion detection 

systems that actually organizes makes the decision based on 

the information  source whether a particular event is an 

intrusion or not. The commonly used analysis approaches are 

misuse detection and anomaly detection. 

 

Response: The set of actions that the system takes once the 

intrusion is detected. These are typically grouped into active 

and passive measures. Active measures involve some 

automated intervention on the part of the system, and passive 

measures involve reporting IDS findings to humans interacting 

with the systems. 

 

Based on the information sources, there are mainly two kinds 

of IDS. 

Host Based IDS( HIDS) : Host-based IDSs operate on 

information collected from within an individual computer 

system that is being monitored. Host-based IDSs normally 

utilize information sources of two types, operating system 

audit trails, and system logs. They periodically analyze logs, 

perform file system integrity check. Some examples of HIDS 

are: ISS RealSecure Server Sensor(Generic); Tripwire, 

AIDE(Check host file system); BlackICE, PortSentry (Check 

host network connections); LogSentry, Swatch (Check host‟s 

log files). 

 

Network Based IDS( NIDS): NIDSs detect attacks by 

capturing and analyzing network traffic contents and patterns.  
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Some examples of NIDS are Snort, Cisco IDS4235. Based on 

the analysis techniques, there are mainly two kinds of IDSs: 

Misuse Detection and Anomaly Detection.  

 

     Misuse Detection: Uses well-defined patterns of the attack 

that exploit weaknesses in system and application software to 

identify the intrusions. These patterns are encoded in advance 

and used to match against the user behavior to detect intrusion. 

 

    Anomaly Detection: Uses the normal usage behavior 

patterns to identify the intrusion. The normal usage patterns 

are constructed from the statistical measures of the system 

features. The behavior of the user is observed and any 

deviation from the constructed normal behavior is detected as 

intrusion  

 

With this background and different types of IDSs available in 

the literature, we are interested more in the „Analysis‟ 

Component of the IDS where the main decision regarding 

whether a particular event is an intrusion or not. This 

component is very important because this determines the 

performance of IDS on the basis of false positives and false 

negatives. In out context the false positives mean something 

occurs that causes IDS to incorrectly identify an intrusion 

when none has occurred and the false positives mean 

something occurs that causes IDS to incorrectly fail to identify 

an intrusion when one has in fact occurred. Accuracy of IDS is 

determined by the number of false positives and completeness 

is determined by the number of false negatives. 

 

Many techniques have been used for the analysis of intrusion 

detection. The main techniques used are statistical approaches, 

predictive pattern generation, expert systems, keystroke 

monitoring, model-based Intrusion detection, state transition 

analysis, pattern matching, and data mining techniques. 

Statistical approaches compare the recent behavior of a user of 

a computer system with observed behavior and any significant 

deviation is considered as intrusion. This approach requires 

construction of a model for normal user behavior. Any user 

behavior that deviates significantly from this normal behavior 

is flagged as an intrusion. Intrusion detection expert system 

(IDES) exploited the statistical approach for the detection of 

intruders. IDES maintains profiles, which is a description of a 

subject‟s normal behavior with respect to a set of intrusion 

detection measures. Profiles are updated periodically, thus 

allowing the system to learn new behavior as users alter their 

behavior. These profiles are used to compare the user behavior 

and informing significant deviation from them as the intrusion. 

IDES also uses the expert system concept to detect misuse 

intrusions. The advantage of this approach is that it adaptively 

learns the behavior of users, which is thus potentially more 

sensitive than human experts. This system has several 

disadvantages. The system can be trained for certain behavior 

gradually making the abnormal behavior as normal, which 

may make the intruders undetected. Determining the threshold 

above which an intrusion should be detected is a difficult task. 

Setting the threshold too low results in false positives and 

setting it too high results in false negatives.  

 

Predictive pattern generation uses a rule base of user profiles 

defined as statistically weighted event sequences (Teng and 

Chen, 1990). This method of intrusion detection attempts to 

predict future events based on events that have already 

occurred. This system develops sequential rules of the form:  

 

E1 -  E2 - E3 -> (E4 = 94%, E5 = 6%) 

 

This would mean that for the sequence of observed events E1 

followed by E2 followed by E3, the probability of event E4 

occurring is 94% and that of E5 is 6%. The rules are generated 

inductively with an information theoretic algorithm that 

measures the applicability of rules in terms of coverage and 

predictive power. An intrusion is detected if the observed 

sequence of events matches the left-hand side of the rule but 

the following events significantly deviate from the right-hand 

side of the rule. The main advantages of this approach include 

its ability to detect and respond quickly to anomalous 

behavior, easier to detect users who try to train the system 

during its learning period. The main problem with the system 

is its inability to detect some intrusions if that particular 

sequence of events have not been recognized and created into 

the rules. 

 

The Keystroke monitoring technique utilizes a user‟s 

keystrokes to determine the intrusion attempt. The main 

approach is to pattern match the sequence of keystrokes to 

some predefined sequences to detect the intrusion. The main 

problems with this approach is a lack of support from the 

operating system to capture the keystroke sequences. 

Furthermore, there are also many ways of expressing the 

sequence of keystrokes for the same attack. Some shell 

programs like bash, ksh have the user definable aliases utility. 

These aliases make it difficult to detect the intrusion attempts 

using this technique unless some semantic analysis of the 

commands is used. Automated attacks by malicious 

executables cannot be detected by this technique as they only 

analyze keystrokes. 

 

 In literature, intrusion detection systems have been also been 

approached by various soft computing techniques. We are 

particularly interested in learning the role of soft computing in 

intrusion detection systems because unlike the traditional, hard 

computing, it is aimed at an accommodation with the 

pervasive imprecision of the real world. Thus, the guiding 

principle of soft computing is: '...exploit the tolerance for 

imprecision, uncertainty and partial truth to achieve 

tractability, robustness, low solution cost and better rapport 

with reality'. In the final analysis, the role model for soft 

computing is the human mind.  

 

Section II describes some soft computing techniques that have 

been used in the literature for intrusion detection systems. 

Section III discusses various approaches of designing 

classifiers for intrusion detection. Section IV presents the 

database used for experiments. The experimental setup that 

have been used and results obtained in the different techniques 

are presented in Section V. The conclusion is given in Section 

VI. 

http://www.snort.org/
http://www.cisco.com/en/US/products/hw/vpndevc/ps4077/index.html
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II. SOFT COMPUTING TECHNIQUES FOR INTRUSION 

DETECTION 

 

Soft computing is not just one methodology but a consortium 

of various methodologies including machine learning, 

evolutionary computing, fuzzy logic, etc. These techniques 

can be applied separately or in combination for intrusion 

detection. In this section, we present a few selected techniques 

independently.  

 

A. Fuzzy Rule Based Systems  

 

Fuzzy logic has proved to be a powerful tool for decision 

making to handle and manipulate imprecise and noisy data. 

The notion central to fuzzy systems is that truth values (in 

fuzzy logic) or membership values (in fuzzy sets) are indicated 

by a value on the range [0.0, 1.0], with 0.0 representing 

absolute falseness and 1.0 representing absolute truth. A 

fuzzy system is characterized by a set of linguistic statements 

based on expert knowledge. The expert knowledge is usually 

in the form of if-then rules. It is commonly known as a 

paradigm for computing with words instead of numbers. It 

mimics the intuitive decision making capability of a human 

expert based on fuzzy information available. For instance, a 

human driver does not need to know the exact numeric values 

of the speed, direction and location of his car to park it 

successfully. His decisions and actions are based on fuzzy 

information such as “car is moving fairly slow, it is facing 

slightly right, it is near the parking spot”, etc. A simple rule 

structure of a fuzzy system is: “If antecedent then consequent” 

In the context of intrusion detection, a simple rule might be: 

“If variable1 is low and variable2 is high then output is benign 

else output is malignant”. In a fuzzy classification system, a 

case or an object can be classified by applying a set of fuzzy 

rules based on the linguistic values of its attributes. Every rule 

has a weight, which is a number between 0 and 1 and this is 

applied to the number given by the antecedent. It involves 2 

distinct parts. First the antecedent is evaluated, which in turn 

involves fuzzifying the input and applying any necessary 

fuzzy operators and second applying that result to the 

consequent known as inference.  

 

To build a fuzzy classification system, the most difficult task 

is to find a set of fuzzy rules pertaining to the specific 

classification problem. We present three fuzzy rule generation 

methods for intrusion detection systems.  Let us assume that 

we have a n dimensional c-class pattern classification problem 

whose pattern space is an n-dimensional unit cube [0, 1]n. We 

also assume that m patterns xp = (xpl ,...,xpn) , p = 

1,2,...,m, are given for generating fuzzy if-then rules where xp 

є [0,1] for p =1,2,..., m, i =1,2,...,n . 

 

Rule Generation Based on the Histogram of Attribute Values 

(FR1): 

 

In this method, use of histogram itself is an antecedent 

membership function. Each attribute is partitioned into 20 

membership functions fh(.), h=1,2,...,20. The smoothed 

histogram mi
k
 (x) of class k patterns for the ith attribute is 

calculated using the 20 membership functions fh (.) as follows: 

 

𝑚𝑖
𝑘 𝑥𝑖 =

1 

𝑚𝑘  
 𝑓ℎ

𝑥𝑝∈ 𝐶𝑙𝑎𝑠𝑠  𝐾

 𝑥𝑝𝑖                        (1) 

The smoothed histogram in (1) is normalized so that its 

maximum value is 1. A single fuzzy if-then rule is generated 

for each class. The fuzzy if-then rule for the kth class can be 

written as: 

If x1 is Ak
1
 and ... and xn is Ak

1
 then class k,  

where Ak
1 
is an antecedent fuzzy set for the ith attribute. The 

membership function of Ak
1
is specified as 

 

𝐴𝑖
𝑘(𝑥𝑖) =  𝑒

−(
(𝑥𝑖−𝜇 𝑖

𝑘)2

2(𝜎𝑖
𝑘)2

)

 
 

Where µi
k   

is the mean of the i
th

 attribute values xpi of class k 

patterns, and σi
k
is the standard deviation. Fuzzy if-then rules 

for the two-dimensional two class pattern classification 

problem are written as follows: 

 

If x3 is A3
1
 and x4 is A4

1
then class 2 

If x3 is A3
2
 and x4 is  𝑎2 + 𝑏2 then class 3 

 
For a new pattern xp =(xp3,xp4), the winner rule is determined 

as follows: 

 

𝐴3
∗ 𝑥𝑝3 .𝐴2

∗ 𝑥𝑝4 = max 𝐴1
𝑘 𝑥𝑝3 .𝐴2

𝑘 𝑥𝑝4  𝑘 = 1,2} 

 

Rule Generation Based on Partition of Overlapping Areas 

(FR2) 

 

Figure 2 demonstrates a simple fuzzy partition, where the two 

dimensional pattern space is partitioned into 25 fuzzy 

subspaces by five fuzzy sets for each attribute (S: small, MS: 

medium small, M: medium, ML: medium large, L: large). A 

single fuzzy if-then rule is generated for each fuzzy subspace. 

Thus the number of possible fuzzy if-then rules in Figure 1 is 

25. 

 

 
 

      Figure 2: An example of fuzzy partition. 

 

One disadvantage of this approach is that the number of 

possible fuzzy if-then rules exponentially increases with the 
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dimensionality of the pattern space. Because the specification 

of each membership function does not depend on any 

information about training patterns, this approach uses 

fuzzy if-then rules with certainty grades.  The FR2 approach 

generates fuzzy if-then rules in the same manner as the simple 

fuzzy grid approach except for the specification of each 

membership function. Because this approach utilizes the 

information about training patterns for specifying each 

membership function, the performance of generated fuzzy if- 

then rules is good even when we do not use the certainty grade 

of each rule in the classification phase. In this approach, the 

effect of introducing the certainty grade to each rule is not so 

important when compared to conventional grid partitioning. 

 

Neural learning of fuzzy rules (FR3) 

 

The derivation of if-then rules and corresponding membership 

functions depends heavily on the a priori knowledge about the 

system under consideration. However there is no systematic 

way to transform experiences of knowledge of human experts 

to the knowledge base of a Fuzzy Inference System (FIS). In a 

fused neuro-fuzzy architecture, neural network learning 

algorithms are used to determine the parameters of fuzzy 

inference system (membership functions and number of rules). 

Fused neuro-fuzzy systems share data structures and 

knowledge representations. A common way to apply a 

learning algorithm to a fuzzy system is to represent it in a 

special neural network-like architecture.  

 

 
 Figure 3: An integrated Neuro-Fuzzy system 

 
Figure 3 shows a Mamdani type neuro-fuzzy system. It uses a 

supervised learning technique (backpropagation learning) to 

learn the parameters of the fuzzy membership functions.The 

detailed function of each layer is as follows: 

Layer-1(input layer): No computation is done in this layer. 

Each node in this layer, which corresponds to one input 

variable, only transmits input values to the next layer directly. 

The link weight in layer 1 is unity. 

Layer-2 (fuzzification layer): Each node in this layer 

corresponds to one linguistic label (excellent, good, etc.) to 

one of the input variables in layer 1. In other words, the output 

link represents the membership value, which specifies the 

degree to which an input value belongs to a fuzzy set, is 

calculated in layer 2. A clustering algorithm will decide the 

initial number and type of membership functions to be 

allocated to each of the input variable. The final 

shapes of the MFs will be fine tuned during network learning. 

Layer-3 (rule antecedent layer): A node in this layer 

represents the antecedent part of a rule. Usually a T-norm 

operator is used in this node. The output of a layer 3 node 

represents the firing strength of the corresponding fuzzy rule. 

Layer-4 (rule consequent layer): This node basically has 

two tasks. To combine the incoming rule antecedents and 

determine the degree to which they belong to the output 

linguistic label (high, medium, low, etc.). The number 

of nodes in this layer will be equal to the number of rules. 

Layer-5 (combination and defuzzification layer): This node 

does the combination of all the rules consequents using a T-

conorm operator and finally computes the crisp output after 

defuzzification. 

 

B. Linear Genetic Programming 

 

Linear genetic programming is a variant of the GP (Genetic 

Programming) technique that acts on linear genomes [3]. Its 

main characteristics in comparison to tree-based GP lies in 

that the evolvable units are not the expressions of a functional 

programming language (like LISP), but the programs of an 

imperative language (like C/C ++). An alternate approach is to 

evolve a computer program at the machine code level, using 

lower level representations for the individuals. This can 

tremendously hasten up the evolution process as, no matter 

how an individual is initially represented, finally it always has 

to be represented as a piece of machine code, as fitness 

evaluation requires physical execution of the individuals. The 

basic unit of evolution is a native machine code instruction 

that runs on the floating-point processor unit (FPU). Since 

different instructions may have different sizes, here 

instructions are clubbed up together to form instruction blocks 

of 32 bits each. The instruction blocks hold one or more native 

machine code instructions, depending on the sizes of the 

instructions. A crossover point can occur only between 

instructions and is prohibited from occurring within an 

instruction. However the mutation operation does not have any 

such restriction. 

 

The settings of various LGP parameters are of utmost 

importance for successful performance of the system. 

Typically, the population space is subdivided into multiple 

subpopulation or demes. Migration of individuals among the 

subpopulations causes evolution of the entire population. It 

helps to maintain diversity in the population, as migration is 

restricted among the demes. Moreover, the tendency towards a 

bad local minimum in one deme can be countered by other 

demes with better search directions. The various LGP search 

parameters are the mutation frequency, crossover frequency 

and the reproduction frequency: The crossover operator acts 
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by exchanging sequences of instructions between two 

tournament winners. A constant crossover rate of 90% is used 

for most experiments. 

 

C. Decision Tree 

 

A decision tree is made of decision nodes and leaf nodes. Each 

decision node corresponds to a test X over a single attribute of 

the input data and has a number of branches, each of which 

handles an outcome of the test X. Each leaf node represents a 

class that is the result of decision for a case. The process of 

constructing a decision tree is basically a divide and conquer 

process. Suppose a set T of training data consists of k classes ( 

C1 , C2 ,…, Ck ). If T only consists of cases of one single 

class, T will be a leaf. If T contains no case, T is a leaf and the 

associated class with this leaf will be assigned with the major 

class of its parent node.  If T contains cases of mixed classes 

(i.e. more than one class), a test based on some attribute ai of 

the training data will be carried and T will be split into n 

subsets (T1 , T2 , …, Tn ), where n is the number of 

outcomes of the test over attribute ai . The same process of 

constructing decision tree is recursively performed over each 

T j , where 1<= j <= n , until every subset belongs to a single 

class. The problem here is how to choose the best attribute for 

each decision node during construction of the decision tree. 

One possible criterion for choice is Gain Ratio Criterion. The 

basic idea of this criterion is to, at each splitting step, choose 

an attribute which provides the maximum information gain 

while reducing the bias in favor of tests with many outcomes 

by normalization. Once a decision tree is built, it can be used 

to classify testing data that has the same features as the 

training data. Starting from the root node of decision tree, the 

test is carried out on the same attribute of the testing case as 

the root node represents. The decision process takes the 

branch whose condition is satisfied by the value of tested 

attribute. This branch leads the decision process to a child of 

the root node. The same process is recursively executed until a 

leaf node is reached. The leaf node is associated with a class 

that is assigned to the test case. 

 

Intrusion detection can be considered as classification problem 

where each connection or user is identified either as one of the 

attack types or normal based on some existing data. Decision 

trees work well with large data sets. This is important as large 

amounts of data flow across computer networks. The high 

performance of decision trees makes them useful in real-time 

intrusion detection. Decision trees construct easily  

interpretable models, which is useful for a security officer to 

inspect and edit. These models can also be used in the rule-

based models with minimum processing. Generalization 

accuracy of decision trees is another useful property for 

intrusion detection model. There will always be new attacks 

on the system, which are small variations of known attacks 

after the intrusion detection models are built. The ability to 

detect these new intrusions is possible due to the 

generalization accuracy of decision trees. 

 

D. Support Vector Machine 

 

Support Vector Machines have been proposed as a novel 

technique for intrusion detection. SVM maps input (real-

valued) feature vectors into a higher dimensional feature space 

through some nonlinear mapping. SVMs are powerful tools 

for providing solutions to classification, regression and 

density estimation problems. These are developed on the 

principle of structural risk minimization. Structural risk 

minimization seeks to find a hypothesis for which one can find 

the lowest probability of error. The structural risk 

minimization can be achieved by finding the hyper plane 

with maximum separable margin for the data. Computing the 

hyper plane to separate the data points, i.e. training a SVM, 

leads to a quadratic optimization problem. SVM uses a feature 

called a kernel to solve this problem. A kernel transforms 

linear algorithms into nonlinear ones via a map into feature 

spaces. SVMs classify data by using these support vectors, 

which are members of the set of training inputs that outline a 

hyper plane in feature space. Figure 4 shows a simple example 

of separable hyper plane between two data sets. 

 

 
 Figure 4. Separable hyper plane between two datasets. 

 

III. CLASSIFIER DESIGN AND EVALUATION 

 

A. Classifier Design 

 

The classifiers for intrusion detection can be designed in 

various ways. In the literature people have used single 

classifier, hybrid classifiers and ensemble classifiers. 

 

Single classifier: Single classifier system use one of the 

classification techniques like K – Nearest Neighbor, Artificial 

Neural Networks, Support Vector Machines, Self Organizing 

Map, Decision Tree, Bayes‟ Networks, Genetic Algorithms, 

Fuzzy Logic etc. Single classifiers are considered less robust 

than the ensemble or hybrid classifiers.  
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Hybrid Classifier: A hybrid intelligent system uses the 

approach of integrating different learning or decision-making 

models. Each learning model works in a different manner and 

exploits different set of features. Integrating different learning 

models gives better performance than the individual learning 

or decision-making models by reducing their individual 

limitations and exploiting their different mechanisms. In a 

hierarchical hybrid intelligent system each layer provides 

some new information to the higher level. The overall 

functioning of the system depends on the correct functionality 

of all the layers. 

 

Ensemble Classifier: Empirical observations show that 

different classifiers provide complementary information about 

the patterns to be classified Although for a particular problem 

one classifier works better than the other, a set of misclassified 

patterns would not necessarily overlap. This different 

information combined together yields better performance than 

individual classifiers. The idea is not to rely on a single 

classifier for decision on an intrusion; instead information 

from different individual classifiers is combined to take the 

final decision, which is popularly known as the ensemble 

approach. The effectiveness of the ensemble approach 

depends on the accuracy of the base classifiers. 

 

 

 
 

 

Figure 5: Example of hybrid classifier 

 

 
 

 

Figure 6: Example of Ensemble Classifier 

 

 

B. Evaluation strategies 

 

The three main steps involved in the classification and 

evaluation process using soft computing techniques are : 

Feature Selection, Training and Testing. Though there exist 

many techniques which do not require all three stages, but 

most of the literatures have used all three.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7: General Evaluation Strategy 

 

Before training, the step of feature (or variable) selection may 

be considered. The process of feature selection identifies 

which features are more discriminative than the others. This 

has the benefit of generally improving system performance by 

eliminating irrelevant and redundant features.  Feature 

selection is not very popular procedure in intrusion detection,  

however, few studies use different feature selection methods 

for their experiments and proved that that feature selection 

could improve some certain level of classification accuracy in 

intrusion detection. Generally while using the training and 

testing methods, a subset of the whole dataset is selected as a 

training set either randomly or using some criteria. The 

classifier is trained using this data and a subset of the whole 

data usually exclusive from the training set is selected as a test 

data. And the evaluation is based on its performance on test 

data give a trained classifier. 

 

 
 

Feature Selection/Attribute 

Reduction 

Training 

Testing 
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IV. DATABASE FOR EXPERIMENTS 

 

A. 1998/1999 DARPA IDS dataset:  

 

  In 1998 DARPA recognized the need to be able to perform 

quantitative evaluations on intrusion detection systems. MIT‟s 

Lincoln Labs was contracted to work with the Air Force 

Research Laboratory in Rome, NY to build an evaluation 

dataset and perform an evaluation of the then current IDS 

research being funded by DARPA. They built a small network 

intending to simulate an Air Force base connected to the 

Internet, producing background activity with scripts, and 

injecting attacks at well defined points, and gathered tcpdump, 

Sun BSM, process and file system information. Lincoln Labs 

made the datasets available after the evaluations and many 

researchers used this data as the basis of evaluating their 

systems. However there have been many criticism against this 

dataset. The main criticism against this dataset was the failure 

to verify that the network in which data was collected 

realistically simulated a real-world network.  However, 

researches say DARPA IDS evaluation dataset is still useful 

for testing intrusion detection systems for good performance 

but it is a necessary but not sufficient condition to demonstrate  

the capabilities of an advanced IDS[8].  

 

B. KDD99 

 

The 1999 KDD intrusion detection contest uses a version of 

DARPA IDS dataset. All the network traffic including the 

entire payload of each packet was recorded in tcpdump format 

and was provided for evaluation. The raw training data was 

about four gigabytes of compressed binary TCP dump data 

from seven weeks of network traffic.  This was processed into 

about five million connection records.  Similarly, the two 

weeks of test data yielded around two million connection 

records. A connection is a sequence of TCP packets starting 

and ending at some well defined times, between which data 

flows to and from a source IP address to a target IP address 

under some well defined protocol.  Each connection is labeled 

as either normal, or as an attack, with exactly one specific 

attack type.  Each connection record consists of about 100 

bytes. Attacks fall into four main categories:  

- DOS: denial-of-service, e.g. syn flood; 

- R2L: unauthorized access from a remote machine, 

e.g. guessing password; 

- U2R:  unauthorized access to local superuser (root) 

privileges, e.g., various ``buffer overflow'' attacks; 

- probing: surveillance and other probing, e.g., port 

scanning. 

But like DARPA 1999/1998 this database has also been 

criticized heavily. 

 
0,tcp,http,SF,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1

.00,0.00,0.00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00,normal. 

0,tcp,http,SF,239,486,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1.
00,0.00,0.00,19,19,1.00,0.00,0.05,0.00,0.00,0.00,0.00,0.00,normal 

 

Positive Training Examples in KDD99 
 

 

0,icmp,ecr_i,SF,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,511,0.00,0.00,0.00,
0.00,1.00,0.00,0.00,255,255,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,smurf 

0,icmp,ecr_i,SF,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,511,0.00,0.00,0.00,

0.00,1.00,0.00,0.00,255,255,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,smurf. 
 

Negative Training Examples in KDD99 

 

C. Other datasets: 

Few other datasets that have been used in the literature but are 

not very popular are: UNM, SSCNNJU, CUCS, RWND, 

PACCT, Windows system,  network tcpdump data. 

 

V. EXPERIMENTS AND RESULTS 

 

We present the experimental results conducted in [1]. Using 

the original and reduced data sets described in the previous 

section, a 5-class classification was performed. The (training 

and testing) data set contains 11,982 randomly generated 

points from the data set representing the five classes, with the 

number of data from each class proportional to its size, except 

that the smallest class is completely included. The set of 5,092 

training data and 6,890 testing data are divided in to five 

classes: normal, probe, denial of service attacks, user to super 

user and remote to local attacks. The datasets contain a total of 

24 training attack types, with an additional 14 types in the test 

data only. Where the attack is a collection of different types of 

instances that belong to the four classes described earlier and 

the other is the normal data. The normal data belongs to class 

1, probe belongs to class 2, denial of service belongs to class 

3, user to super user belongs to class 4, remote to local 

belongs to class 5. All the IDS models are trained and tested 

with the same set of data.  

 

The performance of all three fuzzy rule based approaches 

(FR1, FR2 and FR3) mentioned in Section 3.1 were examined. 

When an attack is correctly classified the grade of certainty is 

increased and when an attack is misclassified the grade of 

certainty is decreased. A learning procedure is used to 

determine the grade of certainty. Triangular membership 

functions were used for all the fuzzy rule based classifiers. 4 

triangular membership functions were used for each input 

variable for the neural network training of fuzzy inference 

system (FR3). A sensitivity threshold Sthr = 0.95 and error 

threshold Errthr = 0.05 was used for all the classes.89 rule 

nodes were developed during the one pass learning. Table 1 

depicts the parameter settings used for LGP experiments. The 

tournament size was set at 120,000 for all the 5 classes. Figure 

7 demonstrates the growth in program length during 120,000 

tournaments and the average fitness values for detecting 

normal patterns (class 1).  
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   TABLE 1. PARAMETER SETTINGS OF LGP 

 
 

 
           (a) 

 
 

              (b) 

Figure 7. LGP performance for the detection of normal 

patterns (a) growth in program length (b) average fitness  

 

The trial experiments with SVM revealed that the polynomial 

kernel option often performs well on most of the datasets. The 

decision trees were constructed using the training data and 

then testing data was passed through the constructed classifier 

to classify the attacks.  

 

A number of observations and conclusions are drawn from the 

results illustrated in Tables 2 and 3. Using 41 attributes, the 

FR2 method gave 100% accuracy for all the 5 classes, 

showing the importance of fuzzy inference systems. For the 

full data set, LGP outperformed decision trees and support 

vector machines in terms of detection accuracies (except for 

one class). The reduced dataset seems to work very well for 

most of the classifiers except the fuzzy classifier (FR2). For 

detecting U2R attacks FR2 gave the best accuracy. 

 

 

 

 

 

 

 TABLE 2. Performance comparison using full data set. 

 
 

 TABLE 3. Performance comparison using reduced data set. 

 
 

 Since a particular classifier could not provide accurate results 

for all the classes, an ensemble approach is demonstrated in 

Figure 5. The proposed ensemble model could detect all 

the attacks with high accuracy (lowest accuracy being 

99.64%) with only 12 input variables. Ensemble performance 

is summarized in Table 4. 

 

 
Figure 8. IDS architecture using an ensemble of intelligent 

paradigms. 

 

For performance comparison of IDS based on soft computing 

approach with popular IDS available in market, we present the 

test results of SNORT on KDD data set in Table 5 [7].  

 

 

 

 

 

 

 



CS 591, Fall 2009 – PROJECT REPORT 

 

9 

TABLE 4. Performance of the ensemble model. 

 
 

  TABLE 5. Performance of SNORT. 

 
 

VI. CONCLUSION 

 

In this study of Intrusion Detection Systems, we analyzed the 

different kind of IDSs based on the three components, the data 

resources, the analyzer and the notifier. We were more 

interested in the analyzer and studied the different soft 

computing techniques available in the literature in the design 

of this component of IDS. We explored the evaluation strategy 

and experimental results presented by various authors on the 

performance of intrusion detection using soft computing 

techniques. Experimental results indicated that soft computing 

techniques performed well in detecting various types of 

attacks based on KDD99 dataset. A performance comparison 

with a popular IDS, SNORT, showed that IDS based on soft 

computing gave better performance in terms of intrusion 

detection rate. The reason behind its better performance is the 

self-learning and generalization capability inherent in soft 

computing techniques. However, recent studies claim that 

KDD99 dataset may not be good enough for evaluating 

intrusion detection systems. As a future work, it would be 

interesting to explore the performance evaluation of IDS based 

on soft computing for more realistic data sets. 
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