
CS 591, Fall 2009 – PROJECT REPORT

1

Abstract— Many hacking tools and intrusive methods have

appeared along with a widespread use of computer networks.

Using an intrusion detection system (IDS) is one way of dealing

with suspicious activities within a network. It monitors activities

of a given environment and decides whether these activities are

malicious (intrusive) or legitimate (normal). Intrusion detection

in general is either anomaly based or misuse based. In both cases,

an IDS needs to make an intelligent decision usually based on

pattern recognition and probabilistic reasoning. With this

motivation, a lot of research efforts have explored the use of soft

computing in the intrusion detection field. Soft computing is an

innovative approach to construct a computationally intelligent

system which parallels the extraordinary ability of the human

mind to reason and learn in an environment of uncertainty and

imprecision. Typically, soft computing consists of several

computing paradigms, including neural networks, fuzzy sets,

approximate reasoning, genetic algorithms, simulated annealing,

etc. This paper will present an overview of various soft

computing techniques used for intrusion detection and elaborate

on a few recently applied techniques.

Index Terms— Intrusion Detection, Soft computing, SVM, DT,

Fuzzy, LGP, Classifier

I. INTRODUCTION

he first level of protection techniques in computer and

network security used in various organizations are user

authentication, data encryption, avoiding programming errors

and firewalls. As network attacks have increased in number

and severity over the past few years, the security infrastructure

mentioned above are not sufficient to provide the level of

security needed. Therefore, intrusion detection is required as

an additional wall for protecting systems despite the

prevention techniques. Intrusion detection is the process of

monitoring the events occurring in a computer system or

network and analyzing them for signs of intrusions, defined as

attempts to compromise the confidentiality, integrity,

availability, or to bypass the security mechanisms of a

computer or network.

Intrusion detection systems (IDSs) are software or hardware

systems that automate the process of monitoring the events

occurring in a computer system or network, analyzing them

for signs of security problems. Many ISDs available in the

literature contain mainly three functional components. A)

information sources B) Analysis C) Response/Notification.

Figure 1: Components of IDS

Information Sources: The different sources of event

information can be used to determine whether an intrusion has

taken place. The information can be extracted from different

levels of sources like network, host , application monitoring.

Analysis: This is the component of intrusion detection

systems that actually organizes makes the decision based on

the information source whether a particular event is an

intrusion or not. The commonly used analysis approaches are

misuse detection and anomaly detection.

Response: The set of actions that the system takes once the

intrusion is detected. These are typically grouped into active

and passive measures. Active measures involve some

automated intervention on the part of the system, and passive

measures involve reporting IDS findings to humans interacting

with the systems.

Based on the information sources, there are mainly two kinds

of IDS.

Host Based IDS(HIDS) : Host-based IDSs operate on

information collected from within an individual computer

system that is being monitored. Host-based IDSs normally

utilize information sources of two types, operating system

audit trails, and system logs. They periodically analyze logs,

perform file system integrity check. Some examples of HIDS

are: ISS RealSecure Server Sensor(Generic); Tripwire,

AIDE(Check host file system); BlackICE, PortSentry (Check

host network connections); LogSentry, Swatch (Check host‟s

log files).

Network Based IDS(NIDS): NIDSs detect attacks by

capturing and analyzing network traffic contents and patterns.

An overview of Intrusion Detection

Using Soft Computing

Archana Sapkota and Palden Lama

T

Information

Source A

Information
Source A

Information
Source A

Analysis Notification

CS 591, Fall 2009 – PROJECT REPORT

2

Some examples of NIDS are Snort, Cisco IDS4235. Based on

the analysis techniques, there are mainly two kinds of IDSs:

Misuse Detection and Anomaly Detection.

 Misuse Detection: Uses well-defined patterns of the attack

that exploit weaknesses in system and application software to

identify the intrusions. These patterns are encoded in advance

and used to match against the user behavior to detect intrusion.

 Anomaly Detection: Uses the normal usage behavior

patterns to identify the intrusion. The normal usage patterns

are constructed from the statistical measures of the system

features. The behavior of the user is observed and any

deviation from the constructed normal behavior is detected as

intrusion

With this background and different types of IDSs available in

the literature, we are interested more in the „Analysis‟

Component of the IDS where the main decision regarding

whether a particular event is an intrusion or not. This

component is very important because this determines the

performance of IDS on the basis of false positives and false

negatives. In out context the false positives mean something

occurs that causes IDS to incorrectly identify an intrusion

when none has occurred and the false positives mean

something occurs that causes IDS to incorrectly fail to identify

an intrusion when one has in fact occurred. Accuracy of IDS is

determined by the number of false positives and completeness

is determined by the number of false negatives.

Many techniques have been used for the analysis of intrusion

detection. The main techniques used are statistical approaches,

predictive pattern generation, expert systems, keystroke

monitoring, model-based Intrusion detection, state transition

analysis, pattern matching, and data mining techniques.

Statistical approaches compare the recent behavior of a user of

a computer system with observed behavior and any significant

deviation is considered as intrusion. This approach requires

construction of a model for normal user behavior. Any user

behavior that deviates significantly from this normal behavior

is flagged as an intrusion. Intrusion detection expert system

(IDES) exploited the statistical approach for the detection of

intruders. IDES maintains profiles, which is a description of a

subject‟s normal behavior with respect to a set of intrusion

detection measures. Profiles are updated periodically, thus

allowing the system to learn new behavior as users alter their

behavior. These profiles are used to compare the user behavior

and informing significant deviation from them as the intrusion.

IDES also uses the expert system concept to detect misuse

intrusions. The advantage of this approach is that it adaptively

learns the behavior of users, which is thus potentially more

sensitive than human experts. This system has several

disadvantages. The system can be trained for certain behavior

gradually making the abnormal behavior as normal, which

may make the intruders undetected. Determining the threshold

above which an intrusion should be detected is a difficult task.

Setting the threshold too low results in false positives and

setting it too high results in false negatives.

Predictive pattern generation uses a rule base of user profiles

defined as statistically weighted event sequences (Teng and

Chen, 1990). This method of intrusion detection attempts to

predict future events based on events that have already

occurred. This system develops sequential rules of the form:

E1 - E2 - E3 -> (E4 = 94%, E5 = 6%)

This would mean that for the sequence of observed events E1

followed by E2 followed by E3, the probability of event E4

occurring is 94% and that of E5 is 6%. The rules are generated

inductively with an information theoretic algorithm that

measures the applicability of rules in terms of coverage and

predictive power. An intrusion is detected if the observed

sequence of events matches the left-hand side of the rule but

the following events significantly deviate from the right-hand

side of the rule. The main advantages of this approach include

its ability to detect and respond quickly to anomalous

behavior, easier to detect users who try to train the system

during its learning period. The main problem with the system

is its inability to detect some intrusions if that particular

sequence of events have not been recognized and created into

the rules.

The Keystroke monitoring technique utilizes a user‟s

keystrokes to determine the intrusion attempt. The main

approach is to pattern match the sequence of keystrokes to

some predefined sequences to detect the intrusion. The main

problems with this approach is a lack of support from the

operating system to capture the keystroke sequences.

Furthermore, there are also many ways of expressing the

sequence of keystrokes for the same attack. Some shell

programs like bash, ksh have the user definable aliases utility.

These aliases make it difficult to detect the intrusion attempts

using this technique unless some semantic analysis of the

commands is used. Automated attacks by malicious

executables cannot be detected by this technique as they only

analyze keystrokes.

 In literature, intrusion detection systems have been also been

approached by various soft computing techniques. We are

particularly interested in learning the role of soft computing in

intrusion detection systems because unlike the traditional, hard

computing, it is aimed at an accommodation with the

pervasive imprecision of the real world. Thus, the guiding

principle of soft computing is: '...exploit the tolerance for

imprecision, uncertainty and partial truth to achieve

tractability, robustness, low solution cost and better rapport

with reality'. In the final analysis, the role model for soft

computing is the human mind.

Section II describes some soft computing techniques that have

been used in the literature for intrusion detection systems.

Section III discusses various approaches of designing

classifiers for intrusion detection. Section IV presents the

database used for experiments. The experimental setup that

have been used and results obtained in the different techniques

are presented in Section V. The conclusion is given in Section

VI.

http://www.snort.org/
http://www.cisco.com/en/US/products/hw/vpndevc/ps4077/index.html

CS 591, Fall 2009 – PROJECT REPORT

3

II. SOFT COMPUTING TECHNIQUES FOR INTRUSION

DETECTION

Soft computing is not just one methodology but a consortium

of various methodologies including machine learning,

evolutionary computing, fuzzy logic, etc. These techniques

can be applied separately or in combination for intrusion

detection. In this section, we present a few selected techniques

independently.

A. Fuzzy Rule Based Systems

Fuzzy logic has proved to be a powerful tool for decision

making to handle and manipulate imprecise and noisy data.

The notion central to fuzzy systems is that truth values (in

fuzzy logic) or membership values (in fuzzy sets) are indicated

by a value on the range [0.0, 1.0], with 0.0 representing

absolute falseness and 1.0 representing absolute truth. A

fuzzy system is characterized by a set of linguistic statements

based on expert knowledge. The expert knowledge is usually

in the form of if-then rules. It is commonly known as a

paradigm for computing with words instead of numbers. It

mimics the intuitive decision making capability of a human

expert based on fuzzy information available. For instance, a

human driver does not need to know the exact numeric values

of the speed, direction and location of his car to park it

successfully. His decisions and actions are based on fuzzy

information such as “car is moving fairly slow, it is facing

slightly right, it is near the parking spot”, etc. A simple rule

structure of a fuzzy system is: “If antecedent then consequent”

In the context of intrusion detection, a simple rule might be:

“If variable1 is low and variable2 is high then output is benign

else output is malignant”. In a fuzzy classification system, a

case or an object can be classified by applying a set of fuzzy

rules based on the linguistic values of its attributes. Every rule

has a weight, which is a number between 0 and 1 and this is

applied to the number given by the antecedent. It involves 2

distinct parts. First the antecedent is evaluated, which in turn

involves fuzzifying the input and applying any necessary

fuzzy operators and second applying that result to the

consequent known as inference.

To build a fuzzy classification system, the most difficult task

is to find a set of fuzzy rules pertaining to the specific

classification problem. We present three fuzzy rule generation

methods for intrusion detection systems. Let us assume that

we have a n dimensional c-class pattern classification problem

whose pattern space is an n-dimensional unit cube [0, 1]n. We

also assume that m patterns xp = (xpl ,...,xpn) , p =

1,2,...,m, are given for generating fuzzy if-then rules where xp

є [0,1] for p =1,2,..., m, i =1,2,...,n .

Rule Generation Based on the Histogram of Attribute Values

(FR1):

In this method, use of histogram itself is an antecedent

membership function. Each attribute is partitioned into 20

membership functions fh(.), h=1,2,...,20. The smoothed

histogram mi
k
 (x) of class k patterns for the ith attribute is

calculated using the 20 membership functions fh (.) as follows:

𝑚𝑖
𝑘 𝑥𝑖 =

1

𝑚𝑘
 𝑓ℎ

𝑥𝑝∈ 𝐶𝑙𝑎𝑠𝑠 𝐾

 𝑥𝑝𝑖 (1)

The smoothed histogram in (1) is normalized so that its

maximum value is 1. A single fuzzy if-then rule is generated

for each class. The fuzzy if-then rule for the kth class can be

written as:

If x1 is Ak
1
 and ... and xn is Ak

1
 then class k,

where Ak
1
is an antecedent fuzzy set for the ith attribute. The

membership function of Ak
1
is specified as

𝐴𝑖
𝑘(𝑥𝑖) = 𝑒

−(
(𝑥𝑖−𝜇 𝑖

𝑘)2

2(𝜎𝑖
𝑘)2

)

Where µi
k

is the mean of the i
th

 attribute values xpi of class k

patterns, and σi
k
is the standard deviation. Fuzzy if-then rules

for the two-dimensional two class pattern classification

problem are written as follows:

If x3 is A3
1
 and x4 is A4

1
then class 2

If x3 is A3
2
 and x4 is 𝑎2 + 𝑏2 then class 3

For a new pattern xp =(xp3,xp4), the winner rule is determined

as follows:

𝐴3
∗ 𝑥𝑝3 .𝐴2

∗ 𝑥𝑝4 = max 𝐴1
𝑘 𝑥𝑝3 .𝐴2

𝑘 𝑥𝑝4 𝑘 = 1,2}

Rule Generation Based on Partition of Overlapping Areas

(FR2)

Figure 2 demonstrates a simple fuzzy partition, where the two

dimensional pattern space is partitioned into 25 fuzzy

subspaces by five fuzzy sets for each attribute (S: small, MS:

medium small, M: medium, ML: medium large, L: large). A

single fuzzy if-then rule is generated for each fuzzy subspace.

Thus the number of possible fuzzy if-then rules in Figure 1 is

25.

 Figure 2: An example of fuzzy partition.

One disadvantage of this approach is that the number of

possible fuzzy if-then rules exponentially increases with the

CS 591, Fall 2009 – PROJECT REPORT

4

dimensionality of the pattern space. Because the specification

of each membership function does not depend on any

information about training patterns, this approach uses

fuzzy if-then rules with certainty grades. The FR2 approach

generates fuzzy if-then rules in the same manner as the simple

fuzzy grid approach except for the specification of each

membership function. Because this approach utilizes the

information about training patterns for specifying each

membership function, the performance of generated fuzzy if-

then rules is good even when we do not use the certainty grade

of each rule in the classification phase. In this approach, the

effect of introducing the certainty grade to each rule is not so

important when compared to conventional grid partitioning.

Neural learning of fuzzy rules (FR3)

The derivation of if-then rules and corresponding membership

functions depends heavily on the a priori knowledge about the

system under consideration. However there is no systematic

way to transform experiences of knowledge of human experts

to the knowledge base of a Fuzzy Inference System (FIS). In a

fused neuro-fuzzy architecture, neural network learning

algorithms are used to determine the parameters of fuzzy

inference system (membership functions and number of rules).

Fused neuro-fuzzy systems share data structures and

knowledge representations. A common way to apply a

learning algorithm to a fuzzy system is to represent it in a

special neural network-like architecture.

 Figure 3: An integrated Neuro-Fuzzy system

Figure 3 shows a Mamdani type neuro-fuzzy system. It uses a

supervised learning technique (backpropagation learning) to

learn the parameters of the fuzzy membership functions.The

detailed function of each layer is as follows:

Layer-1(input layer): No computation is done in this layer.

Each node in this layer, which corresponds to one input

variable, only transmits input values to the next layer directly.

The link weight in layer 1 is unity.

Layer-2 (fuzzification layer): Each node in this layer

corresponds to one linguistic label (excellent, good, etc.) to

one of the input variables in layer 1. In other words, the output

link represents the membership value, which specifies the

degree to which an input value belongs to a fuzzy set, is

calculated in layer 2. A clustering algorithm will decide the

initial number and type of membership functions to be

allocated to each of the input variable. The final

shapes of the MFs will be fine tuned during network learning.

Layer-3 (rule antecedent layer): A node in this layer

represents the antecedent part of a rule. Usually a T-norm

operator is used in this node. The output of a layer 3 node

represents the firing strength of the corresponding fuzzy rule.

Layer-4 (rule consequent layer): This node basically has

two tasks. To combine the incoming rule antecedents and

determine the degree to which they belong to the output

linguistic label (high, medium, low, etc.). The number

of nodes in this layer will be equal to the number of rules.

Layer-5 (combination and defuzzification layer): This node

does the combination of all the rules consequents using a T-

conorm operator and finally computes the crisp output after

defuzzification.

B. Linear Genetic Programming

Linear genetic programming is a variant of the GP (Genetic

Programming) technique that acts on linear genomes [3]. Its

main characteristics in comparison to tree-based GP lies in

that the evolvable units are not the expressions of a functional

programming language (like LISP), but the programs of an

imperative language (like C/C ++). An alternate approach is to

evolve a computer program at the machine code level, using

lower level representations for the individuals. This can

tremendously hasten up the evolution process as, no matter

how an individual is initially represented, finally it always has

to be represented as a piece of machine code, as fitness

evaluation requires physical execution of the individuals. The

basic unit of evolution is a native machine code instruction

that runs on the floating-point processor unit (FPU). Since

different instructions may have different sizes, here

instructions are clubbed up together to form instruction blocks

of 32 bits each. The instruction blocks hold one or more native

machine code instructions, depending on the sizes of the

instructions. A crossover point can occur only between

instructions and is prohibited from occurring within an

instruction. However the mutation operation does not have any

such restriction.

The settings of various LGP parameters are of utmost

importance for successful performance of the system.

Typically, the population space is subdivided into multiple

subpopulation or demes. Migration of individuals among the

subpopulations causes evolution of the entire population. It

helps to maintain diversity in the population, as migration is

restricted among the demes. Moreover, the tendency towards a

bad local minimum in one deme can be countered by other

demes with better search directions. The various LGP search

parameters are the mutation frequency, crossover frequency

and the reproduction frequency: The crossover operator acts

CS 591, Fall 2009 – PROJECT REPORT

5

by exchanging sequences of instructions between two

tournament winners. A constant crossover rate of 90% is used

for most experiments.

C. Decision Tree

A decision tree is made of decision nodes and leaf nodes. Each

decision node corresponds to a test X over a single attribute of

the input data and has a number of branches, each of which

handles an outcome of the test X. Each leaf node represents a

class that is the result of decision for a case. The process of

constructing a decision tree is basically a divide and conquer

process. Suppose a set T of training data consists of k classes (

C1 , C2 ,…, Ck). If T only consists of cases of one single

class, T will be a leaf. If T contains no case, T is a leaf and the

associated class with this leaf will be assigned with the major

class of its parent node. If T contains cases of mixed classes

(i.e. more than one class), a test based on some attribute ai of

the training data will be carried and T will be split into n

subsets (T1 , T2 , …, Tn), where n is the number of

outcomes of the test over attribute ai . The same process of

constructing decision tree is recursively performed over each

T j , where 1<= j <= n , until every subset belongs to a single

class. The problem here is how to choose the best attribute for

each decision node during construction of the decision tree.

One possible criterion for choice is Gain Ratio Criterion. The

basic idea of this criterion is to, at each splitting step, choose

an attribute which provides the maximum information gain

while reducing the bias in favor of tests with many outcomes

by normalization. Once a decision tree is built, it can be used

to classify testing data that has the same features as the

training data. Starting from the root node of decision tree, the

test is carried out on the same attribute of the testing case as

the root node represents. The decision process takes the

branch whose condition is satisfied by the value of tested

attribute. This branch leads the decision process to a child of

the root node. The same process is recursively executed until a

leaf node is reached. The leaf node is associated with a class

that is assigned to the test case.

Intrusion detection can be considered as classification problem

where each connection or user is identified either as one of the

attack types or normal based on some existing data. Decision

trees work well with large data sets. This is important as large

amounts of data flow across computer networks. The high

performance of decision trees makes them useful in real-time

intrusion detection. Decision trees construct easily

interpretable models, which is useful for a security officer to

inspect and edit. These models can also be used in the rule-

based models with minimum processing. Generalization

accuracy of decision trees is another useful property for

intrusion detection model. There will always be new attacks

on the system, which are small variations of known attacks

after the intrusion detection models are built. The ability to

detect these new intrusions is possible due to the

generalization accuracy of decision trees.

D. Support Vector Machine

Support Vector Machines have been proposed as a novel

technique for intrusion detection. SVM maps input (real-

valued) feature vectors into a higher dimensional feature space

through some nonlinear mapping. SVMs are powerful tools

for providing solutions to classification, regression and

density estimation problems. These are developed on the

principle of structural risk minimization. Structural risk

minimization seeks to find a hypothesis for which one can find

the lowest probability of error. The structural risk

minimization can be achieved by finding the hyper plane

with maximum separable margin for the data. Computing the

hyper plane to separate the data points, i.e. training a SVM,

leads to a quadratic optimization problem. SVM uses a feature

called a kernel to solve this problem. A kernel transforms

linear algorithms into nonlinear ones via a map into feature

spaces. SVMs classify data by using these support vectors,

which are members of the set of training inputs that outline a

hyper plane in feature space. Figure 4 shows a simple example

of separable hyper plane between two data sets.

 Figure 4. Separable hyper plane between two datasets.

III. CLASSIFIER DESIGN AND EVALUATION

A. Classifier Design

The classifiers for intrusion detection can be designed in

various ways. In the literature people have used single

classifier, hybrid classifiers and ensemble classifiers.

Single classifier: Single classifier system use one of the

classification techniques like K – Nearest Neighbor, Artificial

Neural Networks, Support Vector Machines, Self Organizing

Map, Decision Tree, Bayes‟ Networks, Genetic Algorithms,

Fuzzy Logic etc. Single classifiers are considered less robust

than the ensemble or hybrid classifiers.

CS 591, Fall 2009 – PROJECT REPORT

6

Hybrid Classifier: A hybrid intelligent system uses the

approach of integrating different learning or decision-making

models. Each learning model works in a different manner and

exploits different set of features. Integrating different learning

models gives better performance than the individual learning

or decision-making models by reducing their individual

limitations and exploiting their different mechanisms. In a

hierarchical hybrid intelligent system each layer provides

some new information to the higher level. The overall

functioning of the system depends on the correct functionality

of all the layers.

Ensemble Classifier: Empirical observations show that

different classifiers provide complementary information about

the patterns to be classified Although for a particular problem

one classifier works better than the other, a set of misclassified

patterns would not necessarily overlap. This different

information combined together yields better performance than

individual classifiers. The idea is not to rely on a single

classifier for decision on an intrusion; instead information

from different individual classifiers is combined to take the

final decision, which is popularly known as the ensemble

approach. The effectiveness of the ensemble approach

depends on the accuracy of the base classifiers.

Figure 5: Example of hybrid classifier

Figure 6: Example of Ensemble Classifier

B. Evaluation strategies

The three main steps involved in the classification and

evaluation process using soft computing techniques are :

Feature Selection, Training and Testing. Though there exist

many techniques which do not require all three stages, but

most of the literatures have used all three.

Figure 7: General Evaluation Strategy

Before training, the step of feature (or variable) selection may

be considered. The process of feature selection identifies

which features are more discriminative than the others. This

has the benefit of generally improving system performance by

eliminating irrelevant and redundant features. Feature

selection is not very popular procedure in intrusion detection,

however, few studies use different feature selection methods

for their experiments and proved that that feature selection

could improve some certain level of classification accuracy in

intrusion detection. Generally while using the training and

testing methods, a subset of the whole dataset is selected as a

training set either randomly or using some criteria. The

classifier is trained using this data and a subset of the whole

data usually exclusive from the training set is selected as a test

data. And the evaluation is based on its performance on test

data give a trained classifier.

Feature Selection/Attribute

Reduction

Training

Testing

CS 591, Fall 2009 – PROJECT REPORT

7

IV. DATABASE FOR EXPERIMENTS

A. 1998/1999 DARPA IDS dataset:

 In 1998 DARPA recognized the need to be able to perform

quantitative evaluations on intrusion detection systems. MIT‟s

Lincoln Labs was contracted to work with the Air Force

Research Laboratory in Rome, NY to build an evaluation

dataset and perform an evaluation of the then current IDS

research being funded by DARPA. They built a small network

intending to simulate an Air Force base connected to the

Internet, producing background activity with scripts, and

injecting attacks at well defined points, and gathered tcpdump,

Sun BSM, process and file system information. Lincoln Labs

made the datasets available after the evaluations and many

researchers used this data as the basis of evaluating their

systems. However there have been many criticism against this

dataset. The main criticism against this dataset was the failure

to verify that the network in which data was collected

realistically simulated a real-world network. However,

researches say DARPA IDS evaluation dataset is still useful

for testing intrusion detection systems for good performance

but it is a necessary but not sufficient condition to demonstrate

the capabilities of an advanced IDS[8].

B. KDD99

The 1999 KDD intrusion detection contest uses a version of

DARPA IDS dataset. All the network traffic including the

entire payload of each packet was recorded in tcpdump format

and was provided for evaluation. The raw training data was

about four gigabytes of compressed binary TCP dump data

from seven weeks of network traffic. This was processed into

about five million connection records. Similarly, the two

weeks of test data yielded around two million connection

records. A connection is a sequence of TCP packets starting

and ending at some well defined times, between which data

flows to and from a source IP address to a target IP address

under some well defined protocol. Each connection is labeled

as either normal, or as an attack, with exactly one specific

attack type. Each connection record consists of about 100

bytes. Attacks fall into four main categories:

- DOS: denial-of-service, e.g. syn flood;

- R2L: unauthorized access from a remote machine,

e.g. guessing password;

- U2R: unauthorized access to local superuser (root)

privileges, e.g., various ``buffer overflow'' attacks;

- probing: surveillance and other probing, e.g., port

scanning.

But like DARPA 1999/1998 this database has also been

criticized heavily.

0,tcp,http,SF,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1

.00,0.00,0.00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00,normal.

0,tcp,http,SF,239,486,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1.
00,0.00,0.00,19,19,1.00,0.00,0.05,0.00,0.00,0.00,0.00,0.00,normal

Positive Training Examples in KDD99

0,icmp,ecr_i,SF,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,511,0.00,0.00,0.00,
0.00,1.00,0.00,0.00,255,255,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,smurf

0,icmp,ecr_i,SF,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,511,0.00,0.00,0.00,

0.00,1.00,0.00,0.00,255,255,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,smurf.

Negative Training Examples in KDD99

C. Other datasets:

Few other datasets that have been used in the literature but are

not very popular are: UNM, SSCNNJU, CUCS, RWND,

PACCT, Windows system, network tcpdump data.

V. EXPERIMENTS AND RESULTS

We present the experimental results conducted in [1]. Using

the original and reduced data sets described in the previous

section, a 5-class classification was performed. The (training

and testing) data set contains 11,982 randomly generated

points from the data set representing the five classes, with the

number of data from each class proportional to its size, except

that the smallest class is completely included. The set of 5,092

training data and 6,890 testing data are divided in to five

classes: normal, probe, denial of service attacks, user to super

user and remote to local attacks. The datasets contain a total of

24 training attack types, with an additional 14 types in the test

data only. Where the attack is a collection of different types of

instances that belong to the four classes described earlier and

the other is the normal data. The normal data belongs to class

1, probe belongs to class 2, denial of service belongs to class

3, user to super user belongs to class 4, remote to local

belongs to class 5. All the IDS models are trained and tested

with the same set of data.

The performance of all three fuzzy rule based approaches

(FR1, FR2 and FR3) mentioned in Section 3.1 were examined.

When an attack is correctly classified the grade of certainty is

increased and when an attack is misclassified the grade of

certainty is decreased. A learning procedure is used to

determine the grade of certainty. Triangular membership

functions were used for all the fuzzy rule based classifiers. 4

triangular membership functions were used for each input

variable for the neural network training of fuzzy inference

system (FR3). A sensitivity threshold Sthr = 0.95 and error

threshold Errthr = 0.05 was used for all the classes.89 rule

nodes were developed during the one pass learning. Table 1

depicts the parameter settings used for LGP experiments. The

tournament size was set at 120,000 for all the 5 classes. Figure

7 demonstrates the growth in program length during 120,000

tournaments and the average fitness values for detecting

normal patterns (class 1).

CS 591, Fall 2009 – PROJECT REPORT

8

 TABLE 1. PARAMETER SETTINGS OF LGP

 (a)

 (b)

Figure 7. LGP performance for the detection of normal

patterns (a) growth in program length (b) average fitness

The trial experiments with SVM revealed that the polynomial

kernel option often performs well on most of the datasets. The

decision trees were constructed using the training data and

then testing data was passed through the constructed classifier

to classify the attacks.

A number of observations and conclusions are drawn from the

results illustrated in Tables 2 and 3. Using 41 attributes, the

FR2 method gave 100% accuracy for all the 5 classes,

showing the importance of fuzzy inference systems. For the

full data set, LGP outperformed decision trees and support

vector machines in terms of detection accuracies (except for

one class). The reduced dataset seems to work very well for

most of the classifiers except the fuzzy classifier (FR2). For

detecting U2R attacks FR2 gave the best accuracy.

 TABLE 2. Performance comparison using full data set.

 TABLE 3. Performance comparison using reduced data set.

 Since a particular classifier could not provide accurate results

for all the classes, an ensemble approach is demonstrated in

Figure 5. The proposed ensemble model could detect all

the attacks with high accuracy (lowest accuracy being

99.64%) with only 12 input variables. Ensemble performance

is summarized in Table 4.

Figure 8. IDS architecture using an ensemble of intelligent

paradigms.

For performance comparison of IDS based on soft computing

approach with popular IDS available in market, we present the

test results of SNORT on KDD data set in Table 5 [7].

CS 591, Fall 2009 – PROJECT REPORT

9

TABLE 4. Performance of the ensemble model.

 TABLE 5. Performance of SNORT.

VI. CONCLUSION

In this study of Intrusion Detection Systems, we analyzed the

different kind of IDSs based on the three components, the data

resources, the analyzer and the notifier. We were more

interested in the analyzer and studied the different soft

computing techniques available in the literature in the design

of this component of IDS. We explored the evaluation strategy

and experimental results presented by various authors on the

performance of intrusion detection using soft computing

techniques. Experimental results indicated that soft computing

techniques performed well in detecting various types of

attacks based on KDD99 dataset. A performance comparison

with a popular IDS, SNORT, showed that IDS based on soft

computing gave better performance in terms of intrusion

detection rate. The reason behind its better performance is the

self-learning and generalization capability inherent in soft

computing techniques. However, recent studies claim that

KDD99 dataset may not be good enough for evaluating

intrusion detection systems. As a future work, it would be

interesting to explore the performance evaluation of IDS based

on soft computing for more realistic data sets.

REFERENCES

[1] A. Abraham and R. Jain, “Soft computing models for network

intrusion detection systems”, Studies in Computational Intelligence

16 (2005)
[2] Alshammari, R.; Sonamthiang, S.; Teimouri, M.; Riordan, D.,

"Using Neuro-Fuzzy Approach to Reduce False Positive Alerts,"

Fifth Annual Conference on Communication Networks and

Services Research, 2007. CNSR '07. pp.345-349, 14-17 May 2007

[3] Brameier. M. and Banzhaf. W., “A comparison of linear genetic

programming and neural networks in medical data mining,”

Evolutionary Computation,” IEEE Transactions on, Volume: 5(1),

pp. 17-26, 2001.

[4] K. Shah, N. Dave, S. Chavan, S. Mukherjee, A. Abraham, S.

Sanyal, “Adaptive neuro-fuzzy intrusion detection system”, in:

Proceeding of IEEE International Conference on Information

Technology: Coding and Computing

[5] L.A. Zadeh, “Role of soft computing and fuzzy logic in the

conception, design and development of information/intelligent

systems”, Lecture Notes in Computer Science 695 (1998)

[6] M.S. Abadeh, J. Habibi and C. Lucas, “Intrusion detection using a

fuzzy genetics-based learning algorithm”, Journal of Network and

Computer Applications (2005)

[7] Thomas, C.; Balakrishnan, N., "Performance enhancement of

Intrusion Detection Systems using advances in sensor fusion,"

Information Fusion, 2008 11th International Conference on , vol.,

no., pp.1-7, June 30 2008-July 3 2008

[8] S.T. Brugger and J. Chow. An assessment of the DARPA IDS

evaluation dataset using snort. Technical Report CSE-2007-1,

University of California, Davis, Department of Computer Science,

2007.

[9] http://cs.uccs.edu/~chow/pub/ids/NISTsp800-31.pdf

[10] Chih-Fong Tsai, Yu-Feng Hsu, Chia-Ying Lin, Wei-Yang

Lin,Intrusion detection by machine learning: A review, Expert

Systems with Applications, Volume 36, Issue 10, December 2009,

Pages 11994-12000, ISSN 0957-4174, DOI:

10.1016/j.eswa.2009.05.029.

[11] http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[12] Peddabachigari, S., Abraham, A., Grosan, C., Thomas, J., 2007.

 Modeling intrusion detection system using hybrid intelligent

systems.Journal of Network and Computer Applications 30 (1),

114–132.

http://cs.uccs.edu/~chow/pub/ids/NISTsp800-31.pdf
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

