Securing Careless Security Flaws:

A Focused Analysis of the International Capture the Flag Virtual Machines

Nadine Sundquist

University of Colorado at Colorado Springs, CO 80918

Abstract
Network administrators are currently overloaded in trying to handle all the security involved in the exploding number of servers that they need to manage. The solution of just utilizing firewalls is not enough because an intrinsic security flaw in a misconfigured server cannot always be protected using a firewall. By educating application writers and database administrators with simple ways on how to protect their applications or databases, security flaws can be avoided. This paper demonstrates a few ways on how to protect a MySQL database, protect SSH, configure Apache Tomcat, configure user privileges, and find useful configuration files through the analysis of the ICTF (International Capture the Flag) competition virtual machines. 
Introduction
The ICTF (International Capture the Flag) competition provides the perfect opportunity for any person to learn how to secure a server that has been administered carelessly in the past. This paper explores a few areas where the most common security flaws exist in the virtual machines provided by ICTF; these areas include MySQL databases, SSH, Apache Tomcat, and unlimited user privileges. These security flaws are also commonly found on other Internet web servers. The higher capacities of today’s servers allow the running of more services, but with more services there is also a higher likelihood that there may be a chink in the armor. By analyzing a few servers with a wide range of services, we may be able to learn from our mistakes and prevent these security flaws from happening again.
Discussion
When securing a server that we know nothing about, there are a few weaknesses that are fairly common. This paper explores a few of the most common questions when trying to find and rectify these weaknesses:
· What kinds of services are usually on a web server?

· How do I secure my MySQL database?

· How do I secure SSH?

· How do I secure Apache Tomcat?

· How do I limit user privileges?
· How do I find configuration files?

What kind of services are usually on a web server?

The ICTF machines in the last couple of years have tended towards services that are backed by the same set of languages and frameworks. The services are composed of languages and frameworks such as Java, C, PHP, Python, and Ruby. Some components that are tied to the services that also need to be protected are SSH, the MySQL database, and Apache Tomcat. 
How do I secure my MySQL database?
The following advice on how to secure your database is a conglomeration of my own past experience and the following sources:

· Georgia Tech – Securing MySQL -- http://www.lugatgt.org/articles/sec_mysql/#toc_4
· Securing MySQL: Step-by-Step -- http://www.securityfocus.com/infocus/1726
· MySQL 5.0 Reference Guide -- http://dev.mysql.com/doc/refman/5.0/en/ 
When securing your MySQL database, the best table to check first is the user table in the mysql database. The following is a screenshot of the host, the user, and the password of all the users in the database for ICTF 2007:

[image: image1.png]erver version: 5.0.45-Debian_lubuntu3-log Debian etch distribution

Type 'help:’ or '\h’ for help. Type '\c' to clear the buffer
mysql> use mysql

Reading table information for completion of table and column mames
You can turn off this feature to get a quicker startup with -A

atabase changed

mysql> select host, user, passuord from user;

passuord

localhost i root

server root
127.0.0.1 | root
localhost i debian-sys-maint i »91AE675F204AC310CDAC3A0610EDC46EBDECCCPE
localhost i psycho *E5BA561831F7D66D19C2679268DE?C?3C2CIEF2B
localhost i snitch *CCAF?F1AF7CCDB7B?8C13DB60135772BB0828A75

shakedoun
shakedown

localhost *67336AEC3C6DAD63IF5B16DOIE4E6CTB6581C514A

*67336AEC3C6DAD63IF5B16DOIE4E6CTB6581C514A

rous in set (0.00 sec)

musal>




Figure 1: Host, User, and Password in mysql.user table
When someone is first given a database, the database usually does not have a root password because it can be challenging to reset the root password if unknown. The figure above shows that there is no password for root. All the other passwords are encrypted using MD5. Therefore, the first thing that needs to be done is to set the root password. If any anonymous users exist in the user table (which can look blank in the user column), then drop the users because these users do not require a password.
In order to change the password of a user in MySQL, use one of the following commands:

UPDATE mysql.user SET Password=PASSWORD(newpassword') WHERE User='user';

FLUSH PRIVILEGES;

SET PASSWORD FOR ‘user’@’host’ = PASWORD(‘newpassword’);

FLUSH PRIVILEGES;

In order to drop a user from a table, use the following command:

DROP USER ‘user’;

Remembering usernames and passwords can be challenging; therefore, many people use their username as their password. Almost all the databases provided by the ICTF competition had at least one username in the database with the username as the password. If possible, these need to be changed. If it is too difficult to change the passwords in the applications, make sure that the privileges for that user are as restricted as possible. 
The following command will show the privileges granted to a user in an easy-to-read fashion without having to traverse multiple tables in MySQL:

SHOW GRANTS FOR ‘user’@’host’;

The following figure exhibits an example of running the above command against one of the users in the ICTF 2007 competition:

[image: image2.png]ysql> SHOW GRANTS for snitch@localhost;

Grants for snitchelocalhost

GRANT USAGE ON x.x TO 'snitch’e’localhost’ IDENTIFIED BY PASSUORD ' xCCAF?F1AF?
CD87B78C13DB60135772B8082ZBA7S
i GRANT ALL PRIVILEGES ON 'smitch’.x T0 'smitch’e’localhost

rous in set (0.00 sec)

ysql> _




Figure 2: SHOW GRANTS command in MySQL to get privileges for a user
Each user in a database has a set of privileges as to what they are allowed to do in the database. Applications users should only be allowed to select and insert into the database. No administrative privileges should be needed by any applications. Granting all privileges to application users can be a bit dangerous. In the Spam ICTF competition, some applications were using the root MySQL user to do their database transactions. NEVER allow an application to use the root MySQL user.
In a MySQL database, each user is given permission to either only access the database from the local machine, from a specific machine, or from all other machines. If the host field in the mysql.user table has a ‘%’ (such as the shakedown user in Figure 1), this means that any machines can access mysql using this username. In the Spam ICTF competition, there was a user named shof that allowed the same behavior. Remove this user from the database or change the host field to ‘localhost’. Another way of turning off all remote access to mysql is to edit the my.cnf file. Under [mysql], put the word ‘skip-networking’. 
Even if a hacker is somehow able to gain access to your MySQL database, they should not be able to do a mysqldump. A mysqldump will give them all the information in the database. On the ICTF machines, mysqldump doesn’t even require a password if logged into the system. Analysis of previous ICTF competitions has shown that mysqldump is a common attack. To turn off mysqldump, go to /etc/mysql/my.cnf under [mysqldump]. If you want to turn off the dumping of data, put no-data and skip-comments. 
The bind-address in my.cnf should also be set to 127.0.0.1. This will make the MySQL server more secure. Another vulnerability of MySQL is the ‘test’ database that exists by default in the MySQL product, which was also in the Spam ICTF database. Since this database will never be explicitly used, delete this database. This database is not a huge security flaw, but deleting it will give peace of mind. In order to drop a database, enter the following command:

DROP DATABASE [database_name];
In summary, here are some tips to remember when securing your database:

· Set the root password (no password should be blank in the mysql->user table).

· Change obvious passwords.
· Limit privileges for application users.

· In general, allow users access to the database only from the local machine.

· In the user table, the host field should not be ‘%’ and/or my.cnf should have skip-networking under [mysql].

· Turn off mysqldump in /etc/mysql/my.cnf.

· Drop the test database.

If you should ever forget your root password, you will not be able to retrieve it from the database. Here is a set of instructions for Linux that will allow the resetting of the MySQL root password in Ubuntu:

   1. Stop the mysqld daemon process (/etc/init.d/mysql stop).

   2. Start the mysqld daemon process with the --skip-grant-tables option (/usr/bin/mysqld_safe –skip-grant-tables &).

   3. Start the mysql client with the -u root option (mysql –u root).

   4. Execute the UPDATE mysql.user SET Password=PASSWORD('password') WHERE User='root';

   5. Execute the FLUSH PRIVILEGES; command.
   6. Restart the MySQL service (/etc/init.d/mysql start).
How do I secure SSH?
The following advice is composed from information gathered from the following sources:

· Forum: Permitting specific users to SSH -- http://ph.ubuntuforums.com/showthread.php?t=875164
· Secure SSH: Debian -- http://www.debian-administration.org/articles/455
In a security competition, such as ICTF, the best policy in securing SSH is to turn off SSH. In Ubuntu, this would be /etc/init.d/ssh stop. Note that any connected users will not be kicked off if they are already connected. However, in the real world, we can’t always turn off SSH. Here are a few simple suggestions on making SSH more secure.

The root user should never be able to SSH into a server. Some people may attempt to brute force the password if they think that being able to SSH using root is enabled. To turn off root login for SSH in Ubuntu, go to /etc/ssh/sshd_config, and set PermitRootLogin to no. If you cannot turn off SSH, then limit the users who are allowed to SSH into the server. An example of limiting users would be the following:
PermitRootLogin no

AllowUsers user1 user2@localhost user3@localhost user4@localhost

PermitEmptyPasswords no

After changing these parameters, remember to restart the SSH service for the changes to take effect. 
Another suggestions that many people will make is to change the SSH port from 22 to a higher port. Automated scripts and bots tend to hit port 22, and changing the port would stop these attacks from occurring. 
In summary, here are some tips to remember when securing SSH:

· If possible, turn off SSH (though not realistic).

· Set PermitRootLogin to no

· Set up a list of users that are allowed to SSH into the server in /etc/ssh/sshd_config.

· Change the SSH port to a higher port (if possible).

How do I secure Apache Tomcat?
The advice that follows is composed of my own everyday experiences with Tomcat and the sources listed below:
· Securing Apache: Step-by-Step -- http://www.securityfocus.com/infocus/1694
· Securing Tomcat -- http://www.owasp.org/index.php/Securing_tomcat
Apache Tomcat remains a common denominator in all the ICTF virtual machines. Sometimes one can find a few security flaws in how Tomcat administration is set up. In the real world, some administrators set up Tomcat for it to be convenient to them without thinking about the consequence that the service could also be convenient to someone hacking the system.

The 2007 ICTF competition had only one service on Tomcat called Therapy. Therapy was a Java-based service that a great amount of interaction with the database. One positive thing about the way the Tomcat service was set up was that there were no tomcat-users set up. This means that an outside user would not have the ability to deploy or undeploy any of the applications from Tomcat’s web service interface. However, in the Spam ICTF competition, there were several predefined Tomcat users in tomcat-users.xml. If you do not need to use the Tomcat administration web interface, completely wipe all of the users from tomcat-users.xml. At the very least, change the usernames and passwords. If you have a problem finding tomcat-users.xml, just issue the following command:
find . | grep tomcat-users.xml

Tomcat seems to be set up a bit differently each year. In the Spam ICTF competition, Tomcat was set up to run on a different port (9180) than the classic 8080, and the Tomcat configuration files were located in /var/lib/tomcat5 and in /usr/share/tomcat5. In the 2007 ICTF competition, the people setting up Tomcat, left the port at 8080, but they put all the Tomcat configuration files in the same directory as the service that was using Tomcat. By putting these configuration files in the same directory as the service, this may make the files more vulnerable to an outside user.   
One recommendation by most people working with Tomcat is to give Tomcat its own user and make sure that the directories where Tomcat resides are owned by the Tomcat user. When making this user, don’t forget to give the user read-write access to /tmp if the operating system is Linux.

The webapps directory contains all the pages and compiled code that will be displayed to the user. Make sure to delete all the example code that comes with the distribution, such as balancer, jsp-examples, servlet-examples, tomcat-docs, webdav, and ROOT. The Tomcat manager is only needed if you do not want to restart the Tomcat service every time you make a change. If it’s fine to restart the Tomcat service, then delete the Tomcat manager web pages under /server/webapps, including host-manager and manager. If possible, also delete the Tomcat manager configuration files, which are under the /conf/Catalina/localhost directory (host-manager.xml and manager.xml). 

One of the easiest ways to find out how a Tomcat server is configured is to cause an error to occur. The error pages by default display a stack trace. A temporary fix to display a blank page instead of the stack trace is to change webapps/[app_name]/WEB-INF/web-xml to have the following inside the web-app tag:
<error-page>

   <exception-type>java.lang.Throwable</exception-type>

   <location>/error.jsp</location>

 </error-page>

Tomcat also has a port that allows for the shutdown command to be called on that port. In order to never allow anyone to shutdown your Tomcat webapps without your permission, change the port and shutdown command to something else in conf/server.xml:
<Server port="8005" shutdown="ReallyComplexWord">

Make sure that no one from the outside can see server.xml because this file usually contains plain text passwords. There is no easy way to hide these clear text passwords; the best solution is to just protect the file as best as possible.
In summary, here are some tips to remember when securing Apache Tomcat:

· If using the Tomcat manager web interface, make sure the default users in tomcat-users.xml are not used.
· Create a Tomcat user. Do not run Tomcat as root in Linux.

· Remove extraneous example applications from webapps.

· If not being used, remove the Tomcat manager application from server/webapps.

· Return an empty error page instead of a stack trace from Tomcat.
· Change the shutdown port and shutdown command.
· Protect server.xml.

How do I limit privileges?
Users, especially applications, on a system can be given limited privileges in order to protect the overall system. In the ICTF competition, each application usually has its own use, which can be found in /etc/passwd. Each user can come in on a bash shell; this means that applications are able to make system calls. Applications should not be given the privilege of making system calls; if a system call is absolutely necessary, then make sure that any input from the user is carefully scrutinized programmatically. 
Another reason that an application may need privileges is if it is a service. If the application is a service, one can usually find a startup script in /etc/init.d. For the 2007 ICTF competition, one service that existed was shakedown, which was set up to start on bootup. The problem with shakedown was that it allowed for directory traversal within the shakedown service and access to settings files for that service. One needs to make sure that all the directories have permissions set correctly in order for the outside world not to be able to traverse. The ICTF Spam competition had the most scripts in the ICTF directory, which allowed these application users to have quite a bit of power in manipulating the system.

How do I find configuration files?

When trying to secure your system, configuration files are not always where you expect them to be. An example of this would be the configuration files for Apache Tomcat. The easiest way to find a configuration file is by using the name of the configuration file. For Apache Tomcat, tomcat-users.xml would be the easiest to find. The command that would be used to find tomcat-users.xml would be the following at the / directory:

find . | grep tomcat-users.xml

The two most common places to look for configuration files in Ubuntu is either in the /home directory or in the /etc directory. 

Some configuration files are also named differently; therefore, doing the previous command would be of no help. One command that I’ve found extraordinarily useful is the following:
find . | xargs grep [phrase in file]

The name of the settings file may change, but the content cannot change that drastically. For example, if I was looking for the Django settings.py file, but I could not find it, I would use the following command at the / directory to find it:

find . | xargs grep “DATABASE_ENGINE”

A command like this will also pick up a file such as settings.pyc, which will at least give a very lost administrator a starting point. I found that the best way to find these configuration files was either by experience or by using Google to find a classic configuration file for the framework, find a common word in the configuration, and use the technique of using xargs to find the file.
Conclusions and Future Work
Overall, this paper provides the basics on how to secure some basic areas such as MySQL databases, SSH, and Apache Tomcat. All these services and tools are commonly used across most web servers, and I know that I will be using this paper not only for the International Capture the Flag competition, but also at work as a reference. It can be difficult to remember all the small security flaws that may exist, and configuring a server becomes much easier if there is a checklist of easy security fixes.
One area that I would like to focus more on in the future is how to find more configuration files and fix configuration security flaws in other frameworks such as Django. I was able to read up on some of the frameworks and their security flaws, but my lack of experience in areas such as Python and Ruby made it much too difficult to accurately describe security fixes for these areas in the time I had. I think this work could be important because I have learned through the International Capture the Flag competitions that the majority of the security flaws are through careless configurations of common services.
Another area I would like to learn more about is lighttpd. In ICTF 2007, this was another server that existed on the virtual machine. As far as I could tell, it was a lighter version of Apache Tomcat. I would like to investigate this area further because there does not seem to be that much documentation on lighttpd on the Internet.
References
Forum: Permitting specific users to SSH. Retrieved November 1, 2008 from 

http://ph.ubuntuforums.com/showthread.php?t=875164.

Georgia Tech – Securing MySQL. Retrieved November 11, 2008, from 

http://www.lugatgt.org/articles/sec_mysql/#toc_4.
MySQL 5.0 Reference Guide. Retrieved November 20, 2008 from  

http://dev.mysql.com/doc/refman/5.0/en/.
Secure SSH: Debian. Retrieved from October 28, 2008, from http://www.debian-administration.org/articles/455.
Securing Apache: Step-by-Step. Retrieved November 27, 2008 from  
http://www.securityfocus.com/infocus/1694.
Securing MySQL: Step-by-Step. Retrieved November 11, 2008, from 

http://www.securityfocus.com/infocus/1726.

Securing Tomcat. Retrieved November 26, 2008 from  

http://www.owasp.org/index.php/Securing_tomcat.
PAGE  
4

