
1. Introduction

In most modern networks you can count on two
things: services and users. Services are typically
things like email, web sites, and shell accounts.
Traditionally, each service on a network had been
viewed as an autonomous unit; each one solely
responsible for the authentication of its users. In
general this meant that the system administrator
would have to create an account for each user for
each service, and the user would have to
authenticate for any given service each time it
was used by him or her.

This also meant that each machine on a network
had to be updated every time a new user was
added if that user was allowed to log-in. The
original synchronization mechanism (at least in
the UNIX world) was a simple copy of the
passwd file. As networks grew larger, this
became such a headache that eventually the
concept of a directory server was conceived. In
simple terms, a directory server is a centralized
database that holds hierarchal data, such as users,
groups, or anything else.

LDAP was the most prolific example of a
directory server and is still used today. Although
it solves the problem of duplication, there is still
a minor annoyance encountered by today’s users
of having to authenticate each and every time a
service is used. Ideally we would want for a user
to sign in, have secured access to all of the
services offered by the network, and be pre-
authenticated as the correct user. A naive
administrator might find the concept easy to
implement, but if one seeks a secure and reliable
implementation, it is indeed a difficult problem.

Today this idea has come to be known as single
sign-on, and it is the topic of our group’s
research. Single sign-on is a technique used to
validate the user's identity only once and give
him access to all of the network's services
without having to constantly prompt the user for
his or her password.

We first looked at the motivation for single sign
on. Aside from the obvious benefit of being more
convenient for the user, it is also makes life
(eventually) much easier for a system
administrator. The system administrator would
only have to worry about one single core group
of users instead of various users for each service.
Since users only have to worry about one set of
credentials, it makes things easier for both parties
(imagine helping a user who forgot their
password for every service on the network) [11].

The most popular mechanism used to achieve
single sign-on is Kerberos, which is what our
group has chosen to try to set up. We hope to
learn what kinds of challenges prevent such an
innovative solution from being the norm on
today’s networks. We also hope to gain
experience in setting up various services (such as
SSH, FTP, NFS, and Mail) to work with
Kerberos. Our ultimate goal is to build a small
network (2 or 3 computers only) that
accomplishes single sign-on using LDAP+SSL
and Kerberos as well as several services upon
which we can test the single sign-on.

Our group’s final turn-in includes 3 working
virtual machines on a network that will allow us
to perform SSH, mail, FTP, and NFS while only
prompting for the user’s password once.

1

Single Sign-On Using Kerberos

Chris Eberle, Ryan Thomas, RC Johnson, and Kim-Lan Tran

CS-591 Fall 2008

2. Analysis

LDAP
LDAP is a Lightweight Directory Access
Protocol. Using LDAP we can add, modify, and
query for information. Conventionally it is only
used for users and groups, but it can also be
expanded to hold information about DNS, or any
other service that can utilize a database [9].
LDAP is hierarchal by nature. The root node in
the hierarchy is usually the domain for which the
server will be responsible (for example,
uccs.edu). From there it normally branches off
into organizational units, which is then followed
by user information.

For our project, we decided to use OpenLDAP,
which is an open source project. OpenLDAP was
created in 1998 and is loosely based on the
LDAP server at the University of Michigan
(presumably an in-house program) [10]. The
OpenLDAP server has the ability to clone itself
to other locations for increased robustness, but
we decided not to do any replication for our
project. Normally, a stock install of OpenLDAP

uses an insecure communications mechanism.
Given the motivation for this project, we decided
to enable the SSL capabilities of OpenLDAP.

Other choices of LDAP servers included:
 Active Directory by Microsoft
 Open Directory by Apple
 eDirectory by Novell
 Red Hat Directory Server by Red Hat

We chose OpenLDAP because (1) it is open
source (and therefore, free), and (2) we wanted a
challenge.

SSL
The Secure Socket Layer is a protocol that is
used to ensure that data transferred over
networks are encrypted. This helps prevent
attackers from tampering with or eavesdropping
on the data [12].

We, again, decided to use another open source
project called OpenSSL, which implements both
SSL and the newer protocol, TLS (Transport
Layer Security). The choice was based mostly on

2

Figure 1: LDAP Directory Structure

convenience because it came bundled with our
Linux installs.

Kerberos
Kerberos is both a protocol and an application.
The protocol describes a way to securely prove
one’s identity over a network. The program is an
open source implementation of the protocol and
was developed by the Massachusetts Institute of
Technology (MIT). Using Kerberos allows single
sign-on to occur, so it was a natural fit for our
problem.

Kerberos has two parts: an authentication server
and a ticket granting server [5]. Normally when a
user needs to do something for the first time
(usually in our context this means logging on to a
computer) the user’s identity can not be

established, so the user must prove his or her
identity by authenticating against the
authentication server. This is, so far, exactly the
same as an LDAP approach.

Once the user has successfully authenticated
using a password or some other mechanism, the
protocol then invokes the ticket granting server.
As the name implies, this server grants tickets. A
ticket is simply a piece of data that lets the user
prove his or her identity in the future. Under the
hood, these tickets use symmetric key
cryptography in order to accomplish this. The
tickets expire after a period of time, but as long
as the user stays signed in they will continue to
be re-issued a ticket, so in actuality, they will
never have to type in their password more than
once.

3

Figure 2: Kerberos Operation

If the user wants to use a service on the network
using single sign on, there are two prerequisites.
First, the user must already have their ticket.
Second, the service must explicitly support
Kerberos authentication; otherwise, the user will
still need to authenticate the traditional way
(whatever that happens to mean for the service in
question). The user gives his or her ticket to the
service. Using the user’s ticket, the service
transparently authenticates the user and allows or
denies access, all without ever prompting the
user for a password. Exactly how this
accomplished is rather complicated but suffice it
to say that when it works, it works seamlessly.

On larger corporate networks, the authentication
server and ticket granting server are separate, but
because our network is small, they are both on
the same server.

One last thing to note about Kerberos is that time
is a very important parameter in the protocol. As
such, both the client and server must have
synchronized clocks, so the usage of NTP
(network time protocol) is essential.

3. Design

Our setup consists of three virtual machines that
are named Cartman, Stan, and Kenny. All use
Debian variants for consistency’s sake.

Cartman is the central server and contains the
following:

 Debian Lenny
 LDAP
 Kerberos
 NTP server
 SSH server

Stan is the secondary (non-infrastructure) server
and contains and is responsible for the following
services:

 Debian Lenny
 SSH server
 Mail
 NFS

 FTP

Kenny is our client machine and contains the
following:

 Ubuntu 8.04
 SSH server

Both Kenny and Cartman are mounting Stan’s
NFS share (which is the /home directory) so that
users will have the same home folders on any of
the machines. To keep ourselves honest, we do
NOT accept RSA or DSA keys in SSH (we could
make it look like single sign-on when actually it
is not), nor is the mail client on Kenny supposed
to store any passwords.

4. Implementation

LDAP
The first thing we had to do was get LDAP up
and running. Although Kerberos will eventually
authorize the logins, LDAP still serves as a base
for all other user information, such as user id,
groups, home directory, login shell, full name,
etc. As previously mentioned we chose Cartman
for this task. We used a BDB database for the
back end and had very few issues when it came
to getting basic LDAP working.

The only challenge we faced was figuring out the
slight differences between Debian and Ubuntu in
terms of client configuration (they put their
configurations in different files). Once we
figured this out, it was smooth sailing.

We had to tell the name service to use LDAP (the
name service simply maps user ids to names and
vice-versa). Then we had to configure PAM
(Pluggable Authentication Modules) to
authenticate against LDAP. Once this was done,
we removed all of our local accounts on all of the
machines, and everything was working.

A quick word about caching: Linux has a nasty
habit of caching login credentials, so we learned
it is important to turn off caching while
experimenting with a new setup. Otherwise, you

4

will be scratching your head until trying to figure
out why some things work and others do not.

SSL
Adding SSL to the LDAP was a bit more
difficult. The first thing we had to do was
generate the certificates like we did for the class
in Homework 4. Essentially all that SSL provides
is some privacy. No peer verification is done per
se, but the clients can be sure that their traffic to
the server will not be seen by anyone sniffing the
traffic.

We ran into problems with the certificates
because a couple of tutorials stated that we
should become our own Certificate Authority and
validate Cartman with ourselves. This did not
work out because we had a few errors with
pointing to the right certificates. However, we
were able to debug those fairly quickly once we
had the configuration files correct.

Another problem we encountered was one of
nomenclature. In various places we would see
references to ldaps (LDAP over SSL), and others
would mention StartTLS. No one was entirely
clear on the difference, but we found out that it
was a matter of protocol versions. LDAP version
2 did not originally support SSL at all, so they
decided to run an SSL-only server on a different
port instead (ldaps, or port 636). The newer
version 3 supports either plain or SSL on the
same port and uses the StartTLS mechanism to
accomplish this.

By this point everything was using ldaps, so we
simply changed back to ldap and enabled
StartTLS, and our woes came to an end. For
added security, we made it so that the clients had
to have a local copy of the server’s public key (in
other words, the server will not give out its
public key to anyone). This is only a stopgap
measure, but what the heck.

Kerberos
Installing Kerberos on both the server and clients
was about as simple as it can get. Configuring it
on the other hand was a bit more involved. The
first step involved creating a realm. A realm is
the Kerberos equivalent of a domain. Each realm
needs an authentication server and a ticket
granting server. Realms can service more than
one domain, but for our case it will only service
vast.uccs.edu, so the realm is VAST.UCCS.EDU
(Kerberos likes upper case for realms).

Once the configuration files were told about our
realm, we had to create principles for the realm.
Principles are really anything that might ever
need authenticating. They can be users but can
also be machines (Cartman, Stan, and Kenny all
have their own principle), services, or Kerberos
administrators.

The hardest part is creating the first user.
Normally Kerberos requires an authenticated
user in order to be administered, but since there
aren’t any to start with, we had to bootstrap
Kerberos by temporarily disabling this
requirement. This lets anyone (literally anyone)
administer Kerberos. Once there, we added a
principle for the administrator (which includes a
password), and then re-enabled the security on
Kerberos.

At this point we started wondering how to
integrate this into our existing LDAP setup, but
our research yielded that we had misunderstood
Kerberos. As it turns out, Kerberos completely
replaces the authentication portion of LDAP, and
for a number of pedantic reasons, it cannot use
LDAP directly. So we had to migrate (in other
words, manually create a principle for each of)
the users. At this point it became clear why some
people may not want to use Kerberos. As
marvelous an idea as it is, it would be a real
headache to migrate an existing LDAP
infrastructure over to Kerberos. The real kicker is
that the users must re-type their passwords for
Kerberos (its hashing mechanism is different).
Thus, any larger networks would simply be

5

unable to employ the use of Kerberos.

Once the users were set up, we had to make sure
that the machines would log them in using
Kerberos instead of LDAP. This was a one-line
change in the PAM configuration files, but the
Kerberos clients had to have their keystores
configured (a keystore simply stores certain
passwords for a host).

At this point a user can log in to any machine and
be allowed to log in. In order for single sign-on
to work, each service must now be configured in
order to support Kerberos. And the first one we
chose was SSH since it would make testing
everything else much easier.

SSH
This was one of the easier services to configure.
First, we had to install OpenSSH. Luckily,
OpenSSH supports Kerberos out of the box with
a few quick tweaks. Mainly we had to enable
GSSAPI (a mechanism for authenticating against
Kerberos) in the server and had to tell the SSH
client to pass its GSSAPI credentials along to
other servers.

Once this was done on all three of the machines,
we could finally see the beginnings of our single
sign-on network taking shape. We could SSH to
any of the three machines and at first be
prompted for our password. From that point on,
any further SSH sessions within the realm were
completely password-less (again, without
resorting to using OpenSSH’s built-in PKI). We
ran into a few issues, mostly related to the
aforementioned keystores. Once we had made
sure that the right hosts had the right keys,
everything worked perfectly.

Mail
By far this was the most difficult service to
install. We chose this one because it epitomizes
the motivation behind this project. What could be
more impressive than logging on and having
password-less access to your email? It took quite
a bit of work, but we did manage to get it

working.

At first we chose Postfix for the SMTP server
and Courier for the IMAP server, but after an
agonizing search, we finally learned that Courier
does not support Kerberos. Our next choice was
Dovecot, which claimed full support for
Kerberos. We thought it would then be easy but
learned later how wrong we were.

Before configuring Dovecot we decided to tackle
SMTP. Ideally our goal was to have both IMAP
and SMTP authenticate using Kerberos
credentials, but after a long frustrating time, we
found out that Postfix was just a horrible
nightmare to setup with Kerberos (involving
other go-between services). Ultimately, it was
decided that it did not matter since Postfix was
only the MTA, and from the fictional client’s
point of view, all they wanted to do was receive
mail (not in a real setup of course). Thus, we
configured Postfix as a very simple MTA to
deliver our mail to a user’s home directory.

Then we had to set up Dovecot. Obviously, the
first thing we did was switch it from standard
IMAP to the more secure IMAPS (a one-liner).
Then we had to hook it in to Kerberos. We told it
to authenticate against Kerberos, which involved
creating a separate keystore for some reason as
well as describing the realm to the mail server.

We also had to make it use LDAP for any user
information (such as where the user’s mail was
located), which is where we encountered another
problem. It turns out that Dovecot really cannot
handle our StartTLS LDAP setup, so we had to
search for a different route. An article on-line
suggested that we have it use PAM instead since
PAM is using LDAP as its back-end. It was a
roundabout way of doing the same thing, but it
worked.

At this point we thought we were done, so we
logged into Kenny’s desktop, fired up
Thunderbird, and tried to connect to the server.
Although the SSL and initial communication

6

worked, the authentication failed miserably. After
parsing through the cryptic logs, we found that
Dovecot was trying to use a principle that did not
exist (“imap/stan”). It was at this point that we
learned that some services required a separate
service principle for their respective hosts.

After a lot more fudging around, we finally got
mail working. To make sure it was really
working we turned off plain (non-Kerberos)
authentication from within Dovecot, and
amazingly it still worked.

FTP
The FTP setup might have been the easiest one to
get working. We setup the FTP server on Stan,
which is the secondary server in charge of
services. The needed package to setup FTP was
called krb5-ftpd, which was a “Kerberized”
version of FTP.

The only challenge that we faced in the setup
was not realizing the daemon, inetd, was not
installed. Once that was found adding an FTP
listener line in the “inetd.conf” file was all that
was necessary for the server to be operational.

Kenny was used to test FTP. Rather than call
FTP, the command krb-ftp was used because it is
the Kerberos version found in the krb-client
packages. This confirmed that single sign-on FTP
was working.

NFS
Traditionally, NFS is not a very secure protocol.
It is used for file sharing. Other machines can
mount an NFS share. The only security offered is
that a server can allow only certain IP addresses
to connect. This is fine in a closed network , but
there are some situations where this does not
work. The newest version of NFS (NFS4)
supports Kerberos authentication to address this
concern. We decided to try and set this up as our
last service.

Stan was the NFS server (no particular reason
other than we decided that Cartman would only

be responsible for LDAP and Kerberos). After a
bit of research, we found that none of this would
work unless we drastically changed our
keystores. Normally a keystore keeps a password
in a number of different hash forms, but NFS4
only likes one. Thus we had to re-do the
keystores on all 3 machines, which was a huge
pain. In retrospect it would have been better to
do this service first.

Once the keystores were correctly set up, we had
to create an export on Stan. We agreed that the
home directories were a logical choice. One
slight difference that we found between NFS3
and NFS4 is that version 3 allows you to export
anything, and mount it on the client with the
same name (in other words, “/home” on the
server is “server:/home” on the client). On NFS4
this is not the case (“/home” on the server maps
to “server:/” on the client). This is just a security
feature.

At this point we thought we were finished, but
every time we tried to mount the server the client
would simply freeze. It turns out that the server
had to be configured to run a few additional
NFS4-specific programs. After this we tried
again only to find that the clients also had some
tweaks required. We had no problems after this,
and the client mounted the server just fine.

One last thing we decided to do (not required,
just nice) was to make NFS use autofs. In
essence autofs does two things: keeps the load on
the server down and remounts a share if it is lost
for some reason. So if the server goes down for
some reason autofs will fail quietly rather than
freezing up the client machines. At this point we
called it good.

7

5. Performance Evaluation

We did not plan on using any metrics for our
project because there really wasn't anything that
had to be measured. Our main goal for our
project was to get single sign-on working with
the various services we setup on the network.

After the the initial log-in and password
authentication, we are able to do the following:

1. We can SSH between Cartman, Stan, and
Kenny without every being prompted for
a password except for when we first log-
in.

2. We can use FTP from Kenny to view and
transfer any files we want to and from
Stan without being prompted for a
password.

3. We can mount server directories on Stan
from Kenny without being asked for a
password.

4. We can send and receive mail using
Thunderbird on Kenny without ever
being prompted for a password.

Single sign-on with Kerberos worked as
expected with the network services.

6. Future Directions

There are a few things we can do to help improve
our project such as the following:

 Add a network firewall
 Add more single sign-on services such as

Apache
 Add multi-platform capabilities such as

Windows
 Add security to SMTP

7. Conclusion

Our project involved getting three virtual
machines running with a variety of services in
order to setup single sign-on using Kerberos.
While using a lot of time and a little bit of
frustration, we were able to get single sign-on to
work with the different services we setup. Any
user who logs into our network should only be
prompted for his or her password only once and
should have authorized access to any network
service. In a nutshell, our project was a success.

8. References

[1] Debian, Dec. 2008,
http://www.debian.org/.

[2] Dovecot, Nov. 2008,
http://www.dovecot.org/.

[3] Gentoo Linux Wiki, Nov. 2008
http://en.gentoo-
wiki.com/wiki/Main_Page.

[4] Kerberos: The Network Authentication
 Protocol, Oct. 2007,
 http://web.mit.edu/kerberos/.

[5] OpenLDAP, March 2008,
 http://www.openldap.org/.

[6] OpenSSL, Nov. 2008,
 http://www.openssl.org/.

[7] Ubuntu Forums, http://ubuntuforums.org/.

[8] Wikipedia, “Kerberos (protocol)”, Nov.
 2008,
 http://en.wikipedia.org/wiki/Kerberos
 _(protocol).

[9] Wikipedia, “Lightweight Directory
Access Protocol”, Dec. 2008,

 http://en.wikipedia.org/wiki/Lightweight
_Directory_Access_Protocol.

8

[10] Wikipedia, “OpenLDAP”, Nov. 2008,
http://en.wikipedia.org/wiki/OpenLDAP.

[11] Wikipedia, “Single sign-on”, Dec. 2008,
http://en.wikipedia.org/wiki/Single_sign-
on.

[12] Wikipedia, “Transport Layer Security”,
Dec. 2008,
http://en.wikipedia.org/wiki/Transport
_Layer_Security.

9

Appendix A

10

Figure 3: Single Sign-on SSH Demonstration

Figure 4: Single Sign-on FTP Demonstration

