Honeyd

Virtual Honeypot Frame Work

Niels Provos

1 Introduction

A honeypot is as a closely monitored computing resource that we intend to be probed, attacked, or compromised. The value of a honeypot is determined by the information that we can obtain from it. Monitoring the data that enters and leaves a honeypot lets us gather information that is not available to NIDS. For example, we can log the key strokes of an interactive session even if encryption is used to protect the network traffic. To detect malicious behavior, NIDS require signatures of known attacks and often fail to detect compromises that were unknown at the time it was deployed. On the other hand, honeypots can detect vulnerabilities that are not yet understood. Because a honeypot has no production value, any attempt to contact it is suspicious. Consequently, forensic analysis of data collected from honeypots is less likely to lead to false positives than data collected by NIDS. Honeypots can run any operating system and any number of services. The configured services determine the vectors available to an adversary for compromising or probing the system.

· A high-interaction honeypot simulates all aspects of an operating system.

· A low-interaction honeypot simulates only some parts, for example the network stack. This is what Honeyd does.

High-Interaction Honeypots

A high-interaction honeypot can be compromised completely, allowing an adversary to gain full access to the system and use it to launch further network attacks.

Low-Interaction Honeypots

In contrast, low-interaction honeypots simulate only services that cannot be exploited to get complete access to the honeypot. Low-interaction honeypots are more limited, but they are useful to gather information at a higher level, e.g., learn about network probes or worm activity. They can also be used to analyze spammers or for active countermeasures against worms.

We also differentiate between physical and virtual honeypots.

· A physical honeypot is a real machine on the network with its own IP address.

· A virtual honeypot is simulated by another machine that responds to network traffic sent to the virtual honeypot.

When gathering information about network attacks or probes, the number of deployed honeypots influences the amount and accuracy of the collected data. A good example is measuring the activity of HTTP based worms. We can identify these worms only after they complete a TCP handshake and send their payload. However, most of their connection requests will go unanswered because they contact randomly chosen IP addresses. A honeypot can capture the worm payload by configuring it to function as a web server. The more honeypots we deploy the more likely one of them is contacted by a worm.

Physical versus Virtual Honeypots
Physical honeypots are often high-interaction, so allowing the system to be compromised completely, they are expensive to install and maintain. For large address spaces, it is impractical or impossible to deploy a physical honeypot for each IP address. In that case, we need to deploy virtual honeypots.
2 Honeypots and Network Intrusion Detection Systems (NIDS)
The amount of useful information provided by NIDS is decreasing in the face of ever more sophisticated evasion techniques [7, 12] and an increasing number of protocols that employ encryption to protect network traffic from eavesdroppers. NIDS also suffer from high false positive rates that decrease their usefulness even further. Honeypots can help with some of these problems. A honeypot is a closely monitored computing resource that is intends to be probed, attacked, or compromised. The value of a honeypot is determined by the information that we can obtain from it. Monitoring the data that enters and leaves a honeypot lets us gather information that is not available to NIDS. For example, we can log the key strokes of an interactive session even if encryption is used to protect the network traffic. To detect malicious behavior, NIDS require signatures of known attacks and often fail to detect compromises that were unknown at the time it was deployed. On the other hand, honeypots can detect vulnerabilities that are not yet understood. For example, we can detect compromise by observing network traffic leaving the honeypot even if the means of the exploit has never been seen before. Because a honeypot has no production value, any attempt to contact it is suspicious. Consequently, forensic analysis of data collected from honeypots is less likely to lead to false positives than data collected by NIDS. Honeypots can run any operating system and any number of services. The configured services determine the vectors available to an adversary for compromising or probing the system. A high-interaction honeypot simulates all aspects of an operating system. A low-interaction honeypots simulates only some parts, for example the network stack [9].
3 Honeyd

Honeyd is a framework for virtual honeypots that simulates computer systems at the network level. Honeyd supports the IP protocol suites [10] and responds to network requests for its virtual honeypots according to the services that are configured for each virtual honeypot. When sending a response packet, Honeyd’s personality engine makes it match the network behavior of the configured operating system personality. To simulate real networks, Honeyd creates virtual networks that consist of arbitrary routing topologies

With configurable link characteristics such as latency and packet loss. When networking mapping tools like traceroute are used to probe the virtual network, they discover only the topologies simulated by Honeyd. The performance evaluation of Honeyd shows that a 1.1 GHz Pentium III can support 30 MBit/s aggregate bandwidth and that it can sustain over two thousand TCP transactions per second. The experimental evaluation of Honeyd verifies that fingerprinting tools are deceived by the simulated systems and shows that the virtual network topologies seem realistic to network mapping tools. As a demonstration to the power of the Honeyd framework, it can be used in many areas of system security. For example, Honeyd can help with detecting and disabling worms, distracting adversaries, or preventing the spread of spam email.
4 Design and Implementation
The framework allows us to instrument thousands of IP addresses with virtual machines and corresponding network services. Starting by discussing the design considerations, and then describe Honeyd’s architecture and implementation. It limits adversaries to interact with the honeypots only at the network level. Instead of simulating every aspect of an operating system, it is only simulating its network stack. The main drawback of this approach is that an adversary never gains access to a complete system even if he compromises a simulated service. On the other hand, we are still able to capture connection and compromise attempts. However, we can mitigate these drawbacks by combining Honeyd with a virtual machine like VMware [11]. This may be a related work. For that reason, Honeyd is a low-interaction virtual honeypot that simulates TCP and UDP services. It also understands and responds correctly to ICMP messages. Honeyd must be able to handle virtual honeypots on multiple IP addresses simultaneously, in order to populate the network with numerous virtual honeypots simulating different operating systems and services. To increase the realism of this simulation, the framework must be able to simulate arbitrary network topologies. To simulate address spaces that are topologically dispersed and for load sharing, the framework also needs to support network tunneling. Figure 1 shows a conceptual overview of the framework’s operation. A central machine intercepts network traffic sent to the IP addresses of configured honeypots and simulates their responses. Before describing Honeyd’s architecture, we explain how network packets for virtual honeypots reach the Honeyd host.

[image: image3.jpg]Gonfiguration

! Routing | Personally
Personality fedia s] Engine
Lookup. i
+ Packet Dispatcher
! Routing |
¢—h [v
IcMP TcP UDP

Figure 2: This diagram gives an overview of Honeyd's
architecture. Incoming packets are dispatched to the
correct protocol handler. For TCP and UDP, the con-
figured services receive new data and send responses
i necessary. All outgoing packets are modified by the
personality engine to mimic the behavior of the config-
ured network stack. The routing component is optional
and used only when Honeyd simulates network topolo-
gies.

4.1 Receiving network data
Honeyd is designed to reply to network packets whose destination IP address belongs to one of the simulated honeypots. For Honeyd, to receive the correct packets, the network needs to be configured appropriately. There are several ways to do this, e.g., we can create special routes for the virtual IP addresses that point to the Honeyd host, or we can use Proxy ARP [2], or we can use network tunnels. Let A be the IP address of our router and B the IP address of the Honeyd host. In the simplest case, the IP addresses of virtual honeypots lie within our local network. We denote them V1, . . . , Vn. When an adversary sends a packet from the Internet to honeypot Vi, router A receives and attempts to forward the packet. The router queries its routing table to find the forwarding address for Vi. There are three possible outcomes: the router drops the packet because there is no route to Vi, router a forwards the packet to another router, or Vi lies in local network

range of the router and thus is directly reachable by A. To direct traffic for Vi to B, we can use the following two methods. The easiest way is to configure routing entries for Vi with 1 _ i _ n that point to B. In that case, the router forwards packets for our virtual honeypots directly to the Honeyd host. On the other hand, if no special route has been configured, the router ARPs to determine the MAC address of the virtual honeypot. As there is no corresponding physical machine, the ARP requests go unanswered and the router drops the packet after a few retries. We configure the Honeyd host to reply to ARP requests for Vi with its own MAC addresses. This is called Proxy ARP and allows the router to send packets for Vi to B’s MAC address.

4.2 Architecture
Honeyd’s architecture consists of several components: a configuration database, a central packet dispatcher, protocol handlers, a personality engine, and an optional routing component; see Figure 2. Incoming packets are processed by the central packet dispatcher. It first checks the length of an IP packet and verifies the packet’s checksum. The framework is aware of the three major Internet protocols: ICMP, TCP and UDP. Packets for other protocols are logged and silently discarded. Before it can process a packet, the dispatcher must query the configuration database to find a honeypot configuration that corresponds to the destination IP address. If no specific configuration exists, a default template is used. Given a configuration, the packet and corresponding configuration is handed to the protocol specific handler.
The ICMP protocol handler supports most ICMP requests. By default, all honeypot configurations respond to echo requests and process destination unreachable messages. The handling of other requests depends on the configured personalities.
[image: image1.jpg]Linux 1.0.9 FreeBSD 3.2- 4,0 Windows NT 4 NetBSD 1.6H
5 0.104

Figure 1: Honeyd receives traffic for its virtual honey-
pots via a router or Proxy ARP. For each honeypot,
Honeyd can simulate the network stack behavior of a

different operating system.

 For TCP and UDP, the framework can establish connections to arbitrary services. Services are external applications that receive data on stdin and send their output to stdout.
The behavior of a service depends entirely on the external application. When a connection request is received, the framework checks if the packet is part of an established connection. In that case, any new data is sent to the already started service application. If the packet contains a connection request, a new process is created to run the appropriate service. Instead of creating a new process for each connection, the framework supports subsystems and internal services. A subsystem is an application that runs in the name space of the virtual honeypot. The subsystem specific application is started when the corresponding virtual honeypot is instantiated. A subsystem can
bind to ports, accept connections, and initiate network traffic. While a subsystem runs as an external process, an internal service is a Python script that executes within Honeyd. Internal services require even less resources than subsystems but can only accept connections and not initiate them. Honeyd contains a simplified TCP state machine.

The three-way handshake for connection establishment and connection teardown via FIN or RST are fully supported, but receiver and congestion window management is not fully implemented. UDP datagrams are passed directly to the application. When the framework receives a UDP packet for a closed port, it sends an ICMP port unreachable message unless this is forbidden by the configured personality. In sending ICMP port unreachable

messages, the framework allows network mapping tools like traceroute to discover the simulated network topology. In addition to establishing a connection to a local service, the framework also supports redirection of connections. The redirection may be static or it can depend on the connection quadruple (source address, source port, destination address and destination port). Redirection lets us forward a connection request for a service on a virtual honeypot to a service running on a real server. For example, we can

redirect DNS requests to a proper name server. Or we can reflect connections back to an adversary, e.g. just for fun we might redirect an SSH connection back to the originating host and cause the adversary to attack her own SSH server. Evil laugh. Before a packet is sent to the network, it is processed by the personality engine. The personality engine adjusts the packet’s content so that it appears to originate from the network stack of the configured operating system.
4.3 Personality engine
Adversaries commonly run fingerprinting tools like Xprobe [1] or Nmap [6] to gather information about a target system. It is important that honeypots do not stand out when fingerprinted. To make them appear real to a probe, Honeyd simulates the network stack behavior of a given operating system. We call this the personality of a virtual honeypot.

Different personalities can be assigned to different virtual honeypots. The personality engine makes a honeypot’s network stack behave as specified by the personality by introducing changes into the protocol headers of every outgoing packet so that they match the characteristics of the configured operating system. The framework uses Nmap’s fingerprint database as its reference for a personality’s TCP and UCP behavior; Xprobe’s fingerprint database is used as reference for a personality’s ICMP behavior.

4.4 Routing Topology
Honeyd simulates arbitrary virtual routing topologies to deceive adversaries and network mapping tools. This goal is different from NS-based simulators [5] which try to faithfully reproduce network behavior in order to understand it. We simulate just enough to deceive adversaries. When simulating routing topologies, it is not possible to employ Proxy ARP to direct the packets to the Honeyd host. Instead, we need to configure routers to delegate network address space to our host. Normally, the virtual routing topology is a tree

rooted where packets enter the virtual routing topology. Each interior node of the tree represents a router and each edge a link that contains latency and packet loss characteristics. Terminal nodes of the tree correspond to networks. The framework

supports multiple entry points that can exit in parallel. An entry router is chosen by the network space for which it is responsible.

4.5 Configuration
A virtual honeypot is configured with a template, a reference for a completely configured computer system. New templates are created with the create command. The set and add commands change the configuration of a template. The set command assigns a personality from the Nmap fingerprint file to a template. The personality determines the behavior of the network stack, as discussed in Section 3.3. The set command also defines the default behavior for the supported network protocols. The default behavior is one of the following values: block, reset, or open. Block means that all packets for the specified

protocol is dropped by default. Reset indicates that all ports are closed by default. Open means that they are all open by default. The latter settings make a difference only for UDP and TCP.
4.6 Logging
The Honeyd framework supports several ways of logging network activity. It can create connection logs that report attempted and completed connections for all protocols. More usefully, information can be gathered from the services themselves. Service applications can report data to be logged to Honeyd via stderr. The framework uses syslog to store the information on the system. In most situations, we expect that Honeyd runs in conjunction

with a NIDS.
5 Fingerprinting Evaluation

We start Honeyd and we use traceroute to find the routing path to a virtual host. We notice that the measured latency is double the latency that we configured. This is correct because packets have to traverse each link twice. Running Nmap 3.00 against IP addresses 10.0.0.1 and 10.1.0.2 results in the correct identification of the configured personalities. Nmap reports that 10.0.0.1 seems to be a Cisco router and that 10.1.0.2 seems to run NetBSD. Xprobe identifies 10.0.0.1 as Cisco router and lists a number of possible operating systems, including NetBSD, for 10.1.0.2.

6 Performance

We analyze Honeyd’s performance on a 1.1 GHz Pentium III over an idle 100 MBit/s network. To determine the aggregate bandwidth supported by Honeyd, we configure it to route the 10/8 network and measure its response rate to ICMP echo requests sent to IP addresses at different depths within a virtual routing topology. To get a base of comparison, we first send ICMP echo requests to the IP address of the Honeyd host because the operating system responds to these requests directly. We then send

ICMP echo requests to virtual IP addresses at different depths of the virtual routing topology. Figure 3 shows the fraction of returned ICMP echo replies for different request rates.
[image: image2.jpg]EI
= == e
08 =
B 07 57— %a0 byt pacters o eriace e
392E5 00yt pacets o oy —
3 95— 400 byte packets to Honeyd (1 hop) izt
B 05| — <00 byt pactets o Honeyd (2 hop) i ———1—
£oa= S
= ===t

L)
o 60

g 1

Fool— e =
308 = s
B o7 T sty pactets o hiacs = =
3 08— 500 byte packets fo Honeyd o =
E 0S5 500 byto packets o Honeyd (1 hop) =i -
§ 03— 900 bytepackets to Honeyd (2 hop) F=== =
E‘” — e o o e =
£%

3)

)
Bandwidth in MBit

Figure 3: The graphs shows the aggregate bandwidth
supported by Honeyd for different packet sizes and dif-
ferent destination IP addresses.

 The upper graph shows the results for sending 400 byte ICMP echo request packets. We see that Honeyd starts dropping reply packets at a bandwidth of 30 MBit/s.

For packets sent to Honeyd’s entry router, we measure a 10% reply packet loss. For packets sent to IP addresses deeper in the routing topology, the loss of reply packets increases to up to 30%. The lower graph shows the results for sending 800 byte ICMP

echo request packets. Due to the larger packet size, the rate of packets is reduced by half and we see that for any destination IP address, the packet loss is only up to 10%.
7 Related Work
Cohen’s Deception Toolkit provides a framework to write services that seem to contain remotely exploitable vulnerabilities [3]. Honeyd operates one level above that by providing a framework to create virtual honeypots that can run any number of services.

The Deception Toolkit could be one of the services running on a virtual honeypot.

There are several areas of research in TCP/IP stack fingerprinting, among them: effective methods to classify the remote operating system either by active probing or by passive analysis of network traffic, and defeating TCP/IP stack fingerprinting by normalizing

network traffic. Fyodor’s Nmap uses TCP and UDP probes to determine the operating system of a host [6]. Nmap collects the responses of a network stack to different queries and matches them to a signature database to determine the operating systems of the queried host. Nmap’s fingerprint database is extensive and we use it as the reference for operating system personalities in Honeyd. Instead of actively probing a remote host to determine its operating systems, it is possible to identify the remote operating system by passively analyzing its network packets. P0f [13] is one such tool. The TCP/IP flags inspected by P0f are similar to the data collected in Nmap’s fingerprint database.

On the other hand, Smart et al. show how to defeat fingerprinting tools by scrubbing network packets so that artifacts identifying the remote operating system are removed [8]. This approach is similar to Honeyd’s personality engine as both systems

change network packets to influence fingerprinting tools. In contrast to the fingerprint scrubber that removes identifiable information, Honeyd changes network packets to contain artifacts of the configured operating system. High-interaction virtual honeypots can be constructed using User Mode Linux (UML) or Vmware [11]. One example is ReVirt which can reconstruct the state of the virtual machine for any point in time [4]. This is helpful for forensic analysis after the virtual machine has been compromised.

Although high-interaction virtual honeypots can be fully compromised, it is not easy to instrument thousands of high-interaction virtual machines due to their overhead. However, the Honeyd framework allows us to instrument unallocated network space

with thousands of virtual honeypots. Furthermore, we may use a combination of Honeyd and virtual machines to get the benefit of both approaches. In this case, Honeyd provides network facades and selectively proxies connections to services to backends provided by high-interaction virtual machines.
8 Conclusion
Honeyd is a framework for creating virtual honeypots. Honeyd mimics the network stack behavior of operating systems to deceive fingerprinting tools like Nmap and Xprobe.

We gave an overview of Honeyd’s design and architecture and showed how Honeyd’s personality engine can modify packets to match the fingerprints of other operating systems and how it is possible to create arbitrary virtual routing topologies.Our performance measurements showed that a single 1.1 GHz Pentium III can simulate thousands of virtual honeypots with an aggregate bandwidths of over 30 MBit/s and that it can sustain over two thousand TCP transactions per second. Our experimental

evaluation showed that Honeyd is effective in creating virtual routing topologies and successfully fools fingerprinting tools. We showed how the Honeyd framework can be

deployed to help in different areas of system security, e.g., worm detection, worm countermeasures, or spam prevention. Honeyd is freely available as source code and can

be downloaded from http://www.citi.umich.edu/u/provos/honeyd/.
9 References
[1] Ofir Arkin and Fyodor Yarochkin. Xprobe v2.0:

A “Fuzzy” Approach to Remote Active Operating

System Fingerprinting. www.xprobe2.org, August

2002.

 [2] Smoot Carl-Mitchell and John S. Quarterman. Using

ARP to Implement Transparent Subnet Gateways.

RFC 1027, October 1987.

 [3] Fred Cohen. The Deception Toolkit. http://all.

net/dtk.html, March 1998. Viewed on May 12th,

2004.

[4] George W. Dunlap, Samuel T. King, Sukru Cinar,

Murtaza Basrai, and Peter M. Chen. ReVirt: Enabling

Intrusion Analysis through Virtual-Machine

Logging and Replay. In Proceedings of the 2002

Symposium on Operating Systems Design and Implementation,

December 2002.

[5] Kevin Fall. Network Emulation in the VINT/NS

Simulator. In Proceedings of the fourth IEEE Symposium

on Computers and Communications, July

1999.

[6] Fyodor. Remote OS Detection via TCP/IP

Stack Fingerprinting. www.nmap.org/nmap/

nmap-fingerprinting-article.html, October

1998.

 [7] Thomas Ptacek and Timothy Newsham. Insertion,

Evasion, and Denial of Service: Eluding Network

Intrusion Detection. Secure Networks Whitepaper,

August 1998.

[8] Matthew Smart, G. Robert Malan, and Farnam Jahanian.

Defeating TCP/IP Stack Fingerprinting.

In Proceedings of the 9th USENIX Security Symposium,

August 2000.

 [9] Lance Spitzner. Honeypots: Tracking Hackers. Addison

Wesley Professional, September 2002.

 [10] W. R. Stevens. TCP/IP Illustrated, volume 1.

Addison-Wesley, 1994.

[11] Jeremy Sugerman, Ganesh Venkitachalam, , and

Beng-Hong Lim. Virtualizing I/O Devices on

VMware Workstation’s Hosted Virtual Machine

Monitor. In Proceedings of the Annual USENIX

Technical Conference, pages 25–30, June 2001.

[12] David Wagner and Paolo Soto. Mimicry Attacks on

Host-Based Intrusion Detection Systems. In Proceedings

of the 9th ACM Conference on Computer

and Communications Security, November 2002.

[13] Michal Zalewski and William Stearns. Passive

OS Fingerprinting Tool. www.stearns.org/p0f/

README. Viewed on January 12th, 2003.
