Patrick Brannan
Dr. Chow

Intrusion Detection Incorporating Honeypots with Virtual Machines

Honeypots are a device that can be used to keep violent hackers out of valuable systems while monitoring traffic to catch and build defenses for malicious attacks. It can be expensive to purchase physical boxes to set up a honeypot. Incorporating a honeypot system we can simulate multiple honey pots with multiple IP addresses on a single box. The addition of virtual machines will now allow a single box to contain multiple operating systems to simulate a large part of a network. Joining a honeypot program with virtual machines we can create simulated systems that divert threatening attacks and simulate a variety of systems to attackers.

What is a honeypot? Honeypots main purpose is to distract attackers away from valuable hardware and software on a network into a location where they can be tracked and observed. While it is expensive in time and components to deploy multiple physical boxes on a network we can simply deploy one physical box and have it contain multiple instances of simulated machines. We will refer to our network honeypot as an individual box with multiple unallocated network addresses. Honeyd is a software program that “simulates the networking stack of different operation systems and can provide arbitrary routing topologies and services for an arbitrary number of virtual systems.”(1 Provos) Other advantages of honeypots are the ability to provide early warning about new attacks and exploits, and allow examination of attackers during and after entering a network for an in-depth review of the networks weaknesses allowing the most secure patches to be created. In a honeypot an observer will not always be quick to want to block an attacker. Allowing the attacker to snoop around and recorded any activity will allow network administrators to see more weaknesses and possible eliminate more then just one with each attacker that gains access to the honeypot. If the observer was to immediately boot the attacker they would not see what the attacker came looking for and how they planned to exploit or destroy the system. Letting an attacker wonder around in the honey pot does not present any danger to data therefore all activity from entry to exploit or attack can be monitored and reviewed. A honeypot is better then a “network intrusion detection system (NIDS) because the amount of useful information provided by NIDS is decreasing in the face of ever more sophisticated evasion techniques and an increasing number of protocols that employ encryption to protect network traffic from eavesdroppers.”(2 Provos) With no real traffic ever passing through a honeypot we can eliminate many of the false positives that are incurred with NIDS. A honeypot is an extra IP address that looks real to the outside but has no production value any traffic recorded in there is an attack. This eliminates the amount of data for review and leaves data that does not need to be separated since it can all be considered an attack.

Honeyd is “a lightweight framework for creating virtual honeypots.” Honeyd being lightweight it only simulates the network stack of an operating system as opposed to every aspect of the operating system. This allows capture of connection and compromise attempts. It does limit the attacker access to the complete system and therefore does not allow tracking of what a user would attack on a full system. Honeyd simulates TCP and UDP services while understanding and responding correctly to ICMP messages. The attempt to complete this package is to combine Honeyd with a virtual machine. A virtual machine can then be use to create the rest of the package that a hacker would attack. We would now have a system that monitors attacks in a area that contains data with no value and simulates the complete operating system as opposed to just the network stack. We can now capture not only the connection to the network and the exploit but all activity within the operating system.

The performance depends on how many systems are running. If we populate a majority of the network with honeypots we have a better chance of capturing attacks where if we have 10 honeypots on a network of 10,000 address we will catch very little. Some test results discovered by Provos in section 4.2 of his report.

“Honeyd’s performance on a 1.1 GHZ Pentium III over and idle 100MBit/s network. To determine the aggregate bandwidth supported by Honeyd, we configure it to route to 10/8 network and measure its response rate to ICMP echo requests sent to IP address at different depths within a virtual routing topology. To get a base of comparison, we first sent ICMP echo requests to the IP address of the Honeyd host because the operating system responds to these requests directly. We then send ICMP echo requests to virtual IP address at different depths of the virtual routing topology.” Refer to figure 8 of Provos paper on page 8.

Honeyd replies to network packets whose destination IP address is a simulated honeypot. The network needs to be configured so the packages destined for capture get to Honeyd. “There are several ways to do this create special routes for the virtual IP address that point to Honeyd host, or use Proxy ARP, or use network tunnels.”(3 Provos)

Honeyd consists of: a configuration database, a central packet dispatcher, protocol handlers, a personality engine and an optional routing component. First the length of an IP packet is checked and the packet’s checksum is verified by the packet dispatcher. The three major Internet protocols: ICMP, TCP, and UDP are reorganized while any other protocol at this point is logged and discarded. The configuration database contains the configuration that corresponds to each protocol and a destination IP address. After checking verifying the checksum the configuration database is queried to find a honeypot with the correct configuration. Without a specific configuration a default template is used. “All honeypot configurations respond to echo requests and processes destination unreachable messages.” Before sending the packet to the network the personality engine adjusts the content so that it seems to have come from the network stack of the configured operating system in the given honeypot.
“Adversaries commonly run fingerprinting tools like Xprobe or Nmap to gather information about a target system. It is important that honeypots do not stand out when fingerprinted. To make them appear real to a probe, Honeyd simulates the network stack behavior of a given operating system. We call this the personality of a virtual honeypot. Different personalities can be assigned to different virtual honeypots. The personality engine makes a honeypot’s network stack behave as specified by the personality by introducing changes into the protocol headers of every outgoing packet so that they match the characteristics of the configured operating system.”(5 Provos)

The framework of Honeyd remember that state of each honeypot which includes information about ISN generation, boot time and the current IP packet identification number. This information is important in generating ISNs that follow the distribution specified by the fingerprint.

Honeypots are perfect for detecting virus and tools that scan randomly over a network looking for new targets. Such attacks might come from Blaster, Code Red, Mimda, or Slammer all of which search networks for a target randomly. These attacks have a good chance of ending up in a honeypot as they randomly propagate over a network depending on a given algorithm. Honeypots fill in the unallocated address space and are subject to one of these random attacks which do not know the address space is filled with Honeypots.

Honeyd allows users to simulate many operating systems. One can simulate Linux, FreeBSD, Mac OS X, Windows, etc. Honeyd is Unix-based but can be ported into Windows. Honeyd is a free application that you have full access to the source code as it is OpenSource.

Honeypots can not captures all attacks that exist. When using NIDS we are relying on the attack to exist previously. With a NIDS the attack has to be recognized and then gets categorized. This means any attack that is not recognized passes through unnoticed. No traffic in the honeypot is welcome. Tracking all the activity allows records to be tracked and viewed later on even. This means no activity will be pushed aside and lost. If the attack is to happened during hours that the system is not being tracked or a holiday the attack can be reviewed later. After reviewing the attack new defenses can be created. With NIDS we are just logging know attacks and patching holes for them but with a honeypot we are able to catch cutting edge attacks allowing us to update and secure our networks.

Honeypots are a great tool to defend a network as well as build patches. In place they can divert dangerous traffic from valuable information and allow developers to monitor systems. Honeyd alone will only only allow us to simulate an operating systems network stack. While we are monitoring connection and exploit we are failing to monitor all active that the attacker could be attempting. Incorporating the virtual machine will allow us to see cutting edge attacks. If we can catch new attacks quicker we will be able to deploy patches and fixes that secure systems and their data faster. With Honeyd and a virtual machine implemented you can recorded all traffic in and out of the machine and create more advanced protection and patches for existing systems. Honeyd being OpenSource is going to allow the continued growth as well as making it an affordable option.

Honeypot Projects

During my research I came across some other interesting project and ideas using honeypots. Below are a few links and overviews of some of them.

http://www.lucidic.net/

The 5 basic ways of allowing access to your honeypot. This site gives simple methods to provide access to your honeypot. They are very effective and common methods.

http://rootprompt.org/article.php3?article=210
This article is a follow up to the "Know Your Enemy" series. Many people from the Internet community asked me how black-hats were tracked in the act of probing for and compromising a system. This paper discusses just that.
Refferences

Anuzis, Michael. (February 2003) Basic Methods of Allowing Access to your Honeynet. http://www.lucidic.net/

Provos, Niels. A Virtual Honeypot Framework. http://niels.xtdnet.nl/papers/honeyd.pdf

Spitzner, Lance. (2005). Open Source Honeypots: Learning with Honeyd. http://www.securityfocus.com/print/infocus/1659

Spitzner, Lance. (March 20, 2000). Feature: Building a Honeypot. http://rootprompt.org/article.php3?article=210
