CS 591

Matt Weaver

The Worm Works For You

ezweave@gmail.com

2Introduction

2Bandwidth Analysis

2Internet Connection Message Protocol

3Ping

3Traceroute

4Mapping

4Worms

5The Morris Worm

5Attack

5Chaos

5Pseudo Code (from C source)

7Conclusion

7Other Worms

7CIH Virus

8Melissa Worm

9Code Red Worm

11Blaster

12A controlled worm

13Logic

14Initial Distribution/Creation

15Conclusion

15Continuing Research

16References

Introduction

The goal of this project is to determine the feasibility of a controlled distribution exploit to measure and map a network. We begin by studying the flaws in traditional bandwidth and network mapping. Then we examine the Morris worm and some distribution patterns for exploits.

Bandwidth Analysis

Network bandwidth analysis is a classic problem for system administrators. On a small home network, there is little one can do to improve performance: there are no obvious bottlenecks. In a larger system, however, it can be incredibly difficult to determine the source of a problem. This is only part of what we intended to remedy.

The two current reigning algorithms for simple analysis are the commonly found tracert and ping. Both programs have implementations in most modern operating systems, although some implementation details vary.

The key problem in both systems is that they depend on standards set forth in RFCs that are maintained by W3C. Some of this introductory information can be found in my paper on bandwidth analysis algorithms.
Internet Connection Message Protocol

Many modern measurement tools depend on the Internet Connection Message Protocol (ICMP) as described in RFC 792. ICMP is designed to provide meaningful communication between software layers and hardware. Using ICMP many diagnostic measurements can be generated including, destination unreachable, source quench, redirect, timestamp, timestamp reply, information request, information reply, and the last two of most important significance, echo and time exceeded. These messages general have a simple format.

Echo consists of a UDP datagram that looks like such:

0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Code | Checksum |

 +-+

 | Identifier | Sequence Number |

 +-+

 | Data ...

 +-+-+-+-+-

Where type can be either 8 for an echo message or 0 for an echo reply message. Everything else is typical of such data. But, ICMP messages do not look alike. Time exceeded messages return a header that looks more like this:

0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Code | Checksum |

 +-+

 | unused |

 +-+

 | Internet Header + 64 bits of Original Data Datagram |

 +-+

The idea behind the time exceeded message is that as a router (this can be a simple hardware router, a computer routing, a LVS director, etc) should discard UDP data that has an expired Time To Live field (TTL). Once the datagram has been discarded a message to the datagrams source should be sent using ICMP. This makes the time exceeded message an ideal diagnostic tool.

Sadly, ICMP is an old standard. RFC 792 was established in 1981 and is not always a design consideration for modern hardware and software engineers. It is always possible to have problems with any measurement analysis for the simple reason that a particular node may not support ICMP.
Ping

Ping is a simple diagnostic utility first included on UNIX systems in the early eighties. Ping is not a robust tool and is limited in what it can tell the end user of a system, but it is essential none the less. So essential for networking diagnostic on the administrative side that it has been included with almost every Windows based operating system in the last ten years.

A simple ping request on a Windows or UNIX machine can indicate whether a component is up or not.

 Ping works as such: after DNS information is obtained about the target of a ping, we send out a data packet. That packet contains an ICMP echo request. When that reaches its destination an echo response is generated by the router at that point and the message is sent back. Ping does this again. On a UNIX system the user can specify the number of times to send the packet and even the algorithms for sending patterns.

Ping isn’t really a serious tool. In fact, many systems disable ping responses as a security measure. There are denial-of-service (DoS) attacks that flood a server with ping requests.

Traceroute

Traceroute was written by Van Jacobsen in 1988 to solve persistent network problems. The idea behind Traceroute is to send out data that makes each node in a path identify itself. In this way we can see where a system is slowest. Traceroute is the most common tool used for network analysis. It to is included in most modern operating systems and is also encapsulated into more advanced network tools (such as NetTools).

Traceroute depends on the ICMP time exceeded message. Traceroute sends out a series of packets with incredibly short TTL field values. As the packet reaches the routing node, it has already expired, so the node sends an ICMP message back to the source. Then traceroute increments the TTL and sends the packet out again. The slightly longer TTL enables the packet to bypass the last routing node. This continues until we exceed a limit that the user can specify (default is 40 on most systems) or until we get a destination host unreachable message which indicates that we have reached our destination. We call these steps hops.

Since you depend on the good-will of the vendors whose tools you are running, this sort of passive response is fairly inadequate.

As such, there is no good bandwidth analysis tool for all cases. Both traceroute and ping variations depend too much on UDP and ICMP. That is not desirable.

Mapping

Network mapping is another persistent problem. In a small organization, it can be easy to map a network just based on layout. Often the case, in the real world, system administrators are forced to work on large systems that are neither documented or well defined. This is more common than it should be. Attempting to map a system via a combination of traceroute and pings is very inefficient and has the same pitfalls as bandwidth analysis via the same routes.

Early worms were often used for helpful task on much simpler networks. In the early 1980s John Shock and Jon Hepps at PARC developed five such worms. They varied in purpose from the simple “town crier” worm that spread messages to the “vampire” worm that was inactive during the day and then utilized free computing resources at night to perform complex tasks.

Worms

The question is, “what kind of exploit should we use?” This really depends on the type of systems we need to infect. Unfortunately there is no “universal” exploit. That is a very good thing from the perspective of system administrators, but it poses a unique challenge.

The solution is to design the root system to utilize different exploits for different systems… kind of.

To elaborate, it would be foolish to know that a system was vulnerable, but our motives are different than a typical attack. First of all, no matter what, the system needs to be “somewhat” open… at least behind the firewall. Now this makes it difficult to guarantee that we can always “infect a system”. This is first and foremost an academic exercise. So the practicality is not as much of a concern, but it is something to keep in mind.
The Morris Worm

On November 2, 1988 Robert Morris unwittingly unleashed a poorly written worm that was designed to map what was then the Internet.

The Morris worm is the classic case, because it is at the heart of what we seek to do: measure and map a network. The Morris worm was the first serious exploit. Although well intentioned, it quickly brought down the Internet. Why? What mistakes did Morris make?

Attack

The Morris worm infects a system and sets itself to the current running thread, “sh”. Unix users know this as the Bourne Shell process. This is not an uncommon attack method.

As soon as the worm is the running process, Morris was concerned with the worm being discovered and, worse, reverse engineered. So the worm changes the dump stack size to zero. By doing this, even if a core dump occurs, the user gets nothing. As an aside, this makes it seem more sinister, why would he be so concerned with hiding a worm that was just supposed to map things? No matter what, this is not something we want to try.

After the Morris worm attempts to prevent any core dumps from being stored, the worm then executes command line arguments.

The worm also stores the time in an attempt to randomly generate a new IP address for the next target.

Of course Morris took advantage of a lot of common vulnerabilities of Unix.
Chaos

As we know now, the key fault of the Morris worm was the failure to check the target machine for previous infection. This actually would have been a trivial task. This could have been as easy as writing a file to the root directory of the file system (the machines affected were Unix). Again, not to belabor a point, but as many analysts of the worm have pointed out, it is very odd that subterfuge was valued so highly in what was claimed to be a benign worm.

The Morris worm quickly brought down machines, simply by re-infection. This is probably the biggest difficulty we face when trying to create a useful worm.
Pseudo Code (from C source)

The worm is composed of the following source files (I won’t discuss the header files).

1) cracksome.c

2) hs.c

3) net.c

4) stubs.c

5) worm.c

6) wormdes.c

7) x8113550.c

cracksome.c
This is the C file that logs into the system. This is actually very, very primitive. Morris created an array with some common usernames. After a username is found, it is a lot easier to perform a standard dictionary hack… attempt to generate the passwords. In the past many worms did this by using a collection of words, often from a dictionary.

hs.c

This is the C file that handles connections and mail… basically mucking with the network and trying to reproduce. This includes opening sockets, reading data from the socket (packets), and passing information to the next machine. Basically the next one to get hit. There is more to hs than that, this is also where Morris put the code that attempts to prevent reinfection into hs. Unfortunately his methodology is not fail proof. In fact, the default is just the opposite: infect anyway. Basically it works like this, before the new machine is infected, it sends out a magic number on a previously agreed upon port and then waits five minutes for a reply. If it gets no response, it sends the worm on down the line. There are a few mistakes with this: depending on the other instance to check the port depends on the settings of the machine. Although it was written to spread on BSD implementations over VAX assembly, there are few guarantees that a given port will be open. So listening over that port might not be possible. Then there is the matter of the “five minute” wait. Five minutes is really to long to wait for a response and even then five minutes seems arbitrary. The biggest problem is that in case of failure, it would go ahead and infect the machine. Failover should have been an abortion of that attempt. This is what made the worm so effective… at least in bringing down the internet. The mistake here is really a failure to understand sys admin.

net.c

This is the C file that contains the functions that find the subnet mask. Pretty standard fare, nothing really surprising.

stubs.c

This is the C file that contains the encryption functions Morris used to help obfuscate the o files on the infected machine… too bad he deleted it. This really makes one wonder about his motives.

worm.c

Here is the C file that runs the show. Here you will find main and see just how everything is supposed to hook together. Explaining this wouldn’t really do much more than tell you what you already know.

wormdes.c
This is the C file containing the method that actually does the password cracking. Called (as stated before) in cracksome.c.

x811355.c
I/O work is consolidated here.

Conclusion

There are, indeed, other worms out there. The Morris worm relates directly to what we are attempting to investigate. In fact, it’s really doing the same thing, but our purpose is much different.

There are a few things that the Morris worm tells us:

1) Control: we need to make sure that worm will die. It won’t reinfect the same machine, it won’t run very long (or longer than we tell it), and if we have a problem, we will just kill it. Morris sought to infect and the idea of giving up was just not something reflected in the exploit.

2) Infection: this is the hard part. We could choose to do something different, but the basic idea could be to use legitimate passwords and user accounts to infect a machine. Remember, we don’t want to break the machine. In fact, on a real system that should not even be possible. In other words, all systems will need either a user account with the same name or password, or each instance should somehow be able to obtain this. The idea for this would be not to randomly generate an IP address to attack, but to centrally distribute the worm and not write the worm to self-replicate. Instead the central machine would encode packets with the user account information for a given machine on the sub-net.
Other Worms

There are many other worms we should consider as well. Morris is the key example as his intentions were similar to ours: measurement and mapping. There are other worms that utilize different styles of attack to accomplish different purposes.

CIH Virus

Date: June 2nd, 1998

Delivery: various

The CIH virus was not originally a network payload deliverable. The virus originated by being included as a firmware update for a Yamaha CDR-400 drive. Then it was also spread as part of a demo for the game SiN as distributed by several large European gaming magazines. And yet again, it was spread in IBM Aptiva PCs. Eventually it would resurface as the “Loveletter virus” and infect computers via the Internet.

The virus spreads inside of a Portable Executable file, hidden in the empty space of the actual content of the file. Newer operating systems (XP, etc) are immune to this virus, but when it has attacked, it has done plenty of damage to older systems.

The virus starts by overwriting the first megabyte of the hard drive with zeroes. Since this destroys the partition table and the master boot record, in many cases, it crashes the machine.

Next it attempts to overwrite the BIOS with garbage. This isn’t always possible. It only works on Intel 430TX chipset based motherboards. There is a jumper that allows threads in execution to write to the BIOS. If it succeeds, the affected machine will not boot due to a corrupt BIOS.

As the “Loveletter virus” CIH was disguised as a nude image of Jennifer Lopez (actress). Of course, this was often forwarded due to the disguise of the worm.

Conclusion:
CIH utilized a distribution method that is not applicable to our purpose. CIH was not written to do anything useful, it was completely malicious. It is less useful, more so, because it targets older Windows machines.
Melissa Worm

Date: March 26th, 1999

Delivery: e-mail

Melissa is a worm that probably rings more bells than many of the others. As you may remember, Melissa was delivered via email. It worked by mailing itself through Outlook to the first fifty aliases or address book entries on the system.

Melissa was simple and devastating, clogging mail systems with infected emails.

Conclusion:
Melissa doesn’t really apply to our goals, either. I only inspected it due to it’s notoriety. At one point, I did consider using email as a delivery method for the payload, but with the relative robustness of Exchange Servers, I felt this would do more harm than good. Additionally, this would only be effective on Windows based systems, as few clients in a corporate setting run Unix/etc. This is the only email based virus I assessed, for this reason.
Code Red Worm

Date: July 13th, 2001

Delivery: IIS

A recurring theme among modern viruses is the hole filled Microsoft Internet Information Server (web server). IIS is, unfortunately, included on all versions of Windows XP Professional, Windows 2000, Windows NT, and Windows Server.

Code red was named after the variety of Mountain Dew favored by the programmers at eEye Digital Security who discovered it. The worm attacked vulnerability in the IIS indexing system.

It originally manipulated the IIS server instance to display "HELLO! Welcome to http://www.worm.com! Hacked By Chinese!" It then attempted to spread itself to other IIS machines. Twenty to twenty-seven days later, it attempted to launch DoS attacks on several fixed IP addresses. The details of it’s spread have been a bit obfuscated, as the more interesting variant of Code Red (Code Red II) used a much more intelligent method for spreading itself, one that should be explored.

On a high level, Code Red II chose targets on either the same or various different subnets according to a fixed probability distribution. It attempted to choose targets on its own subnet.

Disassembly of the payload reveal a few things, including the list of Win32 API functions used.

[image: image1]
http://www.unixwiz.net/techtips/CodeRedII.html (Friedl)
The second incarnation of the virus really attempted to keep it in the subnet, when it came to infection. This is ideal logic for what we seek to do, however, some of the considerations in the design are greatly biased towards Windows systems. As stated before, it might be more useful (from a design perspective) to spread on various Unix/Linux distros (really any POSIX compliant system that runs similar networking support).

After pulling apart the payload via disassembler, Friedl found that the 1 in 8 times, a completely random IP was used, 4 in 8 times a mask of 192.X.Y.Z was used (class A), and 3 in 8 times a mask of 192.168.X.Y.

The source is as follows (from Fiedl):

mtable[] = { 0xFFFFFFFF // go anywhere

 0xFFFFFF00 // stay in class A

 0xFFFFFF00 // stay in class A

 0xFFFFFF00 // stay in class A

 0xFFFFFF00 // stay in class A

 0xFFFF0000 // stay in class B

 0xFFFF0000 // stay in class B

 0xFFFF0000 }; // stay in class B

start with a random number that will be our new IP address.

I presume the random number generator is "random enough".

newip = random();

zero the UPPER octets of the random IP, which means that the

random number won't participate in the class A or class B

address

mask = mtable[random() & 0x7]; // locate a mask

newip &= mask; // throw away rightmost bits

flip the mask around to operate on LOWER octets

mask = ~mask; // flip the mask around

myip = LOCAL_IP & mask; // throw away leftmost bits

newip contains the upper bits

myip contains the lower bits

join them:

newip |= myip;

if (newip starts with 127) try again // localhost

if (newip starts with 224) try again // multicast

if (newip matches LOCAL_IP) try again

Connect to "newip" and try to infect

It isn’t terribly complicated, but it is novel in that it attempts to infect the same subnet first. In practice, what tended to happen was single subnets would crash.

Conclusion:
The dispersion pattern in Code Red II is actually very interesting and could be applied in a control setting. We will discuss this later in the pseudo code for our exploit.
Blaster

Date: August 2003
The Blaster virus, is another one that haunted system administrators not too long ago. Blaster spread through the usual Windows variants: NT, XP, Server.

The goal of Blaster was to SYN flood the servers of windowsupdate.com on August 15th. It spread quickly by utilizing a buffer overflow attack against the DCOM RPC service. DCOM (as a refresher) was an extension to COM+ (something .NET was supposed to help eliminate via SOAP).
At any rate, Blaster was not a success, but it does point to more vulnerability in Windows implementations.

Conclusion:
More Windows vulnerabilities seems to imply that Windows is not “un-hackable”.
A controlled worm

Attributes of both Code Red II and the Morris Worm would give us a very useful tool. There are still some choices which have to be made. This is a pseudo-code design for a simple worm that would enable the desired functionality.

First of all, this is a design I intend to refine, I did try to code this up, but without time to test it and a decent farm to test against, I was reluctant to just try it, “as is”. This is a virus, this is potentially dangerous. The design I am describing here should limit some of those problems.

The key question is “how do we get in?” At first, I was mostly interested in utilizing a buffer overflow attack. While I have not entirely ruled that out, I do believe that it would be inappropriate for the intended goal. I really don’t want to do something as dangerous as a buffer overflow. If this is to be anywhere near practical, it must not be that damaging.
For the moment, I am going to leave the infection process as an unaddressed area of the design. This actually will depend on the target operating systems.

[image: image2.emf]Root

Target

Target

Target

Target

Network

Logic

Each instance of the worm implements a strict algorithm for execution.

1) After starting up as a running process, to avoid the mistake of the Morris worm, a text file will be written to the root directory (~ on a Unix system, C: on a Windows system). If the file fails to write, the worm dies. If the file already exists, the worm kills itself. The default behavior for the worm will be to die if anything fails.

2) Before spreading to a new PC, the worm creates a UDP packet containing the IP address of the machine it is being hosted on (and any other metadata) and sends it back to its parent. As a failsafe, if the worm does not get a response (return packet), it dies.
3) It then utilizes the Code Red II algorithm for “next IP” to find the next machine to target. It does this N times, where N is specified in the central distribution interface.

4) After each iteration of re-infection, the worm waits for the UDP packet from the child on a specified port (this will be assigned through the infection assignment algorithm). After receiving the packet, it sends a reply. Then it sends the original inbound UDP datagram to it’s parent. Because of the way it works, a reply will be sent, but it will not wait for it.
5) After time T (based on the time in execution and seeded via the interface), no matter what the worm is doing, the worm will cease active execution. This is compiled into the binary.
6) If the mapping is successful, the central distribution system will send a “prepare to stop” message. Each instance will attempt to send it to a child, each child will send a response (not three-way, again, our medium is primarily UDP). As soon as a response is not received (this will have to be a long timeout), the thread will stop itself and send its response back up the chain, so the same thing will happen.

[image: image3.emf]Parent Child Next Target

Additional fail safes will be encoded in the payload of the UDP packet. This includes a depth count. Each child will receive a response that increments a local variable in the binaries. Another failsafe would be the use of this “depth” to terminate germination based upon the value of the “depth”.

Each reinfection will include an attempt at both a Unix/POSIX variety payload and a Windows based payload. I should note that I am using POSIX to cover Unix and Linux distros. POSIX does not technically cover low level OS details, but command structure and syntax.

The default mode of operation is to fail. Only under ideal conditions will the worm propagate. It is fragile, but for a good reason: it is dangerous.
Initial Distribution/Creation

The distribution pattern for the described worm will follow a tree pattern, tracing back through the tree to each parent node. At some point, the packets are routed all the way back to the central distribution system.

The central distribution system will utilize a GUI interface (Swing/Java) to preload values into the pre-compilation C code. Basically the raw C code will be dynamically generated/written by the central distribution application and then compiled and the binaries will be included in the packets, as per the usual delivery method. The code must be dynamically generated to incorporate data into the payload.
The central distribution system will compile all returned UDP packets to construct a tree based map of the network. Due to the “tree nature” it will miss some relationships, but this can be identified by subnet, if it is necessary.

The body of the exploit, the C code, will be written into XML files to enable ease of adjustment and dynamic generation.
Conclusion
The primary concern over the use of a worm to measure bandwidth and map a given system is that of control. The classic problem with any worm that is written is that of control. Morris attempted to assert control, but the key error was not the unreliability of the “check”, but the fact that the default behavior was to continue infection.
This approach is different. Borrowing the Code Red II algorithm for dispersal and incorporating a default of failure, should minimize network traffic concerns. UDP, is of course, one of the lowest overhead transmission devices as it does not involve the usual “three-way handshake”.

There is still the concern of infection itself. There are many different options, and really, in a robust system, that is the one aspect that will change the most. Obviously, Windows machines will be suspect to various types of exploits, that vary over time. The danger in a real system is to know of a network wide vulnerability and not repair it. A little experimentation may be necessary (several attempts at mapping).
Continuing Research

As I have mentioned, I intend to turn this further work into my Master’s Project. This will consist of designing the central application and the exploit itself. The issue of distribution among OSs and some of the low level comm. details will take time to work out.
More work is certainly required to turn this into a full project.
References
Aleph One. “Smashing the Stack for Fun and Profit”. Phrack 49.

CERT. http://www.cert.org/
Eren, Sinan. “Smashing the Kernel Stack for Fun and Profit.” Phrack 60.

Erickson, Jon. Hacking: The Art of Exploitation. No Startch Press, 2003.
Morris, Robert. Morris Worm Source Code. http://www.foo.be/docs-free/morris-worm/worm/

Wikipedia, “Computer Worm”. http://en.wikipedia.org/wiki/Computer_worm
Wiedl, Steve. Unix Wiz. http://www.unixwiz.net/
DWORD PTR [EBP-8] FindLibrary

DWORD PTR [EBP-0CH] LoadLibraryA

DWORD PTR [EBP-10H] CreateThread

DWORD PTR [EBP-14H] GetTickCount

DWORD PTR [EBP-18H] Sleep

DWORD PTR [EBP-1CH] GetSystemDefaultLangID

DWORD PTR [EBP-20H] GetSystemDirectoryA

DWORD PTR [EBP-24H] CopyFileA

DWORD PTR [EBP-28H] GlobalFindAtomA

DWORD PTR [EBP-2CH] GlobalAddAtomA

DWORD PTR [EBP-30H] CloseHandle

DWORD PTR [EBP-34H] _lcreat

DWORD PTR [EBP-38H] _lwrite

DWORD PTR [EBP-3CH] _lclose

DWORD PTR [EBP-40H] GetSystemTime

DWORD PTR [EBP-44H] WS2_32.DLL

DWORD PTR [EBP-48H] socket

DWORD PTR [EBP-4CH] closesocket

DWORD PTR [EBP-50H] ioctlsocket

DWORD PTR [EBP-54H] connect

DWORD PTR [EBP-58H] select

DWORD PTR [EBP-5CH] send

DWORD PTR [EBP-60H] recv

DWORD PTR [EBP-64H] gethostname

DWORD PTR [EBP-68H] gethostbyname

DWORD PTR [EBP-6CH] WSAGetLastError

DWORD PTR [EBP-70H] USER32.DLL

DWORD PTR [EBP-74H] ExitWindowsEx

DWORD PTR [EBP-7CH] RandomSeed

DWORD PTR [EBP-80H] socketFD

DWORD PTR DS:[0FFFFFE58] my IP address (http://www.unixwiz.net/techtips/CodeRedII.html

_1195455929.vsd

