Anti-Cheating Mechanisms for Computer Games

Michael Rudolph and Jason Cook

Introduction


Cheats have been around about as long as video games have, but early on these were inserted by the developer to aid in debugging.  This wasn’t a problem until games were starting to be played over the Internet around early to mid-90’s.  Today there are over 175 Massively Multiplayer Online Role Playing (MMORPG) released or in development, not including First Person Shooters (FPS) and other online games.  These games can only be played online and are often the source of real income for players that take a games virtual property and sell it for real currency.  This scenario presents motive for cheating as it allows one to make real income off of the effort.

Developers release patches to fix the early cheats along with other bugs that may have been in the game.  In a lot of games today, their content is constantly updated and old content is patched to fix bugs, but a fair amount of the time other bugs can be inadvertently introduced and likewise exploited by players.

Anti-cheating mechanisms were a major concern for developers after the game Counter-Strike was created and released in 2000.  A lot of games today merely rely on logging large amounts of information instead of building resource heavy anti-cheating mechanisms.
Techniques for Cheating


There aren’t many different techniques used in hacking games.  Of the three that have been devised, only Client Hooking is robust enough and easy enough to use by the non-computer savvy.  

The earliest for of hacks were hard coded hacks.  These hacks use modified game files to cheat.  This means that someone needed to generate the hack from a binary file and then distribute it to the cheaters. The cheaters then have to be capable enough to know where the file(s) need(s) to be placed to work.  This technique was used in games as early as Doom because of the monolithic architecture of the game. This technique is easily defeated by having the game server check game file sizes and configuration files for known cheats before allowing clients to join.  If there are modified files, the game server can allow the client to download proper ones, thus allowing the player to play the game, but not until after the suspicious files have been replaced.

The next type of technique is the driver hack. This technique modifies a graphics driver on the client machine so that it can display or not display elements of a scene based on the hacker. This allows for wallhacks (opponents can be seen on through walls) by altering driver so that they are drawn transparently, disabling smoke or gun flash effects and can also be used to disable “fog of war” in RTS games.  This is very hard for any sort of defence as these files are maintained by the user.

The last technique is the client DLL hook, which is the most popular form of gaming hack now, due to its relative difficulty to detect and its ease of use. The game is loaded through an external client loading program, which injects or hooks DLL cheat instructions into game code at execution time. Due to the robustness of this technique, it was chosen to be covered in detail.

Rational for use of Dynamically Linked Libraries


Since Dynamically Linked Libraries (DLLs) are such a cause for problems, why not just use static libraries instead.  The answer lies with the gains the DLLs afford a programmer. As a DLL is a collection of small programs, any of which can be called when needed by a larger program, the ability to reuse the code that has already been written, this cuts down on redundant replication of code on the behalf of the programmer.  DLLs save space in memory because DLLs don't get loaded into RAM with the main program. A .DLL file is loaded and run if and when needed, thusly memory space is conserved. Another benefit is that DLL files are dynamically linked with the program that uses them during program execution rather than being compiled with the main program.  This feature allows the programmer to modify the DLL code without having to recompile the entire code base after every change, a very handy mechanism in large projects.  Thus when the functions in a DLL change, the applications that use them do not need to be recompiled or relinked as long as the function arguments, calling conventions, and return values do not change.  Lastly, DLLs provide a way to modularize applications so they can be loaded, updated, and reused more easily.  This is the foundation behind “mods”, which is becoming a requirement in today’s games.

The graphics API’s such as OpenGL and DirectX are also implemented through DLLs.  So since the graphics APIs are already in DLL format, addition of more DLLs isn’t an issue as the programmer’s code must already use at least the graphics DLLs.

Development of a Client Hook


The development of a client hook is not without its pitfalls.  The process requires knowledge of C/C++ programming and assembly as minimum and new would-be hackers are often told to start learning C and ask again in a year.  Also knowledge of OpenGL and DirectX API’s can be very useful when deciding on where to move the mouse for auto-targeting type hacks, or for repetitive type events in MMORPGs like fishing.

Some games develop SDK’s (Software Development Kit) for the purpose of fostering a “mod community”.  As mentioned earlier, this helps to expand the length of the game’s life but also helps in finding out information for developing hacks.

One might consider not releasing SDK’s for games, but this is not necessarily a preventative measure for cheating.  Games have been hacked since original DOOM, when only relatively sparse user creation tools were created (custom skins, level builder, but no way to develop total conversions).

There are tutorials available for creating DLL hacks, but one must be rather savvy with programming, as the efforts are not trivial.  The general procedure involves looking for possible hook entry points into the program’s main execution loop.  The hacker needs to find various memory addresses in assembly to do this and then can start making the DLL.  The DLL is made to detour the execution of the program into the DLL then, when the hack is finished, the normal execution cycle is resumed.

To use the client hook one creates an executable that loads executables (the application that is being hacked) for injecting cheat code at runtime.  These programs and their source code are readily available on the Internet. One need only specify the executable and the DLL to inject into it.

All the “Dirty Work”

For games based off of the Quake 3 engine, the main executable of the game sets up the “virtual machine” for the game, and contains all of the system calls that the various functions inside the game may call. This is probably the most important location to find, since this enables the hacker to hook onto system calls for the game, and detour the handling functions to his own. A favored tool among cheat programmers is OllyDebug, a robust shareware debugging program. There are several ways of finding the syscall offset, but perhaps the most sound is by searching for an error message that the game might produce – in this case “bad cgame system trap.” 

From here, one only needs to trace what function references this error message, and then find the beginning of it in the disassembly. Functions are usually separated by several null or empty operations, so the start of the function is found just after a block of empty operations. Given below is the output of OllyDbg when performing this technique. In this case, the syscall address in ET.exe is 0x004019B0.


004019AD   INT3

004019AE   INT3

004019AF   INT3

004019B0   PUSH EBX

004019B1   PUSH ESI

004019B2   PUSH EDI

004019B3   MOV EDI,DWORD PTR SS:[ESP+10]

004019B7   MOV EAX,DWORD PTR DS:[EDI]

004019B9   CMP EAX,0B3;  Switch (cases
                                 0..B3)

…
…

00402C45   CALL DWORD PTR DS:[13E8C84];
           Case B3 of switch 004019B9

00402C4B   POP EDI

00402C4C   POP ESI

00402C4D   XOR EAX,EAX

00402C4F   POP EBX

00402C50   RETN

00402C51   PUSH EAX ;  Default case of
                       switch 004019B9

00402C52   PUSH ET.005096B0 ;
ASCII "Bad cgame system trap: %i"
There are also five other addresses that are important, as they store information about objects in the game. They reside in the cgame_mp_x86.dll file, and are stored in the variables Cg, Cgs, CG_Weapons, CG_Entities, and CG_Items. These variables are initialised by the vmMain shown in the SDK. This function is where the virtual machine for the game is created. By disassembling the .dll file, these addresses can be found by searching for vmMain in the symbolic names listing, then finding the first call instruction in either switch case 0 or 1, which are presumably cases for successful system calls. Follow that call, and the offsets are found in a series of MOV and REP instructions, as shown below.


3003D3E0   PUSH EBX

3003D3E1   XOR EAX,EAX

3003D3E3   PUSH ESI

3003D3E4   PUSH EDI

3003D3E5   MOV ECX,682A6C

3003D3EA   MOV EDI,cgame_mp.31B11180

3003D3EF   REP STOS DWORD PTR ES:[EDI]

3003D3F1   MOV ECX,1B8DA

3003D3F6   MOV EDI,cgame_mp.33525820

3003D3FB   REP STOS DWORD PTR ES:[EDI]

3003D3FD   MOV ECX,0A7400

3003D402   MOV EDI,cgame_mp.335945C0

3003D407   REP STOS DWORD PTR ES:[EDI]

3003D409   MOV ECX,0D380

3003D40E   MOV EDI,cgame_mp.31ABB020

3003D413   REP STOS DWORD PTR ES:[EDI]

3003D415   MOV ECX,800

3003D41A   MOV EDI,cgame_mp.3351F6E0

3003D41F   REP STOS DWORD PTR ES:[EDI]
The MOV instructions with second argument cgame_mp.XXXX hold the offsets we are looking for. So the cg offsets are:

· Cg = 0x31B11180

· Cgs = 0x33525820

· Cg_Weapons = 0x335945C0

· Cg_Entities = 0x31ABB020

· Cg_Items = 0x3351F6E0


With all of the values of the needed offsets found, it’s now possible to write the client hook in C++. To be effective, the code for the hook will have to contain copies of the source code files that come with the SDK. (see ethack.h in code appendix). The function vmMain is found in the ET SDK in the file cg_main.c (see cg_main.c in code appendix). Since the vmMain function in the game contains 13 arguments, the function that will be detoured to must also have the same number of arguments. (see cg_hook.h in code appendix). 
When ET starts up, the first window that displays is a small console window that is shown briefly. The hacked functions must be hooked onto the running game when this window pops up. This is accomplished with the code for the functions CreateWindowExA_Hook and DllMain, shown in ethookmain.cpp. These functions store the addresses of the original game functions so that control can be returned to the game when the hook function ends. Note that in the line where orig_CG_Syscall is initialized, the offset for the syscall function is specified. In order for orig_LoadLibrary to be initialized, the LoadLibrary hook needs to be inserted above it. This function needs to specify the vmMain function to hook onto the function for the game (see ethookmain.cpp in code appendix). The cg offsets then must be initialized to the values found from disassembling the game’s cgame_mp_x86.dll file. This is done before the definitions of any of the functions. Finally, the detoured functions need to be defined: CG_vmMain_Hook, CG_Init, and CG_DrawActiveFrame. (see cg_main.cpp in code appendix)   

CG_vmMain hook will pass control to the hooked CG_DrawActiveFrame and CG_Init functions. The other two functions are left to the cheaters imagination – he can change the information he sees in the game, such as the health and respawn times of other players in CG_Init. He can also change how objects in the game world are drawn in the CG_DrawActiveFrame function, so that he may see through walls and smoke, as well as other things. What a cheater may do is only limited by the capabilities of the game functions and graphical API’s used for the game.

The Client Hooking Mechanism

The main principal is that the client hook “detours” execution to do what the hacker wants to do then “trampolines” execution back to the program.

Picture from http://wiki.counter-hack.net/howhackswork


The above picture represents the “wrapping” the hook does to the actual game.  This way the game doesn’t know that it is being fed data that is different from the game server.  This also represents the type of attack a client hook is, as it is not only Interception and Redirection, but also Modification.

Solutions to Cheating


The solutions to cheating have been fairly numerous, from mearly logging activity from a client to full blown third-party systems, the attempts have been futile.

Quake 3 based games have attempted to obfuscate the DLLs.  They did this by changing them to .qvm files, but hackers were able to create hooks, which are still available for games that use .qvm.

PunkBuster, a third-party utility used by many recent titles, acts kind of like an anti-virus program in that it scans the game’s memory space for known hacks, and kicks players upon finding cheats.  There were early attempts to defeat PunkBuster which attacked PunkBuster itself.  EvenBalance, creators of PunkBuster, responded by issuing a “global ban” on hard drives that have used PunkBuster attacks.  Current hacks simply try to spoof PunkBuster to avoid the risk of getting banned.

Lastly, most MMORPGs merely keep extensive logs that can show trends in player activity.  One such event was during the Asia based beta of Blizzard Entertainment’s World of Warcraft game, where a Korean guild had found a way to duplicate gold (the games virtual currency).  This resulted in the removal of the Korean guild’s players from the beta as they never reported the bug, and instead just exploited it.

Conclusion


This was an attempt to discover the means by which cheaters are defeated.  Unfortunately there is an ongoing back and forth battle between hackers and developers – hackers develop cheat, eventually is discovered and fixed by developers, hackers develop more sophisticated hack, etc.  The most recent developments include Quake III source code, released under GPL August 2005, which may spell the end of security through obscurity for Q3 engine.  There are still hacks being developed for Q3 engine based games including new Wolfenstein: Enemy Territory hacks released as recent as one week ago.  So far the future hacks for recent id games (Doom 3, Quake 4) remain few and far between in that only graphic driver hacks are available as of now.


There are other mechanisms by which players may cheat that aren’t necessarily as hard as coding up new DLLs.  Many MMORPGs include a scripting engine in the game to allow for a minimal set of custom macros.  These are usually intended to allow for one-click messages and other menial tasks.  The difficulty comes when the engine allows more complex behaviors, which may result in the ability of the hacker to create bots (deterministic behaviour applications that don’t require user input once they’ve been trained).  

References

How Hacks Work:

http://wiki.counter-hack.net/howhackswork
Elite Coders Forum’s Tutorial on Client Hooks:

http://www.elitecoders.org/forum/archive/index.php/t-2939.html
Current link to Panic’s client hook tutorial

http://elitecoders.org/forum/attachment.php?attachmentid=1488&d=1127908551
Elite Coders Wolfenstein:ET forum (the game we found the client hook for):

http://elitecoders.org/forum/forumdisplay.php?s=03458c5fcd595f5e5bbad32c22855cfa&f=25
Source code for a .DLL injection program

http://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=7528&lngWId=3

Appendix: Client Hook C++ Code

/*

 * ethook.h

 * Contains all header files needed for client hook

 */

//initial #includes

#pragma comment ( lib , "opengl32.lib" )

#include <windows.h>

#include <detours.h>

#include <math.h>

#include <vector>

#include <fstream>

#include <gl/gl.h>

//W:ET SDK headers

#include "engine/cg_local.h"

//Hook headers

#include "cg_hook.h"

/*

 * cg_main.c

 * Partial listing – only showing vmMain prototype

 */

/*

================

vmMain

This is the only way control passes into the module.

This must be the very first function compiled into the .q3vm file

================

*/

#if defined(__MACOS__)

#ifndef __GNUC__

#pragma export on

#endif

#endif

int vmMain( int command, int arg0, int arg1, int arg2,

            int arg3, int arg4, int arg5, int arg6,

            int arg7, int arg8, int arg9, int arg10,

            int arg11  )

/*

 * cg_hook.h

 * Prototypes for syscall and vmMain hook functions

 */

int CG_Syscall_Hook ( int command, int arg0, int arg1, int arg2, int arg3, int arg4, int arg5, int arg6, int arg7, int arg8, int arg9, int arg10, int arg11 );

extern (WINAPIV *orig_CG_Syscall) ( int command, int arg0, int arg1, int arg2, int arg3, int arg4, int arg5, int arg6, int arg7, int arg8, int arg9, int arg10, int arg11 );

int CG_vmMain_Hook( int command, int arg0, int arg1, int arg2, int arg3, int arg4, int arg5, int arg6, int arg7, int arg8, int arg9, int arg10, int arg11 );

extern int  (WINAPIV *orig_CG_vmMain)  ( int command, int arg0, int arg1, int arg2, int arg3, int arg4, int arg5, int arg6, int arg7, int arg8, int arg9, int arg10, int arg11 );

/*

 * ethookmain.cpp

 * Functions which detour control to hook functions

 */

#include "ethook.h"

//CG mem offsets

cg_t *cg = ( cg_t * ) 0x31B11180;

cgs_t *cgs = ( cgs_t * ) 0x33525820;

centity_t *cg_entities = ( centity_t * ) 0x335945C0;

weaponInfo_t *weaponInfo = ( weaponInfo_t *) 0x31ABB020;

itemInfo_t *itemInfo = ( itemInfo_t * ) 0x3351F6E0;

/* Pointer variables which store the location of the
 * original functions in memory, so that control can be
 * returned to the game when necessary.

 */ 

HMODULE (WINAPI *orig_LoadLibrary) ( LPCSTR lpFileName );

HWND (WINAPI *orig_CreateWindowExA) ( DWORD dwExStyle, LPCSTR lpClassName, LPCSTR lpWindowName, DWORD dwStyle, INT X, INT Y, INT nWidth, INT nHeight, HWND hWndParent, HMENU hMenu, HINSTANCE hInstance, LPVOID lpParam );

//LoadLibrary

HMODULE WINAPI LoadLibrary_Hook ( LPCSTR lpFileName ) 

{


HMODULE hModule = orig_LoadLibrary( lpFileName );


if ( strstr( lpFileName, "cgame_mp_x86.dll" ) ) 


{



orig_CG_vmMain = (INT (WINAPIV*)(INT,INT,INT,INT,INT,INT,INT,INT,INT,INT,INT,INT,INT)) DetourFunction( (LPBYTE) GetProcAddress( hModule, "vmMain" ), (LPBYTE) CG_vmMain_Hook );


}


return orig_LoadLibrary( lpFileName );

}

//CreateWindowExA

HWND WINAPI CreateWindowExA_Hook ( DWORD dwExStyle, LPCSTR lpClassName, LPCSTR lpWindowName, DWORD dwStyle, INT X, INT Y, INT nWidth, INT nHeight, HWND hWndParent, HMENU hMenu, HINSTANCE hInstance, LPVOID lpParam ) 

{


if ( !lstrcmp( lpClassName, "ET Console" ) ) 


{



HWND hWnd = orig_CreateWindowExA( dwExStyle, lpClassName, lpWindowName, dwStyle, X, Y, nWidth, nHeight, hWndParent, hMenu, hInstance, lpParam );



return hWnd;


}


return orig_CreateWindowExA( dwExStyle, lpClassName, lpWindowName, dwStyle, X, Y, nWidth, nHeight, hWndParent, hMenu, hInstance, lpParam );

}

BOOL APIENTRY DllMain(HMODULE mod, DWORD reason, LPVOID lp)

{


if(reason == DLL_PROCESS_ATTACH)


{



orig_CreateWindowExA = (HWND (WINAPI *)(DWORD,LPCSTR,LPCSTR,DWORD,INT,INT,INT,INT,HWND,HMENU,HINSTANCE,LPVOID))DetourFunction( (PBYTE) CreateWindowExA, (PBYTE) CreateWindowExA_Hook );



orig_CG_Syscall = (int (__cdecl *)(int,int,int,int,int,int,int,int,int,int,int,int,int))DetourFunction( (LPBYTE) 0x004019B0, (LPBYTE) CG_Syscall_Hook );



orig_LoadLibrary = (HINSTANCE__ *(__stdcall *)(const char *))DetourFunction( (LPBYTE) LoadLibrary, (LPBYTE) LoadLibrary_Hook );


}


return 1;

}

/*

 * cg_main.cpp

 * Detour functions

 */

//CG vmMain Hook

int first_refdef_call = 0;

INT (WINAPIV *orig_CG_vmMain) ( INT command, … );

INT CG_vmMain_Hook( INT command, … ) 

{

    switch (command)

        {

            case CG_INIT:

                orig_CG_vmMain( command, … );

                CG_Init (arg0, arg1, arg2);

                return 0;

            case CG_DRAW_ACTIVE_FRAME:

                return 0;

            default: 

                return orig_CG_vmMain( command, … );


}

}

